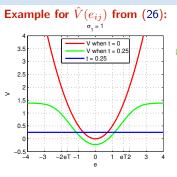
► The Action of the Robust Matching Model on Data

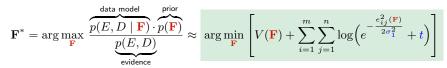


 $\begin{array}{ll} \mbox{red} &-\mbox{the (non-robust) quadratic error} & \hat{V}(e_{ij}) \mbox{ when } t=0 \\ \mbox{blue} &-\mbox{the rejected match penalty } t \\ \mbox{green} &-\mbox{robust} \ \hat{V}(e_{ij}) \mbox{ from (26)} \end{array}$

- if the error of a correspondence exceeds a limit, it is ignored
- then $\hat{V}(e_{ij}) = \text{const}$ and we just count outliers in (26)
- t controls the 'turn-off' point
- the inlier/outlier threshold is e_T the error for which $(1-P_0) p_1(e_T) = P_0 p_0(e_T)$: note that $t \approx 0$

$$e_T = \sigma_1 \sqrt{-\log t^2}, \quad t = e^{-\frac{1}{2} \left(\frac{e_T}{\sigma_1}\right)^2}$$
 (27)

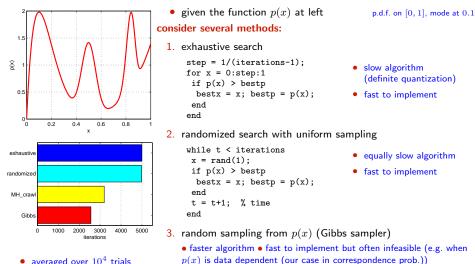
The full optimization problem (23) uses (26):



- $\pi(\mathbf{F})$ a shorthand for the argument of the maximization
- typically we take $V(\mathbf{F}) = -\log p(\mathbf{F}) = 0$ unless we need to stabilize a computation, e.g. when video camera moves smoothly (on a high-mass vehicle) and we have a prediction for \mathbf{F}
- evidence is not needed unless we want to compare different models (e.g. homography vs. epipolar geometry)

3D Computer Vision: V. Optimization for 3D Vision (p. 114/189) 🔊 ९९ R. Šára, CMP; rev. 19-Nov-2019 📴

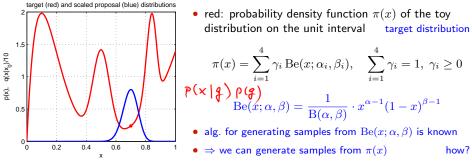
How To Find the Global Maxima (Modes) of a PDF?



- averaged over 10^4 trials
- number of proposals before $|x - x_{\text{true}}| \leq \text{step}$
- 4. Metropolis-Hastings sampling
 - almost as fast (with care) not so fast to implement
 - rarely infeasible
 RANSAC belongs here

3D Computer Vision: V. Optimization for 3D Vision (p. 115/189) JAG. R. Šára, CMP: rev. 19-Nov-2019

How To Generate Random Samples from a Complex Distribution?



• suppose we cannot sample from $\pi(x)$ but we can sample from some 'simple' proposal distribution $q(x \mid x_0)$, given the previous sample x_0 (blue)

$$q(x \mid x_0) = \begin{cases} U_{0,1}(x) & \text{(independent) uniform sampling} \\ Be(x; \frac{x_0}{T} + 1, \frac{1-x_0}{T} + 1) & \text{'beta' diffusion (crawler)} & T - \text{temperature} \\ \pi(x) & \text{(independent) Gibbs sampler} \end{cases}$$

- note we have unified all the random sampling methods from the previous slide
- how to redistribute proposal samples $q(x \mid x_0)$ to target distribution $\pi(x)$ samples?

Metropolis-Hastings (MH) Sampling

C - configuration (of all variable values) e.g. C = x and $\pi(C) = \pi(x)$ from $\rightarrow 116$

Goal: Generate a sequence of random samples $\{C_t\}$ from target distribution $\pi(C)$

setup a Markov chain with a suitable transition probability to generate the sequence

Sampling procedure

1. given C_t , draw a random sample S from $q(S \mid C_t)$

q may use some information from C_t (Hastings) the evidence term drops out

fast implementation but must wait long to hit the mode

2. compute acceptance probability

$$a = \min\left\{1, \ \frac{\pi(S)}{\pi(C_t)} \cdot \frac{q(C_t \mid S)}{q(S \mid C_t)}\right\}$$

- 3. draw a random number u from unit-interval uniform distribution $U_{0,1}$
- 4. if $u \leq a$ then $C_{t+1} := S$ else $C_{t+1} := C_t$

