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Preface

1 Introduction

This, the eighth release of the Toolbox, represents neatcade of tinkering and a sub-
stantial level of maturity. This release is largely a maiatece one, tracking changes in
Matlab/Simulink and the way Matlab now handles help and deriibere is also a change
in licence, the toolbox is now released under LGPL.

The Toolbox provides many functions that are useful in rmsaihcluding such things as
kinematics, dynamics, and trajectory generation. Theldmois useful for simulation as
well as analyzing results from experiments with real robots

The Toolbox is based on a very general method of represethitanginematics and dynam-
ics of serial-link manipulators. These parameters arepudated in Matlab objects. Robot
objects can be created by the user for any serial-link méatipuand a number of examples
are provided for well know robots such as the Puma 560 andtdrédd arm. The Toolbox
also provides functions for manipulating and convertingMeen datatypes such as vec-
tors, homogeneous transformations and unit-quaternidmstvware necessary to represent
3-dimensional position and orientation.

The routines are written in a straightforward manner whitbwas for easy understanding,
perhaps at the expense of computational efficiency. My gmddl of this work has been
the book of Paul[1], now out of print, but which | grew up withi.you feel strongly about

computational efficiency then you can always rewrite thecfiom to be more efficient,

compile the M-file using the Matlab compiler, or create a MEXsion.

1.1 What's new
This release is primarily fixing issues caused by changesaitidid and Simulink R2008a.

e Simulink blockset and demos 1-6 all work with R2008a

Some additional robot models were contributed by WynandrSefavlega Robots
CC: Fanuc AM120iB/10L, Motoman HP and S4 ABB 2.8.

The toolbox is now released under the LGPL licence.

Some functions have disappearégn, dh
e Some functions have been redefined, beware:

— The toolbox used to use roll/pitch/yaw angles as per the bmyolRaul[1] in
which the rotations were: roll about Z, pitch about Y and ydwowa X. This
is different to the more common robot conventions today, asdised in the
vehicular and aerospace industry in which roll is about ¥tpabout Y and yaw
about Z. The functions2rpy andrpy2t r have been changed accordingly.
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— The functionsotx ,roty androtz all used to return a % 4 transform matrix.
They now return a & 3 rotation matrix. Use the functiontx , troty and
trotz instead if you want a 4 4 transform matrix.

e Some functions have been added:
— r2t ,t2r ,isvec ,isrot

e HTML format documentation is provided in the directdmynldoc which was gen-
erated using the packagehtml . This help is accessible throughAWLAB’s inbuilt
help browser, but you can also point your browser at htmldoc/index.html

All code is now under SVN control which should eliminate maffithe versioning problems
| had previously due to developing the code across multipieputers. A first cut at a test
suite has been developed to aid in pre-release testing.

1.2 Other toolboxes

Also of interest might be:

¢ A python implementation of the toolbox. All core functioitglis present including
kinematics, dynamics, Jacobians, quaternions etc. Itdedan the python numpy
class. The main current limitation is the lack of good 3D ¢piap support but people
are working on this. Nevertheless this version of the towlisovery usable and of
course you don’t need a AI'LAB licence to use it.

® Machine Vision toolbox (MVTB) for MATLAB. This was described in an article

@article{Corke05d,
Author = {P.I. Corke},
Journal = {IEEE Robotics and Automation Magazine},
Month = nov,
Number = {4},
Pages = {16-25},
Title = {Machine Vision Toolbox},
Volume = {12},
Year = {2005}}

It provides a very wide range of useful computer vision functions beyond the Mathwork’s
Image Processing Toolbox. However the maturity of MVTB is less than that of the robotics
toolbox.

1.3 Contact
The Toolbox home page is at

http://www.petercorke.com/robot
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This page will always list the current released version neinats well as bug fixes and new
code in between major releases.

A Google Group called “Robotics Toolbox” has been createtandle discussion. This
replaces all former discussion tools which have proved tedrg problematic in the past.
The URL ishttp://groups.google.com.au/group/robotics-tool-box

1.4 How to obtain the Toolbox

The Robotics Toolbox is freely available from the Toolboxrtepage at
http://www.petercorke.com

or the CSIRO mirror
http://lwww.ict.csiro.au/downloads.php

The files are available in either gzipped tar format (.gz)iprfarmat (.zip). The web page
requests some information from you regarding such as youmtog type of organization
and application. This is just a means for me to gauge intemedtto help convince my
bosses (and myself) that this is a worthwhile activity.

The file robot.pdf  is a comprehensive manual with a tutorial introduction aethis
of each Toolbox function. A menu-driven demonstration carinvoked by the function
rtdemo .

1.5 MATLAB version issues

The Toolbox should in principle work with MI'LAB version 6 and greater. However fea-
tures of Matlab keep changing so it best to use the latesioverf2007 or R2008.

The Toolbox will not function under MTLAB v3.x or v4.x since those versions do not
support objects. An older version of the Toolbox, availaiten the Matlab4 ftp site is
workable but lacks some features of this current Toolbosass.

1.6 Acknowledgements

| am grateful for the support of my employer, CSIRO, for supipg me in this activity and
providing me with access to the Matlab tools.

| have corresponded with a great many people via email sheeéirst release of this Tool-
box. Some have identified bugs and shortcomings in the dotiatien, and even better,
some have provided bug fixes and even new modules, thankysuth® fileCONTRIBfor
details.

1.7 Support, use in teaching, bug fixes, etc.

I'm always happy to correspond with people who have foundugenbugs or deficiencies
in the Toolbox, or who have suggestions about ways to impitsvenctionality. However
| draw the line at providing help for people with their assiggnts and homework!
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Many people use the Toolbox for teaching and this is somettfiat | would encourage.
If you plan to duplicate the documentation for class use ety copy must include the
front page.

If you want to cite the Toolbox please use

@ARTICLE{Corke96b,
AUTHOR = {P.l. Corke},
JOURNAL = {IEEE Robotics and Automation Magazine},
MONTH = mar,
NUMBER = {1},
PAGES = {24-32},
TITLE = {A Robotics Toolbox for {MATLAB}},
VOLUME = {3},
YEAR = {1996}
}

which is also given in electronic form in the README file.

