»Relations and Mappings Involving Fundamental Matrix

er ~ null(F), e ~null(F")
e1 ~H, 'e e2 ~ Hees

L ~F m I~ Fmy
h~HL b~H 'L
L~F'le],l, L~Flel]L

e F[e1], maps lines to lines but it is not a homography

e H. = Q2Q1_1 is the epipolar homography—77
H;T maps epipolar lines to epipolar lines, where
He = Q,Q; ' = KaRo1 K[ '

you have seen this —59

H, or F ey«
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»Representation Theorem for Fundamental Matrices
Def: F is fundamental when F ~ H’T[gl}x, where H is regular and e; = null F # 0.

Theorem: A 3 X 3 matrix A is fundamental iff it is of rank 2.

Proof.
Direct: By the geometry, H is full-rank, e; # 0, hence H*T[gﬂ

Converse:
1. let A =UDV' be the SVD of A of rank 2: then D = diag(A1,A2,0), A1 > A2 >0
2. we write D = BC, where B = diag(A1, A2, A3), C = diag(1,1,0), A3 = A2 (w.l.o.g.)

3. then A = UBCV' = UBCWW ' VT with W rotation
I

« 15 a 3 x 3 matrix of rank 2.

4. we look for a rotation W that maps C to a skew-symmetric S, i.,e. S = CW

0 a 0
5. then W= |-a 0 Of,|a]/=1,and S =]s],,s=(0,0,1)

0 0 1
6. we can write -

A=UB[s|, W'V = .. =UB(VW)" [v3],,  vs-3rd column of V (12)
—_——
~H-T

7. H regular, Avs =0, v3 #0 [}

e we also got a (non-unique: a = +1) decomposition formula for fundamental matrices
o it follows there is no constraint on F' except the rank
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» Representation Theorem for Essential Matrices

Theorem
Let E be a 3 x 3 matrix with SVD E = UDV . Then E is essential iff D ~ diag(1,1,0).

Proof.
Direct:

If E is an essential matrix, then the epipolar homography matrix is a rotation matrix

(—77), hence H™T ~ UB(VW)" in (12) must be (A-scaled) orthogonal, therefore
B =)L

Converse:

E is fundamental with D = Adiag(1,1,0) then we do not need B (as if B = AI) in (12)
and U(VW)T is orthogonal, as required.
O
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»Essential Matrix Decompaosition
We are decomposing E to E ~ [—t21], Ra1 = Ro1[-Rg t21],, [H&Z, sec. 9.6]

1. compute SVD of E = UDV " and verify D = Adiag(1,1,0)
2. ensure U, V are rotation matrices by U — det(U)U, V — det(V)V
3. compute

0 o O
Ray=U|—-a 0 0 VT, to1 = —,3113, \a| = 1, ﬂ 75 0 (13)
0 0 1
Notes W

® v3 ~ R;ltgl by (12), hence Ra1v3 =~ t21 ~ ug since it must fall in left null space by
E ~ [UB]XRQI

® to; is recoverable up to scale 3 and direction sign (3
o the result for R21 is unique up to ao = £1 despite non-uniqueness of SVD
e the change of sign in « rotates the solution by 180° about to;

R(e) =UWV' R(-a)=UW'V' = T =R(-a)R' (a) = --- = Udiag(—1,-1,1)U"
which is a rotation by 180° about uz = to1: show that ug is the rotation axis

-1 0 0] o
Udiag(—1,-1,1)U us=U |0 -1 0| [0 =us
o o 1|1

® 4 solution sets for 4 sign combinations of «;, (8 see next for geometric interpretation
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»Four Solutions to Essential Matrix Decomposition

Transform the world coordinate system so that the origin is in Camera 2. Then t2; = —b
and W rotates about the baseline b. —76

o, —f (baseline reversal) —a, —f (combination of both)

o chirality constraint: all 3D points are in front of both cameras
e this singles-out the upper left case [H&Z, Sec. 9.6.3]
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»7-Point Algorithm for Estimating Fundamental Matrix

k

Problem: Given a set {(x;,¥;)};=1 of kK = 7 correspondences, estimate f. m. F.

yiFEx, =0, i=1,....k,  known: x; = (uj,v;,1), yi = (ui,v},1)

terminology: correspondence = truth, later: match = algorithm’s result; hypothesized corresp.

Solution:

XIF&' = ()ﬁ)&?) :F = (vec(Xi)gT))T vec(F),

T 9 .

vec(F) = [fu for fa1 f33] € R” column vector from matrix
1,2 1,2 1 2.1 1,2 1 2 2

(vec(y1x1 ))_I_ wju]  wivy  uwy  uwjvy vivy vy ui vy 1
T 1,2 1,2 1 2.1 1.2 1 2 2

(VeC(YQX2 )) UgUp  URVZ  Up  URVy VU3 vy up vy 1
1,2 1,2 1 2.1 1,2 1 2 2

D= (vec(y3x;)) — | usuz uzvy w3 wuzvz vzV3 w3 uz vy 1| - pko

12 12 1 2.1 1.2 1 2 2

(vec(ykka))T URUL  URVE UL URVE  VpVp Uk  Ur Vi 1

Dvec(F) =0
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»7-Point Algorithm Continued

Dvec(F) =0, DeR"

e for k = 7 we have a rank-deficient system, the null-space of D is 2-dimensional

e but we know that det F' = 0, hence
1. find a basis of the null space of D: Fy, Fa by SVD or QR factorization