'Programming' an MH sampler

- 1. design a proposal distribution (mixture) q and a sampler from q
- 2. write functions $q(C_t \mid S)$ and $q(S \mid C_t)$ that are proper distributions

 $\widehat{u}(x) \hat{\tau}$

not always simple

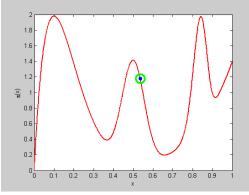
very slow

Finding the mode

- remember the best sample
- use simulated annealing
- start local optimization from the best sample good trade-off between speed and accuracy an optimal algorithm does not use just the best sample: a Stochastic EM Algorithm (e.g. SAEM)

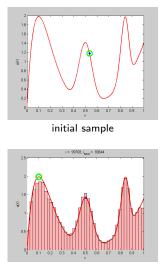
3D Computer Vision: V. Optimization for 3D Vision (p. 117/189) 290

MH Sampling Demo



sampling process (video, 7:33, 100k samples)

- blue point: current sample
- green circle: best sample so far $quality = \pi(x)$
- histogram: current distribution of visited states
- the vicinity of modes are the most often visited states



final distribution of visited states

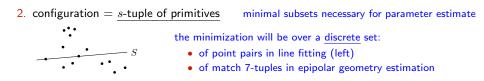
```
function x = proposal_gen(x0)
% proposal generator q(x | x0)
 T = 0.01; \% temperature
 x = betarnd(x0/T+1,(1-x0)/T+1);
end
function p = proposal q(x, x0)
% proposal distribution q(x | x0)
 T = 0.01;
 p = betapdf(x, x0/T+1, (1-x0)/T+1);
end
function p = target_p(x)
% target distribution p(x)
 % shape parameters:
 a = \begin{bmatrix} 2 & 40 & 100 & 6 \end{bmatrix}:
 b = [10 \ 40 \ 20 \ 1];
 % mixing coefficients:
 w = [1 \ 0.4 \ 0.253 \ 0.50]; w = w/sum(w);
 p = 0:
 for i = 1:length(a)
  p = p + w(i) * betapdf(x,a(i),b(i));
 end
end
```

```
%% DEMO script
k = 10000; % number of samples
X = NaN(1,k); % list of samples
x0 = proposal_gen(0.5);
for i = 1 \cdot k
x1 = proposal_gen(x0);
 a = target p(x1)/target p(x0) * \dots
     proposal_q(x0,x1)/proposal_q(x1,x0);
 if rand(1) < a
 X(i) = x1; x0 = x1;
 else
 X(i) = x0;
 end
end
figure(1)
x = 0:0.001:1:
plot(x, target_p(x), 'r', 'linewidth',2);
hold on
binw = 0.025; % histogram bin width
n = histc(X, 0:binw:1):
h = bar(0:binw:1, n/sum(n)/binw, 'histc');
set(h, 'facecolor', 'r', 'facealpha', 0.3)
xlim([0 1]); ylim([0 2.5])
xlabel 'x'
ylabel 'p(x)'
title 'MH demo'
hold off
```

3D Computer Vision: V. Optimization for 3D Vision (p. 119/189) つへへ R. Šára, CMP; rev. 19-Nov-2019 📴

► The Elements of a Data-Driven MH Sampler

- 1. primitives = elementary measurements
 - points in line fitting
 - matches in epipolar geometry estimation



- 3. a map from configuration C to parameters $\pmb{\theta}$ by solving the minimal geometric problem
 - line parameters n from two points
 - fundamental matrix ${\bf F}$ from seven matches
- 4. target likelihood $p(E, D \mid \boldsymbol{\theta})$ replaces $\pi(C)$
 - can use log-likelihood: then it is the sum of robust errors $\hat{V}(e_{ij})$ given F (26)
 - robustified point distance from the line $oldsymbol{ heta}=\mathbf{n}$
 - robustified Sampson error for $oldsymbol{ heta}=\mathbf{F}$
 - posterior likelihood $p(E, D \mid \boldsymbol{\theta})p(\boldsymbol{\theta})$ can be used MAPSAG

MAPSAC ($\pi(S)$ includes the prior)

▶cont'd

5. (optional) hard inlier/outlier discrimination by the threshold (27)

$$\hat{V}(e_{ij}) < e_T, \qquad e_T = \sigma_1 \sqrt{-\log t^2}$$

6. parameter distribution follows the empirical distribution of *s*-tuples. Since the proposal is done via the minimal problem solver, it is 'data-driven',