1.8 A note on kinematic conventions

Many people are not aware that there are two quite differ@mb$ of Denavit-Hartenberg
representation for serial-link manipulator kinematics:

1. Classical as per the original 1955 paper of Denavit andedberg, and used in text-
books such as by Paul[1], Fu etal[2], or Spong and Vidya$apar

2. Modified form as introduced by Craig[4] in his text book.

Both notations represent a joint as 2 translatigharfdD) and 2 rotation anglesi(and®).
However the expressions for the link transform matricesqaiite different. In short, you
must know which kinematic convention your Denavit-Hartergoparameters conform to.

Unfortunately many sources in the literature do not spebifycrucial piece of information.
Most textbooks cover only one and do not even allude to thetexxce of the other. These
issues are discussed further in Section 3.

The Toolbox has full support for both the classical and medifionventions.

1.9 Creating a new robot definition

Let's take a simple example like the two-link planar mangtal from Spong & Vidyasagar[3]
(Figure 3-6, p73) which has the following (standard) Detiédartenberg link parameters

Link | & | aj | di | 6
1 1/0/|0]63
2 1100|865

where we have set the link lengths to 1. Now we can create aphiitkk objects:
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>> L 1=link([0 1 0 0 0], 'standard’)
L1 =
0.000000 1.000000 0.000000 0.000000 R (std)
>> | 2=link([0 1 0 0 0], 'standard’)
L2 =
0.000000 1.000000 0.000000 0.000000 R (std)

>> r=robot({L1 L2})

noname (2 axis, RR)

grav = [0.00 0.00 9.81] standard D&H parameters

alpha A theta D R/P
0.000000 1.000000 0.000000 0.000000 R (std)
0.000000 1.000000 0.000000 0.000000 R (std)

>>

The first few lines create link objects, one per robot link. t?&Nthe second argument to
link which specifies that the standard D&H conventions are to bd (this is actually the
default). The arguments to the link object can be found from

>> help link

LINK([alpha A theta D sigma], CONVENTION)

which shows the order in which the link parameters must begzhéwhich is different to
the column order of the table above). The fifth element of the firgumentsigma , is a
flag that indicates whether the joint is revolusgyma is zero) or primsmaticsfgma is non
zero).

The link objects are passed as a cell array torthet() function which creates a robot
object which is in turn passed to many of the other Toolboxfioms.

Note that displays of link data include the kinematic cori@min brackets on the far right.
(std) for standard form, an¢nod) for modified form.

The robot just created can be displayed graphically by
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noname :

Figure 1: Simple two-link manipulator model.

>> plot(r, [0 0])

which will create the plot shown in Figure 1.

1.10 Using MEX files

The Robotics Toolbox Release 7 includes portable C sourde tmgenerate a MEX file
version of thane function.

The MEX file runs upto 500 times faster than the interprettesionrne.m and this is
critical for calculations involving forward dynamics. Therward dynamics requires the
calculation of the manipulator inertia matrix at each iméign time step. The Toolbox uses
a computationally simple but inefficient method that regsiievaluating thene function
n-+ 1 times, wheren is the number of robot axes. For forward dynamics rtiee is the
bottleneck.

The Toolbox stores all robot kinematic and inertial parareetn arobot object, but ac-
cessing these parameters from a C language MEX file is some@uwhdersome and must
be done on each call. Therefore the speed advantage insnedkehe number of rows in
theq, gd andqdd matrices that are provided. In other words it is better tb el with a
trajectory, than for each point on a trajectory.

To build the MEX file:

1. Change directory to theex subdirectory of the Robotics Toolbox.

2. On a Unix system just typmake. For other platforms follow the Mathworks guide-
lines. You need to compile and link three files with a commamdething likemex
frne.c ne.c vmath.c

3. If successful you now have a file callfege.ext  whereext is the file extension and
depends on the architecturedxsol for Solaris,mexix for Linux).

4. From within Matlakcd into this same directory and run the test script
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>> cd ROBOTDIR/mex
>> check

Fkkkkkkkkkkkkkkkkkkkkkkk P uma 5 60 kkkkkkkkkkkkkkkkkkkk

* Kkk *

*kkkkkkkkkkkkkkkkkkkkkkk normal Case *kkkkkkkkkkkkkkkk

DH: Fast RNE: (c) Peter Corke 2002
17, worst case error is 0.000000

Kkkkkkkkkkkk

kkkkkkkkk

Fkkkkkkkkkkk

K*kkkkkkkkkkk

Speedup is

MDH: Speedup is
Fhkkkkkkkkkkkkkkkkkkkkkkk
DH: Speedup is
MDH: Speedup is
Fhkkkkkkkkkkhkkkkhhkkkirk
DH: Speedup is
MDH: Speedup is

no g ravny *kkkkkkkkkkkkkkkkk

1501, worst case error is 0.000000

ext fO rce kkkkkkkkkkkkkkkkkkk

1497, worst case error is 0.000000

1565, worst case error is 0.000000

Kkkkkkkkkkk

1509, worst case error is 0.000000

kkkkkkkkkk

637, worst case error is 0.000000

kkkkkkkkkkkkkkkkkkkkkk Stanford arm kkkkkkkkkkkkkkkkkk

Kkkkkkkkkkkk

kkkkkkkkk

* *

Fkkkkkkkkkkkkkkkkkkkkkkk normal case Fkkkkkkkkkkkkkkkk

1490, worst case error is 0.000000

DH: Speedup is
MDH: Speedup is

kkkkkkkkkkkkkkkkkkkkkkkk no graVIty Kkkkkkkkkkkkkkkkkk

1471, worst case error is 0.000000

DH: Speedup is
MDH: Speedup is

Fkkkkkkkkkkkkkkkkkkkkkkk eXt force kkkkkkkkkkkkkkkkkkk

DH: Speedup is
MDH: Speedup is
>>

* Kkkkkkkkkkkk

Fkkkkkkkkkkk

1519, worst case error is 0.000000

kkkkkkkkkkk

1450, worst case error is 0.000000
Fkkkkkkkkk
417, worst case error is 0.000000
1458, worst case error is 0.000000

This will run the M-file and MEX-file versions of theme function for various robot
models and options with various options. For each case itldheport a speedup
greater than one, and an error of zero. The results showreayevfor a Sparc Ultra

10.