2. get up to 3 real solutions for o from

det(aF1 4+ (1 — a)F2) =0 cubic equation in a

3. get up to 3 fundamental matrices F = o;F1 + (1 — a;)F2 (check rank F = 2)
e the result may depend on image (domain) transformations
e normalization improves conditioning —91
e this gives a good starting point for the full algorithm —109
e dealing with mismatches need not be a part of the 7-point algorithm —110
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»Degenerate Configurations for Fundamental Matrix Estimation

When is F not uniquely determined from any number of correspondences? [H&Z, Sec. 11.9]

1. when images are related by homography
a) camera centers coincide to; =0: H = KgRglel
b) camera moves but all 3D points lie in a plane (n,d): H = Ks(Ra1 — thl’lT/d)K;1

e in both cases: epipolar geometry is not defined
e we do get a solution from the 7-point algorithm but it has the form of F = [s], H
with s arbitrary (nonzero) note that [s], H ~ H'[s']

I v ~ Hx e given (arbitrary) s
= e and correspondence = <> y

S e y is the image of z: y ~ Hx

« =75

e a necessary condition: y €, 1~sx Hx

0=y (sxHx)=y"[g],Hx foranyx,s(!)

2. both camera centers and all 3D points lie on a ruled quadric

. hyperboloid of one sheet, cones, cylinders, two planes
e there are 3 solutions for F

notes
e estimation of E can deal with planes: [s], H is essential, then H=R — tnT/d, and s~ t
not arbitrary
e a complete treatment with additional degenerate configurations in [H&Z, sec. 22.2]
® a stronger epipolar constraint could reject some configurations
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A Note on Oriented Epipolar Constraint

e a tighter epipolar constraint preserves orientations

e requires all points and cameras be on the same side of the plane at infinity

e xmy £ Fmy

notation: m ¥ n means m = An, A >0

b -
/;32 (,'-_>

® we can read the constraint as ez x my 1 H;T (e1 X my)

® note that the constraint is not invariant to the change of either sign of m;

e all 7 correspondence in 7-point alg. must have the same sign see later
o this may help reject some wrong matches, see —110 [Chum et al. 2004]
® an even more tight constraint: scene points in front of both cameras expensive

this is called chirality constraint
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»5-Point Algorithm for Relative Camera Orientation

Problem: Given {m;, m}};_, corresponding image points and calibration matrix K,
recover the camera motion R, t.
Obs:

1. E — 8 numbers

2. R - 3DOF, t — 2DOF only, in total 5 DOF — we need 8 — 5 = 3 constraints on E

3. E essential iff it has two equal singular values and the third is zero —80

This gives an equation system:

yiTE vi=0 5 linear constraints (v ~ K_lm)
detE=0 1 cubic constraint
1
EE'E — 3 tr(EE )E =0 9 cubic constraints, 2 independent
® P1; 1pt: verify this equation from E = UDV',D =2\ diag(1,1,0)
1. estimate E by SVD from v; E v, = 0 by the null-space method 4D null space
2. this gives E ~ zE; + yE2 4+ zE3 + E4

3. at most 10 (complex) solutions for z, y, z from the cubic constraints

® when all 3D points lie on a plane: at most 2 real solutions (twisted-pair) can be disambiguated in 3 views
or by chirality constraint (—82) unless all 3D points are closer to one camera
® 6-point problem for unknown f [Kukelova et al. BMVC 2008]

® resources at http://cmp.felk.cvut.cz/minimal/5_pt_relative.php
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» The Triangulation Problem

Problem: Given cameras P, P and a correspondence z <+ y compute a 3D point X
projecting to x and y

lL1 U2 (pzl)T
Mx=PiX, ey=PX, x=[J|, y=[], Pi=|(p)"
1 1 (P3)"
Linear triangulation method
1, INT INT 2, 2\T 2\ T
u (p3) X=(p1) X, u” (p3) X=(p7) X,
1, INT INT 2 2\T 2\ T
v (p3) X = (p2) X7 v (pB) X = (p2) Xa
Gives
1/ IN\T INT
u (p3) — (P1)
1/ IN\T 1\T
v _
px-o, p=|.®) ~®) |5 g x g
u” (p3) — (P7)
v (P3)" —(P3)"
® back-projected rays will generally not intersect due to image error, see next
e using Jack-knife (—63) not recommended sensitive to small
e we will use SVD (—89)
® but the result will not be invariant to projective frame

error

replacing P; — P1H, Py — P3H does not always result in X — H™!'X

® note the homogeneous form in (14) can represent points at infinity
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» The Least-Squares Triangulation by SVD

e if D is full-rank we may minimize the algebraic least-squares error
(X) = IDX|* st |X|=1, XeR*

e let D; be the i-th row of D, then

4 4 4
IDX|*=3 (D:X)* =) XD/D; X = X'QX, where @ = ) D/D; =D'D € k"
=1 i=1 4 =1
e we write the SVD of Q as Q = Zaf ujujT, in which [Golub & van Loan 2013, Sec. 2.5]
j=1
0 ifl#m

07> >0;>0 and u/ u, = .
1 otherwise

o then X=arg min q Qq=uy
a,llall=1

Proof (by contradiction).

4 4
Let g = E a;u; s.t. E a? =1, then ||| = 1, and
i=1 i=1
“TOoa — 2T T _ 200 T2 2 _2 2 2 _ 2
a Qq*ZUJq uJqu*ZJJ(qu) = 72:@]0] 220]04704
j=1 j=1 j=1 j=1 [}
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