- pairs of points define line distribution $p(\mathbf{n} \mid X)$ (left)
- random correspondence 7-tuples define epipolar geometry distribution $q({\bf F} \mid M)$
- 7. proposal distribution $q(\cdot)$ is just a distribution of the s-tuples:
 - a) q uniform, independent $q(S \mid C_t) = q(S) = {\binom{mn}{s}}^{-1}$, then $a = \min\left\{1, \frac{p(S)}{p(C_t)}\right\}$
 - b) q dependent on descriptor similarity PROSAC (similar pairs are proposed more often)
 - c) q dependent on the current configuration
- 8. local optimization from promising proposals
 - can use hard inliers
 - cannot be used to replace C_t
- 9. stopping based on the probability of proposing an all-inlier sample

SAC (similar pairs are proposed more often) e.g. 'not far from it'

 \rightarrow 122

► Data-Driven Sampler Stopping

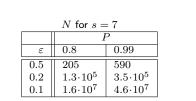
 $N \ge \frac{\log(1-P)}{\log(1-\varepsilon^s)}$

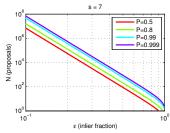
Principle: what is the number of proposals N that are needed to hit an all-inlier sample? this will tell us nothing about the accuracy of the result

- P ... probability that at least one proposal is an all-inlier 1 P ... all previous N proposals were bad ε ... the fraction of inliers among primitives, $\varepsilon \leq 1$
- s ... minimal sample size (2 in line fitting, 7 in 7-point algorithm)
 - ε^s ... proposal does not contain an outlier

•
$$1-\varepsilon^s$$
 ... proposal contains at least one outlier

• $(1-arepsilon^s)^N$... N previous proposals contained an outlier = 1-P





- N can be re-estimated using the current estimate for ε (if there is LO, then after LO) the quasi-posterior estimate for ε is the average over all samples generated so far
- this shows we have a good reason to limit all possible matches to tentative matches only
- for $\varepsilon \to 0$ we gain nothing over the standard MH-sampler stopping criterion

3D Computer Vision: V. Optimization for 3D Vision (p. 122/189) つんで R. Šára, CMP; rev. 19-Nov-2019 📴

Stripping MH Down To Get RANSAC [Fischler & Bolles 1981]

• when we are interested in the best sample only...and we need fast data exploration...

Simplified sampling procedure

1. given C_t , draw a random sample S from $q(S \mid C_t) q(S)$

independent sampling no use of information from C_t

2. compute acceptance probability

$$a = \min\left\{1, \ \frac{\pi(S)}{\pi(C_t)} \cdot \frac{q(C_t \mid S)}{q(S \mid C_t)}\right\}$$

- 3. draw a random number u from unit-interval uniform distribution $U_{0,1}$
- 4. if $u \leq a$ then $C_{t+1} := S$ else $C_{t+1} := C_t$ 5. if $\pi(S) > \pi(C_{\text{best}})$ then remember $C_{\text{best}} := S$

Steps 2-4 make no difference when waiting for the best sample

- ... but getting a good accuracy sample might take very long this way
- good overall exploration but slow convergence in the vicinity of a mode where C_t could serve as an attractor
- cannot use the past generated samples to estimate any parameters
- we will fix these problems by (possibly robust) 'local optimization'

3D Computer Vision: V. Optimization for 3D Vision (p. 123/189) つへへ R. Šára, CMP; rev. 19-Nov-2019 📴

► RANSAC with Local Optimization and Early Stopping

- **1**. initialize the best sample as empty $C_{\text{best}} := \emptyset$ and time t := 0
- estimate the number of needed proposals as $N := \binom{n}{s} n$ No. of primitives, s minimal sample size
- while $t \leq N$: 3.

 - b) if $\pi(S) > \pi(C_{\text{best}})$ then
 - i) update the best sample $C_{\text{best}} := S$ $\pi(S)$ marginalized as in (26); $\pi(S)$ includes a prior \Rightarrow MAP
 - ii) threshold-out inliers using e_T from (27)...

iv) update C_{best} , update inliers using (27), re-estimate N from inlier counts

 $2e_T$

 \rightarrow 122 for derivation

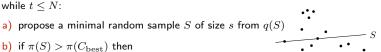
$$N = \frac{\log(1-P)}{\log(1-\varepsilon^s)}, \quad \varepsilon = \frac{|\operatorname{inliers}(C_{\operatorname{best}})|}{m n},$$

c) t := t + 1

- 4. output C_{best}
 - see MPV course for RANSAC details

see also [Fischler & Bolles 1981], [25 years of RANSAC]

3D Computer Vision: V. Optimization for 3D Vision (p. 124/189) SQC. R. Šára, CMP: rev. 19-Nov-2019



Thank You