5. Copy the MEX-filefrne.ext
namerne.ext

into the Robotics Toolbox main directory with the

Thus all future references tme will now invoke the MEX-file

instead of the M-file. The first time you run the MEX-file in anyalab session it
will print a one-line identification message.
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2
Using the Toolbox with Simulink

2 Introduction

Simulink is the block diagram editing and simulation enaimeent for Matlab. Until its
most recent release Simulink has not been able to handlé&maled signals, and that has
made its application to robotics somewhat clumsy. Thistsbaning has been rectified with
Simulink Release 4. Robot Toolbox Release 7 and higherdesla library of blocks for
use in constructing robot kinematic and dynamic models.

To use this new feature it is neccessary to include the TadBimulink block directory in
your Matlab path:

>> addpath ROBOTDIR/simulink

To bring up the block library

>> roblocks

which will create a display like that shown in Figure 2.

Users with no previous Simulink experience are advised &0 tee relevant Mathworks
manuals and experiment with the examples supplied. Expete Simulink users should
find the use of the Robotics blocks quite straightforwardnésally there is a one-to-one
correspondence between Simulink blocks and Toolbox fansti Several demonstrations
have been included with the Toolbox in order to illustratenomon topics in robot control
and demonstrate Toolbox Simulink usage. These could bedmmrs as starting points for
your own work, just select the model closest to what you wadtsdart changing it. Details
of the blocks can be found using the File/ShowBrowser optiothe block library window.

Robotics Toolbox for Matlab (release 7)

Dynamics Graphics Trajectory Kinematics Transform conversion

plot acobn xyzZT T2>< Z
Robot Jiraj
TODO I I rpy2T T2rpy
jacobo ijacob
me
euI2T T2eul

Copyright (c) 2002 Peter Corke fkine tr2diff

Figure 2: The Robotics Toolbox blockset.
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Puma560 collapsing under gravity

[poooooy

plot

Zero
torque

Robot

O |

simout

Clock To Workspace

Simple dynamics demo
pic
11-Feb-2002 14:19:49

Figure 3: Robotics Toolbox exampdiemol, Puma robot collapsing under gravity.

3 Examples

3.1 Dynamic simulation of Puma 560 robot collapsing under gavity

The Simulink modeldemo1, is shown in Figure 3, and the two blocks in this model would
be familiar to Toolbox users. THeobot block is similar to thedyn() function and repre-
sents the forward dynamics of the robot, andgle block represents theglot function.
Note the parameters of ttrobot block contain the robot object to be simulated and the
initial joint angles. Theplot block has one parameter which is the robot object to be dis-
played graphically and should be consistent with the robatdsimulated. Display options
are taken from thelotbotopt.m  file, see help forobot/plot for details.

To run this demo first create a robot object in the workspgpieally by using thepuma560
command, then start the simulation using Simulation/Statibn from the model toolbar.

>> puma560
>> demol

3.2 Dynamic simulation of a simple robot with flexible transmssion

The Simulink modeldemo2, is shown in Figure 4, and represents a simple 2-link robtht wi
flexible or compliant transmission. The first joint receieestep position demand change at
time 1s. The resulting oscillation and dynamic couplingasetn the two joints can be seen
clearly. Note that the drive model comprises spring plusginand that the joint position
control loops are simply unity negative feedback.

To run this demo first create a 2-link robot object in the wpdce,typically by using the
twolink command, then start the simulation using Simulation/$tatibn from the model
toolbar.

>> twolink
>> demo2
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2-link robot with flexible transmission

Constant

assume the motor

Scope
is infinitely "stiff" Derivative kI

0 >
transmission comprises Clock
- spring + damper oc
2-link demo pring "
pic To Workspace

%\on Apr 8 11:37:04 2002

Figure 4: Robotics Toolbox exampdemo2, simple flexible 2-link manipulator.

3.3 Computed torque control

The Simulink modeldemo3, shown in Figure 5, is for a Puma560 with a computed torque
control structure. This is a “classical” dynamic contrathiaique in which the rigid-body
dynamic model is inverted to compute the demand torque éordhot based on current joint
angles and joint angle rates and demand joint angle actielerdhis model introduces the
re block which computes the inverse dynamics using the resuidewton-Euler algo-
rithm (seene function), and thétraj  block which computes a vector quintic polynomial.
jtraj  has parameters which include the initial and final valuesiefdach output element
as well as the overall motion time. Initial and final velodire assumed to be zero.

In practice of course the dynamic model of the robot is nott#yx&nown, we can only

invert our best estimate of the rigid-body dynamics. In timeutation we can model this
by using theperturb  function to alter the parameters of the dynamic model useten

rne block — note the 'P/ prefix on the model name displayed by tilatk. This means

that the inverse dynamics are computed for a slightly déffiedynamic model to the robot
under control and shows the effect of model error on conediggmance.

To run this demo first create a robot object in the workspgereally by using thepuma560
command, then start the simulation using Simulation/Statibn from the model toolbar.

Puma 560 computed torque control o ‘D
A Kp
. > >j

El (2]

jtraj me

A
A 4

plot

Robot

trajectory error
(demand)

o iI

Puma560 computed torque control
pic Clock > _
11-Feb-2002 14:18:39 simout
El
n~ To Workspace

1

Figure 5: Robotics Toolbox exampdiemo3, computed torque control.
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>> puma560
>> demo3

3.4 Torque feedforward control

The Simulink modebdemo4 demonstrates torque feedforward control, another “ata$si
dynamic control technigue in which the demanded torquernsprded using thene block
and added to the error torque computed from position anctitglerror. It is instructive to
compare the structure of this model withmo3. The inverse dynamics are not in the for-
ward path and since the robot configuration changes reljasi@wly, they can be computed
at a low rate (this is illustrated by the zero-order hold klsampling at 20Hz).

To run this demo first create a robot object in the workspgpieally by using thepuma560
command, then start the simulation using Simulation/Statibn from the model toolbar.

