»Homography Subgroups: Euclidean Mapping (aka Rigid Motion)

e Euclidean mapping (EM): rotation, 2 4 0 1 2 3 4 5 6 7 8 9 10

translation and their combination =
cos¢p —sing it O =
H= |sing cos¢p t, b
0 0 1 > 2r
al
o cigenvalues (1, e, ¢'?) ol
sl
EM = The most general homography preserving rotation by 30°, then translation by (7, 2)

1. areas: det H =1 = unit Jacobian
2. lengths: Let x, = Hx; (check we can use = instead of ~). Let (z;)5 =1, Then

x5 — %11l = [Hxz — Hxa || = [H(x2 — x1)[| = -+ = [lx2 — x|

3. angles check the dot-product of normalized differences from a point (x — z) ' (y —z) (Cartesian(!))

e eigenvectors when ¢ # km, k=0, 1,... (columnwise)
ty + ty cot ¢ i —q
€1 |ty —tycot |, €2 1|, e3>~ |1 es, e3 — circular points, i — imaginary unit
2 0 0

4. circular points: points at infinity (¢,1,0), (—,1,0) (preserved even by similarity)
e similarity: scaled Euclidean mapping (does not preserve lengths, areas)
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»Homography Subgroups: Affine Mapping

ain a1z te > 2f ;\\
H= |a21 a2 ty . : e

0 0 1

. o
AM = The most general homography preserving Scarlf:;tg;"dlx;(ol 15, 1)

e parallelism then translation by (7, 2)
ratio of areas

ratio of lengths on parallel lines

linear combinations of vectors (e.g. midpoints)

convex hull

line at infinity ne (not pointwise)

ail a1 0 0 0
does not preserve observe H noo ~ |a12 az2 0] |0 = [0] =nee = nee ~H ™ 'ne
1 1

e lengths te by 1
e angles
e areas
e circular points

Euclidean mappings preserve all properties affine mappings preserve, of course
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»Homography Subgroups: General Homography

hii  hiz his T T
H= |ha1 haa has B \
hz1  hs2 hss or iy
4l
preserves only > ol
e incidence and concurrency 3t
e collinearity ol
e cross-ratio on the line —45
’ )
does not preserve - _os 6l
e lengths H=3 L 3
1 0 1
e areas
° parallelism linen = (1,0,1) is mapped to n..: H7T9 ~ N
e ratio of areas (where in the picture is the line n?)
e ratio of lengths
e linear combinations of vectors

(midpoints, etc.)
convex hull
e line at infinity n
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»Canonical Perspective Camera (Pinhole Camera, Camera Obscura)

in this picture we are looking ‘down the street’

N

right-handed canonical coordinate system
(z,y, z) with unit vectors ez, ey, e,

origin = center of projection C
image plane 7 at unit distance from C
optical axis O is perpendicular to 7

principal point xp: intersection of O and 7

N o o &

perspective camera is given by C and 7

1 \
~—___ - #yl
B R y
ey ~—

y—z plane m e
projected point in the natural image
coordinate system:

!
oy vy g
1 1+2—-1 z’ z
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»Natural and Canonical Image Coordinate Systems

projected point in canonical camera (z # 0)

- 1 100 o] [V
@y 1) = (;, % 1) =@y =0 1 0 oY) =PeX
0 0 1 0 1
P0=[I 0]
projected point in scanned image scale by f and translate to (ug,vo)
(0.0) eu
€y
u=J3 o fa+zuo f 0 w] 1 000
v=fY 40 fy+zuw| =0 f wl|-|0 1 0 0 Z —KPyX=PX
RS z 00 1] [0oo0 1 o |

e ‘calibration’ matrix K transforms canonical Py to standard perspective camera P
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» Computing with Perspective Camera Projection Matrix

ma f 0w 0] " fr+uoz T+ Fuo
m= |mq| = 0 f Vo 0 Y >~ fy+'UOZ =~ y+?1}0
4
ms 0 0 1 0 1 z i
———
(a)
m_ fi+u0:u, m2 _ &—f—vo—v when ms3 #0
ms ms

f — 'focal length’ — converts length ratios to pixels, [f]=px, f>0
(uo,v0) — principal point in pixels
Perspective Camera:
1. dimension reduction since P € R34

2. nonlinear unit change1—1-z/f, see (a)

for convenience we use P11 = Pas = f rather than P33 = 1/f and the ug, vg in relative units

3. mg3 = 0 represents points at infinity in image plane 7 i.e. points with z =0
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»Changing The Outer (World) Reference Frame

A transformation of a point from the world to camera R.t Cam\%
coordinate system:
TL‘
X.=RX, +t world
_ _ Fu
R - camera rotation matrix world orientation in the camera coordinate frame F.
t — camera translation vector world origin in the camera coordinate frame F.

