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1 Motivation – A Planar Line

Suppose there is an unknown planar line parameterised as a normalised projective line, i.e. l =
[l1, l2, l3]>, where l21 + l22 = 1. There is a process generating a set of n planar points X = {x 1, . . . ,xn}
we are able to observe. Some of the points – the inliers – are generated by a line, the remaining
points – the outliers – are placed randomly, not related to the line. Additionally, the inliers are
impaired by an isotropic Gaussian noise, i.e.,

x i ∼ N (x i; x̂ i, σ) ,

where x̂ i is the ‘correct’ point generated by the line, [x̂ i
> 1] l = 0. The example situation is shown in

Figure 1.

We define a metric d(x i, l) as the orthogonal point-to-line distance,

d(x i, l) = [x>i 1] l .

We assume that the points are generated independently, the probability that a point is inlier is p1

and the probability that a point is outlier is p0, providing that p0 + p1 = 1. The outliers are placed
uniformly in the image plane and the inliers are placed uniformly along a line (though the infinity of
the plane and of the line must be somehow treated). Then it can be shown, that the line likelihood is

p(X|l) = n!
n∏
1

p0 c0 + p1 c1N (d(x i, l); 0, σ)
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Fig. 1: Single line fitting situation – noisy inliers generated by the line mixed with outliers. The raw data set
is on the left, the right figure shows in red the original line and inliers it generates.
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Fig. 2: Multiple lines fitting situation. The raw data set is on the left, the original lines and inliers (red, orange
and magenta) are on the right.

where c0 is a constant given by uniform distribution of outliers in a plane and c1 is a is constant given
by uniform distribution of inliers along a line.

The task. Having the set X of n planar points measured, we want to estimate the parameters l∗ of
the unknown line and optionally select the inliers from X .

In the next section, the estimation is formulated more generally as an optimisation problem of fitting
a model to an observed sample set. In the case of planar line estimation, the model is a line and the
sample set consists of the measured points.

Multiple models. Imagine another example – a set of points X generated by two lines l1, l2. Again,
there are some outliers and inliers are impaired by a noise. A portion of inliers comes from the first
line and a portion from the second one. As in the previous case, the task is to estimate parameters of
the two lines and optionally select the points belonging to each.

2 The Problem of Model Fitting

We seek parameters of a model – an unobservable entity, parameterised by a set of parameter vectors
S. The entity generates a set of n observable samples X = {x 1, . . . ,xn}. The set is polluted by
outliers – the erroneous samples not related to the model. Additionally, the inliers – samples related
to the model – are impaired by some noise.

The model can be a single indivisible entity parameterised by a single vector, S = {l}, or it can be
composed from some number of sub-models, each having its own feature vector, S = {l1, . . . , lm}.
Apparently, the first case is a special case for m = 1. We assume, that the number m is fixed and
known, though there are more complicated problems violating this.

The fact that a point is either an outlier or an inlier belonging to one of m sub-models is characterised
by labels Λ = (λ1, . . . , λn), where λi = 0 means that the i-th sample is an outlier and λi ∈ {1, . . . ,m}
is for inlier belonging to the λi-th sub-model.

The sample-generating process is characterised by probability p(X ,S,Λ) = p(X|S,Λ) p(S,Λ), com-
posed from data-dependent likelihood and data-independent prior. We formulate the model fitting as
maximum a-posteriori (MAP) or maximum likelihood (ML) problem. MAP estimate can be computed
only if the prior p(S,Λ) is known; otherwise we seek for ML estimate. In some situations the model S
and the labels Λ should be estimated simultaneously, in other situations only the model is estimated.
Thus we distinguish four closely related formulations of the optimisation problem.
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1. MAP estimate of the model and labels.

(S∗,Λ∗) = arg max
S,Λ

p(X|S,Λ) p(S,Λ) (1)

2. ML estimate of the model and labels.

(S∗,Λ∗) = arg max
S,Λ

p(X|S,Λ) (2)

3. MAP estimate of the model.
S∗ = arg max

S
p(X|S) p(S) (3)

4. ML estimate of the model.
S∗ = arg max

S
p(X|S) (4)

We see that the data-dependent likelihood is a key term of the estimation, either in its full form
p(X|S,Λ) or with labels eliminated by marginalisation, p(X|S) =

∑
Λ p(X|S,Λ)p(Λ).

2.1 Typical Factorisation of Likelihood of a Model

An actual model likelihood p(X|S,Λ) depends on the actual problem we are solving. Examples include
estimating a single line from points, two planar homographies from image-to-image correspondences,
epipolar geometry from image-to-image correspondences, or camera resection from image-to-scene
correspondences, and many more. However, in many problems the likelihood factorises into the
same/similar pieces:

• p(S) – prior distribution of the model.

• p(Λ) =
∏n

1 p(λi) – independent prior distribution of labels.
We denote p(λi = j) as pj , then p0 + . . .+ pm = 1.

• p(X|S,Λ) = n!
∏n

i=1 p(xi|S, λi) – the samples are independent (the n! term honours the fact that
the order of samples is not significant). This leads to p(X|S) = n!

∏n
i=1 p(x i|S) , i.e., marginalised

likelihoods are independent as well.

• p(xi|S, λi = 0) = c0 – distribution of outliers is a constant.

• p(x i|S, λi = j 6= 0) = cj p (d(x i, l j)) = cj N (d(x i, l j); 0, σ) – distribution of inliers is proportional
to normal distribution of inlier errors. There must be defined a metric d measuring a ‘distance’
of a sample from the model. It is reasonable to consider the deviation σ same for all models,
since the noise usually comes from some detector of samples (e.g. points in image plane) and is
not dependent on a model.