>> puma560
>> demo4

3.5 Cartesian space control

The Simulink modeldemo5, shown in Figure 6, demonstrates Cartesian space motien con
trol. There are two conventional approaches to this. Kirssolve the Cartesian space
demand to joint space using inverse kinematics and theonpethe control in joint space.
The second, used here, is to compute the error in Carteséne smd resolve that to joint
space via the inverse Jacobian. This eliminates the neddverse kinematics within the
control loop, and its attendent problems of multiple salog. It also illustrates some addi-
tional Simulink blocks.

This demonstration is for a Puma 560 robot moving the tool girele of radius 0.05m
centered at the poin0.5,0,0). The difference between the Cartesian demand and the
current Cartesian pose (in end-effector coordinates) ispeted by ther2diff block
which produces a differential motion described by a 6-vectde Jacobian block has as
its input the current manipulator joint angles and outphts Yacobian matrix. Since the
differential motion is with respect to the end-effector wseuthe JacobianN block rather
than Jacobian0. We use standard Simulink block to inverd#e®bian and multiply it by

Cartesian control

Cartesian circle jacob0

controlled
rohat
axes

2]
tr2diff

Figure 6: Robotics Toolbox exampdemo5, Cartesian space control.
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the differential motion. The result, after application o$ianple proportional gain, is the
joint space motion required to correct the Cartesian eriidre robot is modelled by an
integrator as a simple rate control device, or velocity serv

This example also demonstrates the use ofkine block for forward kinematics and the
T2xyz block which extracts the translational part of the robotst€sian state for plotting
on the XY plane.

This demonstration is very similar to the numerical methsddito solve the inverse kine-
matics problem irikine

To run this demo first create a robot object in the workspgpieally by using thgpuma560
command, then start the simulation using Simulation/$tatibn from the model toolbar.

>> puma560
>> demob5

3.6 Image-based visual servoing

The Simulink modeldemo6, shown in Figure 7, demonstrates image-based visual servoi
(IBVS)[5]. This is quite a complex example that simulate$ only the robot but also a
camera and the IBVS algorithm. The camera is assumed to betetban the robot’s end-
effector and this coordinate is passed into the camera ldodkat the relative position of
the target with respect to the camera can be computed. Angtsnie the camera block
include the 3D coordinates of the target points. The outptite®camera is the 2D image
plane coordinates of the target points. The target poirdsuged to compute an image
Jacobian matrix which is inverted and multiplies the desiretion of the target points on
the image plane. The desired motion is simply the differcbeteveen the observed target
points and the desired point positions. The result is a Vtglscrew which drives the robot
to the desired pose with respect to a square target.

When the simulation starts a new window, the camera view, pppd\Ve see that initially
the square target is off to one side and somewhat oblique. infhhge plane errors are
mapped by an image Jacobian into desired Cartesian rateese are futher mapped by a

Image-based visual servo control

Image-based visual servo control

|ge-Apr-2002 11:31.20

Figure 7: Robotics Toolbox exampdemo6, image-based visual servoing.



3 EXAMPLES 15

manipulator Jacobian into joint rates which are appliethéorbbot which is again modelled
as a rate control device. This closed-loop system is peifgym Cartesian positioning task
using information from a camera rather than encoders andeariatic model (the Jacobian
is a weak kinematic model). Image-based visual servoingreels have been found to be
extremely robust with respect to errors in the camera mattthaanipulator Jacobian.
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3

Tutorial

3 Manipulator kinematics

Kinematics is the study of motion without regard to the faregiich cause it. Within kine-
matics one studies the position, velocity and acceleraéind all higher order derivatives of
the position variables. The kinematics of manipulatorelves the study of the geometric
and time based properties of the motion, and in particular the various links move with
respect to one another and with time.

Typical robots areserial-link manipulators comprising a set of bodies, calldhks, in a
chain, connected bjointst. Each joint has one degree of freedom, either translational
rotational. For a manipulator with joints numbered from 1 to, there aren+ 1 links,
numbered from O ton. Link O is the base of the manipulator, generally fixed, an# h
carries the end-effector. Jointonnects links andi — 1.

A link may be considered as a rigid body defining the relatiimbetween two neighbour-
ing joint axes. A link can be specified by two numbers, Ithk length andlink twist, which
define the relative location of the two axes in space. Thepatameters for the first and
last links are meaningless, but are arbitrarily chosen t6.b&oints may be described by
two parameters. Thiénk offset is the distance from one link to the next along the axis of the
joint. Thejoint angleis the rotation of one link with respect to the next about tietjaxis.

To facilitate describing the location of each link we affixaeadinate frame to it — framie

is attached to link. Denavit and Hartenberg[6] proposed a matrix method oEsyatically
assigning coordinate systems to each link of an articulelh@ih. The axis of revolute joint

i is aligned withz_1. Thex;_; axis is directed along the normal from ; to z and for
intersecting axes is parallel /1 x z. The link and joint parameters may be summarized
as:

linklength @ the offset distance between the; andz axes along the
Xj axis;

link twist  a; the angle from the _; axis to thez axis about the; axis;

link offset d; the distance from the origin of frame- 1 to thex; axis
along thez,_; axis;

jointangle 6; the angle between the 1 andx; axes about thg_; axis.

For a revolute axi®); is the joint variable and} is constant, while for a prismatic joir
is variable, and; is constant. In many of the formulations that follow we useagalized
coordinatesgj, where
| 6 forarevolute joint
9= { d; for a prismatic joint

Iparallel link and serial/parallel hybrid structures arsgible, though much less common in industrial manip-
ulators.
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joint i-1 jointi
\

joint i+1
\

(a) Standard form

joint i joint i+1

(b) Modified form

Figure 8: Different forms of Denavit-Hartenberg notation.

and generalized forces
Q- Ti for arevolute joint
"7\ f; fora prismatic joint

The Denavit-Hartenberg (DH) representation results indalfbmogeneous transformation

matrix _ o
cosB; —sinBjcosnj  sinGjsinaj  a;cosH;

i1 sinB; cosBjcosnj —coshisina;  a; SinG;
A= : @
0 sina; cosq; di
0 0 0 1

representing each link’s coordinate frame with respecthto grevious link's coordinate
system, that is _
o =°Ti1 1A 2)

where®T; is the homogeneous transformation describing the poseoofitmate frameé with
respect to the world coordinate system O.