PX.= KP, [’ﬂ — KP, [Rx‘f “} ~K[I o0 Bﬁ ﬂ [Xf“} “K[R t]X.

T
Py (a 3 x 4 mtx) discards the last row of T

e Ris rotation, RTR =1, detR = +1 I € R*3 identity matrix
® 6 extrinsic parameters: 3 rotation angles (Euler theorem), 3 translation components
® alternative, often used, camera representations

P=K[R t]=KR[I -C]

C - camera position in the world reference frame F,, t = —-RC
rl;r — optical axis in the world reference frame F,, third row of R: r3 = R™! [0,0, 1]—r

e we can save some conversion and computation by noting that KR[I —C]X =KR(X—-C)
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»Changing the Inner (Image) Reference Frame

The general form of calibration matrix K includes
o skew angle 6 of the digitization raster

e pixel aspect ratio a af U
K=1|0 SiTT o Vo

e, =e, 0 0 1

u
e, ¢$ 0 units: [f] = px, [uo] = px, [vo] = px, [a] =1
el 10
a o ® H1; 2pt: Verify this K. Hints: (1) image projects to orthogonal
(0,0) system F'1, then it maps by skew to F”, then by scale f, a f to
F", then by translation by ug, vo to F'”; (2) Skew: express point

x as x = u'e, +v'e, = ulel +vlel, e are unit basis

vectors, K maps from F- to F'" as
w’” W " 1T = Kut, vt 1] 7 deadline LD+2 wk

general finite perspective camera has 11 parameters:
e 5 intrinsic parameters: f, uo, vo, a, 0 finite camera: det K # 0
e 6 extrinsic parameters: t, R(a, 3,7)

m~ PX, P = [Q q]><: K [R t] = KR[I —C] a recipe for filling P
m=XN\PX Xto

Representation Theorem: The set of projection matrices P of finite perspective cameras is
isomorphic to the set of homogeneous 3 X 4 matrices with the left 3 x 3 submatrix Q non-singular.

3D Computer Vision: II. Perspective Camera (p. 31/189) 9aC R. Sara, CMP; rev. 1-Oct—2019 =@l



»Projection Matrix Decomposition

P-[Q aq] — K[R {

Qe R‘?’(g full rank (if finite perspective camera; see [H&Z, Sec. 6.3] for cameras at infinity)
K e Rf’d upper triangular with positive diagonal elements
R cR*>3  rotation: R'R=TIanddetR = +1
1. [Q q] =K [R t] = [KR Kt] also —34
2. RQ decomposition of Q = KR using three Givens rotations [H&Z, p. 579]
K =Q Ra2R31Ro QRaz = [: (:) :]7 QR32R31 = [o 0 :]7 QR32R31Ro1 = [8 0 :]
N , 0. . .

R

R;; zeroes element ij in Q affecting only columns i and j and the sequence preserves previously
zeroed elements, e.g. (see next slide for derivation details)

Lo 0 +s2=1 —q32

. q33
R32 = [0 ¢ —s| gives = c= 5=
0 = k32 = cqg32 + s¢33
0 s ¢ a g \/ 432 + 433 \/q§2+q§3

® P1; 1pt: Multiply known matrices K, R and then decompose back; discuss numerical errors

e RQ decomposition nonuniqueness: KR = KT~!TR, where T = diag(—1, —1,1) is also a
rotation, we must correct the result so that the diagonal elements of K are all positive
‘thin’ RQ decomposition

e care must be taken to avoid overflow, see [Golub & van Loan 2013, sec. 5.2]
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I RQ Decomposition Step

91,2 €91,2+8d1,3 -8d3,2 +¢Cdy,3
Clapd @ Clapn 7 2 Clhys =9 Sasa ¢S g
93,1 © 93,2 + $d3,3 -S54d3,2 +Cd3,3

-91,393,2*91,2 93,3 91,2 93,2%91,3 93,3

q1,1
e
-92,393,2*92,2 93,3 92,293,2+%92,3 93,3
q2,1
\/“§,2‘°§,3 \/“g,z”‘g,s
as,1 0 al,; + 95,3
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»Center of Projection

Observation: finite P has a non-trivial right null-space rank 3 but 4 columns

Theorem
Let P be a camera and let there be B # 0 s.t. PB = 0. Then B is equivalent to the
projection center C (homogeneous, in world coordinate frame).

Proof.
1. Consider spatial line AB (B is given, A # B). We can write

XA)~AA+(1-XNB, AeR

2. it projects to
PX(A\)~APA+(1-AN)PB~PA

® the entire line projects to a single point = it must pass through the optical center of P

® this holds for any choice of A # B = the only common point of the lines is the C, i.e. B~ C

O
Hence
C _
0=PC=[Q (] {1} =QC+q => C=-Qlq
C = (¢;), where ¢j = (—1)7 det P, in which P() is P with column j dropped //

Matlab: C_homo = null(P); or C = -Q\g;
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Thank You
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