Usually, we assume that the constants c1 to cm are the same. The prior probabilities p1 to pm are
either known or assumed same as well. Thus we express all the unknown constant terms for inliers
as c1p1 = . . . = cmpm = cx and for outliers using the threshold as p0c0 = cxN (θ; 0, σ). Note that θ
has meaning of threshold separating inliers from outliers, it has no sense when separating inliers for
different labels.

The likelihood p(X|S,Λ) is directly composed using the above factorisation. Note that the task

(S∗,Λ∗) = arg max
S,Λ

p(X|S,Λ)

can be decomposed as
S∗ = arg max

S
max

Λ
p(X|S,Λ) ,

Λ∗ = arg max
Λ

p(X|S∗,Λ) .
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We can write likelihood p(X|S) by marginalisation over all values of labels,

p(x i|S) = p0 c0 + p1 c1N (d(x i, l1); 0, σ) + . . .+ pm cmN (d(x i, lm); 0, σ) , (5)

p(X|S) = n!
n∏

i=1

p(x i|S) . (6)

Usually, we assume that the constants c1 to cm are same. The prior probabilities p1 to pm are either
known or assumed same as well. Then (5) can be written as

p(x i|S) = cx

(
N (θ; 0, σ) +N (d(x i, l1); 0, σ) + . . .+N (d(x i, lm); 0, σ)

)
, (7)

where the outlier probability is expressed as inlier-outlier separation threshold θ and cx is some con-
stant, that has no impact to estimation. Note that a case with no outliers (p0 = 0) can be represented
by infinite threshold.

3 Model Fitting Algorithms

Depending on an actual shape of model probability/likelihood function we can choose an optimisation
algorithm. We will focus on a typical situation where the shape of the function prevents to use a close
form solution or some gradient-descent or similar optimisation to find a global optimum.

General Scheme of a Sampling Algorithm Iterate w.r.t some stopping criterion:

1. Make a proposal (hypothesis) of model parameters.

2. Evaluate the proposal using a criterion function (usually based on probability/likelihood).

3. Remember the best proposal (w.r.t criterion) from the proposals generated heretofore.

Algorithms mainly differ in a way the proposals are generated and then how the criterion is evaluated.

3.1 RANSAC and Modifications

Proposal. Randomly select a minimal sample set (MSS) and construct a model from it. E.g, MSS
for a line are two points, then the model is the line joining them.

Variants differ by the criterion.

Traditional RANSAC. TODO

MLESAC. TODO

3.2 RANSAC for a Model Composed of Multiple Sub-models.

There are two approaches:

1. Treat as a single (indivisible) model.

2. Apply sequentially for each sub-model, in each step removing inliers (w.r.t. a threshold θ) found
heretofore.
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Fig. 3: Four lines fitting situation. Left – result of the sequential RANSAC, right – results of the full RANSAC.
Solid lines denote the original lines, dashed lines denote the estimates.

As an example, consider fitting n lines (n is fixed and known) to a set of planar points. Then MSS for
n consists of 2n points. In the sequential approach, a single line is found by some version of RANSAC
in each step and the inlier points are removed.

Depending on a problem, sequential RANSAC can have advantage of faster convergence because of
smaller MSS, or it can fall into wrong solution (local optimum). See example in Figure 3.2.

3.3 Metropolis-Hastings Sampler

Appropriate for a model composed of sub-models. We assume, that a new proposal can be generated
using some information from the previous proposal, e.g., some parameters of sub-models are kept,
some are changed. The question which sub-models are changed is a part of proposal.

Sampling procedure. The procedure generates a sequence of parameters of the model. We also call
the set of parameters of the model as a state. Let Si denote the state (model parameters) generated
at i-th step.

Init: Generate random state S1, e.g., using randomly sampled MSS (of the whole model).

Step i+ 1:

1. Given Si, generate a random proposal of the state S ′. The generating procedure is a matter of
choice.

2. Evaluate the conditional probability q(S ′|Si) of this model changing ‘forward’ step and the prob-
ability q(Si|S ′) of the ‘reverse’ step. These probabilities are derived for a particular generating
procedure.

3. Evaluate probabilities of the proposed state p(S ′|X ) and the previous state p(Si|X ).

4. Compute acceptance ratio a,

a =
p(S ′|X )
p(Si|X )

.
q(Si|S ′)
q(S ′|Si)

.

5. Generate random number u from unit-interval uniform distribution U0,1.

6. If a > u then accept the new state, Si+1 ← S ′, else keep the previous state, Si+1 ← Si.

7. Iterate and remember the best state S? (the state having p(S|X ) maximal).
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3.3.1 M-H Sampler for Four Lines

The possible procedure generating the new proposal S ′ can be:

1. Randomly choose the number k of lines changed from uniform distribution, k ∈ 1, 2, 3, 4.

2. Randomly (uniformly) choose which of the four lines are changed;
(4
k

)
possibilities.

3. Randomly draw sample of 2k data points, construct the new lines replacing the lines selected in
previous step.

Now the probability of the forward step and the probability of the reverse step is the same, thus terms
q are cancelled. Then we evaluate only the posterior probability p(S|X ) in each step, or assuming
uniform prior p(S), only the likelihood p(X|S).

Note that if k = 4, the new proposal does not use any information from the previous state. This case
is also used for generating the initial state S1.
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