Two differing methodologies have been established foigass coordinate frames, each
of which allows some freedom in the actual coordinate frattechment:

1. Frame has its origin along the axis of joint- 1, as described by Paul[1] and Lee[2,
7].
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2. Frame has its origin along the axis of joimtand is frequently referred to as ‘modi-
fied Denavit-Hartenberg’ (MDH) form[8]. This form is commigrused in literature
dealing with manipulator dynamics. The link transform mator this form differs
from (2).

Figure 8 shows the notational differences between the twadoNote thag; is always the
length of linki, but is the displacement between the origins of fraraad frame + 1 in
one convention, and franie- 1 and frame in the othef. The Toolbox provides kinematic
functions for both of these conventions — those for modifigdl fzarameters are prefixed
by ‘m’.

3.1 Forward and inverse kinematics

For an n-axis rigid-link manipulator, thierward kinematic solution gives the coordinate
frame, or pose, of the last link. It is obtained by repeatgaiegtion of (2)

o7, %A A, 1A, 3)

= X(9) (4)

which is the product of the coordinate frame transform masifor each link. The pose
of the end-effector has 6 degrees of freedom in Cartesiares|3ain translation and 3 in
rotation, so robot manipulators commonly have 6 joints ayreles of freedom to allow
arbitrary end-effector pose. The overall manipulatorsfarm°T , is frequently written as

Tn, or Tg for a 6-axis robot. The forward kinematic solution may be pated for any

manipulator, irrespective of the number of joints or kindimatructure.

Of more use in manipulator path planning is theerse kinematic solution

q=K"X(T) (5)

which gives the joint angles required to reach the specifieldedfector position. In general
this solution is non-unigue, and for some classes of maaipuho closed-form solution
exists. If the manipulator has more than 6 joints it is saidéoedundant and the solution
for joint angles is under-determined. If no solution can beedmined for a particular ma-
nipulator pose that configuration is said toddegular. The singularity may be due to an
alignment of axes reducing the effective degrees of freedwonthe pointT being out of
reach.

The manipulator Jacobian matridg, transforms velocities in joint space to velocities of
the end-effector in Cartesian space. Fomaaxis manipulator the end-effector Cartesian
velocity is

% = % ()

"%, = "Jeg (7)
in base or end-effector coordinates respectively and wkéehe Cartesian velocity rep-
resented by a 6-vector. For a 6-axis manipulator the Jagabiaquare and provided it is

not singular can be inverted to solve for joint rates in teahend-effector Cartesian rates.
The Jacobian will not be invertible at a kinematic singaidnd in practice will be poorly

2Many papers when tabulating the ‘modified’ kinematic paransedémanipulators lisg;_; anda;_j not a;
anda;.
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conditioned in the vicinity of the singularity, resulting fnigh joint rates. A control scheme
based on Cartesian rate control
9 = 0‘]61 OXn (8)

was proposed by Whitney[9] and is knownrasolved rate motion control. For two frames
AandB related by*Tg = [noa p] the Cartesian velocity in fram&may be transformed to
frameB by

Bx =BIa"x 9)
where the Jacobian is given by Paul[10] as

noal™ [pxn

Bia=f(ATg) = 0

(10)

Sl
o X
19 1o

4 Manipulator rigid-body dynamics

Manipulator dynamics is concerned with the equations ofionotthe way in which the

manipulator moves in response to torques applied by thexes) or external forces. The
history and mathematics of the dynamics of serial-link rpataitors is well covered by
Paul[1] and Hollerbach[11]. There are two problems relateghanipulator dynamics that
are important to solve:

e inverse dynamicsin which the manipulator’'s equations of motion are solvadjigen
motion to determine the generalized forces, discussedduim Section 4.1, and

e direct dynamics in which the equations of motion are integrated to deterntiige
generalized coordinate response to applied generalizeé<aliscussed further in
Section 4.2.

The equations of motion for amaxis manipulator are given by

Q=M(9)g+C(a,9)9+F(9) +G(q) (11)
where
g isthe vector of generalized joint coordinates describiregpose of the manipulator
g isthe vector of joint velocities;
g isthe vector of joint accelerations
M is the symmetric joint-space inertia matrix, or manipulat@rtia tensor
C describes Coriolis and centripetal effects — Centripetafjues are proportional tg?,

while the Coriolis torques are proportionalda;

describes viscous and Coulomb friction and is not generalhsidered part of the rigid-
body dynamics

G isthe gravity loading

Q isthe vector of generalized forces associated with thergéimed coordinates.

The equations may be derived via a number of techniquesydimg Lagrangian (energy
based), Newton-Euler, d’Alembert[2, 12] or Kane’s[13] tved. The earliest reported work
was by Uicker[14] and Kahn[15] using the Lagrangian appho&ue to the enormous com-
putational costQ(n*), of this approach it was not possible to compute manipulataue
for real-time control. To achieve real-time performancenynapproaches were suggested,
including table lookup[16] and approximation[17, 18]. Tim@st common approximation
was to ignore the velocity-dependent te@n since accurate positioning and high speed
motion are exclusive in typical robot applications.

T
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Method Multiplications | Additions For N=6
Multiply Add
Lagrangian[22] 32n*+86n° | 25n*+663n° 66,271 | 51,548
+1713n?+533n | +1293n%+423n
—128 —-96
Recursive NE[22] | 150n—48 131In—48 852 738
Kane[13] 646 394
Simplified RNE[25] 224 174

Table 1: Comparison of computational costs for inverse dyios from various sources.
The last entry is achieved by symbolic simplification using software package ARM.

Orin et al.[19] proposed an alternative approach basedeNéwton-Euler (NE) equations
of rigid-body motion applied to each link. Armstrong[20gtihshowed how recursion might
be applied resulting iD(n) complexity. Luh et al.[21] provided a recursive formulatiof
the Newton-Euler equations with linear and angular velegiteferred to link coordinate
frames. They suggested a time improvement frafs for the Lagrangian formulation
to 45ms, and thus it became practical to implement ‘on-line’. liéfbach[22] showed
how recursion could be applied to the Lagrangian form, andiced the computation to
within a factor of 3 of the recursive NE. Silver[23] showee #quivalence of the recursive
Lagrangian and Newton-Euler forms, and that the differeincefficiency is due to the
representation of angular velocity.

“Kane’s equations” [13] provide another methodology foridieag the equations of motion
for a specific manipulator. A number of ‘Z’ variables are ontuced, which while not
necessarily of physical significance, lead to a dynamiasdation with low computational
burden. Wampler[24] discusses the computational costsaoEls method in some detail.

The NE and Lagrange forms can be written generally in termi®Denavit-Hartenberg
parameters — however the specific formulations, such as’&aten have lower compu-
tational cost for the specific manipulator. Whilst the retuigrdorms are computationally
more efficient, the non-recursive forms compute the indigldlynamic termsN], C and
G) directly. A comparison of computation costs is given in[&h

4.1 Recursive Newton-Euler formulation

The recursive Newton-Euler (RNE) formulation[21] compmutiee inverse manipulator dy-
namics, that is, the joint torques required for a given sepift angles, velocities and
accelerations. The forward recursion propagates kinenvatrmation — such as angu-
lar velocities, angular accelerations, linear accelensti— from the base reference frame
(inertial frame) to the end-effector. The backward re@mngiropagates the forces and mo-
ments exerted on each link from the end-effector of the mdaipr to the base reference
framé®. Figure 9 shows the variables involved in the computatiorofe link.

The notation of Hollerbach[22] and Walker and Orin [26] vk used in which the left
superscript indicates the reference coordinate framentovariable. The notation of Luh et
al.[21] and later Lee[7, 2] is considerably less clear.

31t should be noted that using MDH notation with its differexis assignment conventions the Newton Euler
formulation is expressed differently[8].
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joint i-1 jointi joint i+1 .
\ \ Nt
i+1 i+1

Figure 9: Notation used for inverse dynamics, based on atdridenavit-Hartenberg nota-
tion.

Outward recursion, 1 <i <n.

If axisi+ 1 is rotational

i+lg+1 — IR, (ig +Z091+1) (12)

g = TR {iQ +28 0y <Z09i+1)} (13)

i+1\li+1 _ i+1%+1 « i+1£)i*+l_’_i+1Riiyi (14)

i+1yi+1 _ i+1®+1 % i+l,pi*+1+i+1@|+l % {i+lg+l % i+19r+l} Jri+1Riii/i (15)

If axisi + 1 is translational

|+lg+l _ I+1Rilg)| (16)

I+l@i+1 — I+1RiIQ (17)

v = TR (509i+1+i\li) + ey x TP (18)
i+li’i+1 = R (Zogi+1+iyi) +i+l@i+1 % i+1Er+1+2i+1@|+1 % (i+lRiZogi+1)

il x (iH%H % i+1Er+1) (19)

' = laxs+'ox{wxst+y (20)

'Ei = m'y (1)

N = e+ wx (Ji'w) (22)

Inward recursion, n>i > 1.
iii _ iRi+1i+lii+1+iEi (23)
in = Riy {i+lni+1_|_(i+lRiiEi*) Xii+lL+l}+ (i9r+§) $IE 4N (24)
(n)" (Riy1z,)  iflink i+ 1 is rotational

Q= {(ifi>T(iRi+1zo) if link i+ 1 is translational (29)

where
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i isthe link index, in the range 1 to
Ji is the moment of inertia of linkabout its COM
s is the position vector of the COM of linkwith respect to frameé
w; is the angular velocity of link
@ is the angular acceleration of link
Vi s the linear velocity of frame
V; is the linear acceleration of frame
vV, s the linear velocity of the COM of link
V. is the linear acceleration of the COM of link
n, is the moment exerted on linkby link i — 1
f. isthe force exerted on linkby link i — 1
N; isthe total moment at the COM of lirik
F;, isthe total force at the COM of link
Q. isthe force or torque exerted by the actuator at joint
R; is the orthonormal rotation matrix defining framerientation with respect to frame
i — 1. Itis the upper X 3 portion of the link transform matrix given in (1).

cosBj —cosaisinG;  sina;sind;

L = - sinG;  cosujcosd;  — sina; cosd; (26)
0 sina;j oSO
iRi—l — (iflRi)fl — (iflRi)T (27)

igi* is the displacement from the origin of frarme 1 to framei with respect to frame

) g

'pr=| disina; (28)
di cosa

It is the negative translational part 6f 1A;) 1.
Z, isaunitvectorin Z directiorg, = [00 1]

Note that the COM linear velocity given by equation (14) @&)(ioes not need to be com-
puted since no other expression depends upon it. Boundadit@ms are used to introduce
the effect of gravity by setting the acceleration of the Hade

Vo= —g (29)

whereg is the gravity vector in the reference coordinate frame,egally acting in the
negative Z direction, downward. Base velocity is generadso

W = 0 (30)
w = 0 (31)
p = 0 (32)

At this stage the Toolbox only provides an implementatiothef algorithm using the stan-
dard Denavit-Hartenberg conventions.
4.2 Direct dynamics

Equation (11) may be used to compute the so-called inversandigs, that is, actuator
torque as a function of manipulator state and is useful felirmcontrol. For simulation
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the direct, integral oforward dynamic formulation is required giving joint motion in terms
of input torques.

Walker and Orin[26] describe several methods for computiregforward dynamics, and
all make use of an existing inverse dynamics solution. UslireggRNE algorithm for in-
verse dynamics, the computational complexity of the fodadynamics using ‘Method 1’
is O(n3) for an n-axis manipulator. Their other methods are increggimore sophisticated
but reduce the computational cost, though €ilh®). Featherstone[27] has described the
“articulated-body method” fo©(n) computation of forward dynamics, however fok 9

it is more expensive than the approach of Walker and Orin. tlherdO(n) approach for
forward dynamics has been described by Lathrop[28].

4.3 Rigid-body inertial parameters

Accurate model-based dynamic control of a manipulatoriregiknowledge of the rigid-
body inertial parameters. Each link has ten independeniahparameters:

e link massm;

e three first moments, which may be expressed as the COM logatiovith respect to
some datum on the link or as a momé&ht ms;;

e six second moments, which represent the inertia of the lodutaa given axis, typi-
cally through the COM. The second moments may be expressmatinx or tensor
form as

o Jy e
I=| 3y Iy I (33)
e 7z Iz
where the diagonal elements are thements of inertia, and the off-diagonals are

products of inertia. Only six of these nine elements are unique: three momeigts an
three products of inertia.

For any point in a rigid-body there is one set of axes knowrhagttincipal axes of
inertia for which the off-diagonal terms, or products, are zero. SEhaxes are given
by the eigenvectors of the inertia matrix (33) and the eigkres are the principal
moments of inertia. Frequently the products of inertia eftbbot links are zero due
to symmetry.

A 6-axis manipulator rigid-body dynamic model thus entéilsinertial parameters. There
may be additional parameters per joint due to friction andomarmature inertia. Clearly,
establishing numeric values for this number of paramesgeaddifficult task. Many parame-
ters cannot be measured without dismantling the robot arfdmp&ing careful experiments,
though this approach was used by Armstrong et al.[29]. Mastpeters could be derived
from CAD models of the robots, but this information is ofteansidered proprietary and
not made available to researchers.
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Reference

For an n-axis manipulator the following matrix naming aneheinsional conventions apply.

Symbol Dimensions Description

I link manipulator link object

q 1xn joint coordinate vector

q mx n m-point joint coordinate trajectory

qd 1xn joint velocity vector

qd mxn m-point joint velocity trajectory

qdd 1xn joint acceleration vector

qdd mxn m-point joint acceleration trajectory

robot robot robot object

T 4x4 homogeneous transform

T 4x4xm m-point homogeneous transform trajectory

Q guaternion unit-quaternion object

M 1x6 vector with elements of 0 or 1 corresponding|to
Cartesian DOF along X, Y, Z and around X, Y, Z.
1 if that Cartesian DOF belongs to the task space,
else 0.

v 3x1 Cartesian vector

t mx 1 time vector

d 6x1 differential motion vector

Object names are shown in bold typeface.

A trajectory is represented by a matrix in which each row e€gponds to one ah time
steps. For a joint coordinate, velocity or acceleratiofett@ry the columns correspond
to the robot axes. For homogeneous transform trajectorgegse 3-dimensional matrices
where the last index corresponds to the time step.

Units

All angles are in radians. The choice of all other units isathe user, and this choice will
flow on to the units in which homogeneous transforms, Jacsbiaertias and torques are
represented.

Robotics Toolbox Release 8 Peter Corke, December 2008
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Homogeneous Transforms

angvec2tr angle/vector form to homogeneous transform

eul2tr Euler angle to homogeneous transform

oaz2tr orientation and approach vector to homogeneous transform

rpy2tr Roll/pitch/yaw angles to homogeneous transform

tr2angvec homogeneous transform or rotation matrix to angle/vector
form

tr2eul homogeneous transform or rotation matrix to Euler angles

t2r homogeneous transform to rotation submatrix

tr2rpy homogeneous transform or rotation matrix |to
roll/pitch/yaw angles

trotx homogeneous transform for rotation about X-axis

troty homogeneous transform for rotation about Y-axis

trotz homogeneous transform for rotation about Z-axis

transl set or extract the translational component of a homage-
neous transform

trnorm normalize a homogeneous transform

trplot plot a homogeneous transformas a coordinate frame

Note that functions of the forni2X will also accept a rotation matrixas the argument.

Rotation matrices

angvecr angle/vector form to rotation matrix

eul2r Euler angle to rotation matrix

oaz2r orientation and approach vector to homogeneous transform
rotx rotation matrix for rotation about X-axis

roty rotation matrix for rotation about Y-axis

rotz rotation matrix for rotation about Z-axis

rpy2r Roll/pitch/yaw angles to rotation matrix

ra2t rotation matrix to homogeneous transform

Trajectory Generation

ctraj Cartesian trajectory
jtraj joint space trajectory
trinterp interpolate homogeneous transforms

Quaternions

+ elementwise addition

- elementwise addition

/ divide quaternion by quaternion or scalar
* multiply quaternion by a quaternion or vector
inv invert a quaternion

norm norm of a quaternion

plot display a quaternion as a 3D rotation
g2tr guaternion to homogeneous transform
guaternion construct a quaternion

ginterp interpolate quaternions

unit unitize a quaternion

Robotics Toolbox Release 8 Peter Corke, December 2008
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General serial link manipulators

link construct a robot link object
nofriction remove friction from a robot object
perturb randomly modify some dynamic parameters
robot construct a robot object
showlink show link/robot data in detail
Manipulator Models
FanuclOL Fanuc 10L arm data (DH, kine)
MotomanHP6 Motoman HP6 arm data (DH, kine)
puma560 Puma 560 data (DH, kine, dyn)
puma560akb Puma 560 data (MDH, kine, dyn)
S4ABB2p8 ABB S4 2.8 arm data (DH, kine)
stanford Stanford arm data (DH, kine, dyn)
twolink simple 2-link example (DH, kine)
Kinematics
diff2tr differential motion vector to transform
fkine compute forward kinematics
ftrans transform force/moment
ikine compute inverse kinematics
ikine560 compute inverse kinematics for Puma 560 like arm
jacob0 compute Jacobian in base coordinate frame
jacobn compute Jacobian in end-effector coordinate frame
tr2diff homogeneous transform to differential motion vector
tr2jac homogeneous transform to Jacobian
Graphics
drivebot drive a graphical robot
plot plot/animate robot
Dynamics
accel compute forward dynamics
cinertia compute Cartesian manipulator inertia matrix
coriolis compute centripetal/coriolis torque
fdyn forward dynamics (motion given forces)
friction joint friction
gravioad compute gravity loading
inertia compute manipulator inertia matrix
itorque compute inertia torque
rne inverse dynamics (forces given motion)

Robotics Toolbox Release 8 Peter Corke, December 2008
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Other
ishomog test if argument is & 4
isrot test if argument is X 3
isvec test if argument is a 3-vector
maniplty compute manipulability
rtdemo toolbox demonstration
unit unitize a vector

Robotics Toolbox Release 8

Peter Corke, December 2008
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accel

Purpose Compute manipulator forward dynamics

Synopsis gdd = accel(robot, g, qd, torque)

Description Returns a vector of joint accelerations that result fromdpp the actuatotorque to the
manipulatorobot  with joint coordinates) and velocitiesd.

Algorithm Uses the method 1 of Walker and Orin to compute the forwardadyes. This form is
useful for simulation of manipulator dynamics, in conjuantwith a numerical integration
function.

See Also rne, robot, fdyn, ode45

References M. W. Walker and D. E. Orin. Efficient dynamic computer sintida of robotic mecha-

nisms. ASME Journal of Dynamic Systems, Measurement and Control, 104:205-211, 1982.
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angvec2tr, angvec2r

Purpose Convert angle/vector form to a homogeneous transform atiost matrix

Synopsis T = angvec2tr(theta, v)

R = angvec2r(theta, v)

Description Returns a homogeneous transform or rotation matrix reptiegea rotation otheta radi-
ans about the vector. For the homogeneous transform the translational compisset
to zero.

See Also rotx, roty, rotz, quaternion

Robotics Toolbox Release 8 Peter Corke, December 2008
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cinertia

Purpose Compute the Cartesian (operational space) manipulatdidanmeatrix

Synopsis M = cinertia(robot, q)

Description cinertia  computes the Cartesian, or operational space, inertidxnabdbot is a robot
object that describes the manipulator dynamics and kinesy@ndg is an n-element vector
of joint coordinates.

Algorithm The Cartesian inertia matrix is calculated from the joip&ee inertia matrix by

M(x) =3(@) "M(@)d(@)*
and relates Cartesian force/torque to Cartesian acdelerat
E=M(x)%
See Also inertia, robot, rne
References 0. Khatib, “A unified approach for motion and force controlrobot manipulators: the

operational space formulatiod EEE Trans. Robot. Autom., vol. 3, pp. 43-53, Feb. 1987.
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coriolis

Purpose Compute the manipulator Coriolis/centripetal torque comgnts

Synopsis tau ¢ = coriolis(robot, g, qd)

Description coriolis  returns the joint torques due to rigid-body Coriolis andtdpetal effects for the
specified joint statgq and velocitygd. robot is a robot object that describes the manipulator
dynamics and kinematics.

If g andqd are row vectorstau _c is a row vector of joint torques. if andqgd are matrices,
each row is interpreted as a joint state vector, &od_c is a matrix each row being the
corresponding joint torques.

Algorithm Evaluated from the equations of motion, using , with joint acceleration and gravitational
acceleration set to zero,

Joint friction is ignored in this calculation.
See Also robot, rne, itorque, gravioad
References M. W. Walker and D. E. Orin. Efficient dynamic computer sintida of robotic mecha-

nisms. ASME Journal of Dynamic Systems, Measurement and Control, 104:205-211, 1982.
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ctraj

Purpose Compute a Cartesian trajectory between two points

Synopsis TC = ctraj(TO, T1, m)

TC = ctraj(TO, T1, r)

Description ctraj returns a Cartesian trajectory (straight line motio@Yrom the point represented by
homogeneous transformd to T1. The number of points along the pathmsr the length of
the given vector . For the second casds a vector of distances along the path (in the range
0to 1) for each point. The first case has the points equallyeshaut different spacing may
be specified to achieve acceptable acceleration prafilés a 4x 4 x m matrix.

Examples To create a Cartesian path with smooth acceleration we aatheigraj  function to create
the path vector with continuous derivitives.
>> TO = transl([0 0 Q]); T1 = transl(-1 2 1J);
>> t= [0:0.056:10];
>> 1 = jtraj(0, 1, t);
>> TC = ctraj(TO, T1, r);
>> plot(t, transl(TC));

2
15
1
05
0
-0.5
Time (s)
See Also trinterp, ginterp, transl
References R. P. Paul Robot Manipulators: Mathematics, Programming, and Control. Cambridge,

Massachusetts: MIT Press, 1981.
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diff2tr

Purpose Convert a differential motion vector to a homogeneous fcans
Synopsis delta = diff2tr(x)
Description Returns a homogeneous transform representing diffetedrdizslation and rotation corre-

sponding to Cartesian velociky= [Vx Vy V7 Gy wy wy].

Algorithm From mechanics we know that _
R=%X(Q)R
whereR is an orthonormal rotation matrix and
0 -w

and is a skew-symmetric matrix. This can be generalized to
- XK(Q) P
T= [ 000 1 } T

for the rotational and translational case.

See Also tr2diff

References R. P. Paul. Robot Manipulators: Mathematics, Programming, and Control. MIT Press,
Cambridge, Massachusetts, 1981.
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drivebot

Purpose Drive a graphical robot

Synopsis drivebot(robot)
drivebot(robot, q)

Puma 560

><1| 0.452 !-f1| -0.150 21| 0.432
aL><| 0.000 a!-f| 0.000 az| 1.000

g1 I = e
@ I S [
B S——— =TT
o I = e
55 I S e
56 I = [T

Description Pops up a window with one slider for each joint. Operationhaf sliders will drive the
graphical robot on the screen. Very useful for gaining aneustdinding of joint limits and
robot workspace.

The joint coordinate state is kept with the graphical robad aan be obtained using the
plot function. Ifq is specified it is used as the initial joint angle, otherwlsinitial value
of joint coordinates is taken from the graphical robot.

Examples To drive a graphical Puma 560 robot

>> pumab60 % define the robot
>> plot(p560,q2) % draw it
>> drivebot(p560) % now drive it

See Also robot/plot,robot
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eul2tr, eul2r
Purpose Convert Euler angles to a homogeneous transform or rotatatnix
Synopsis T=eul2tr( @0 )

T==eul2tr( @ 6, )

R
R

eul2r( @ 0 Y))
eular( @ 6, W)

Description Returns a homogeneous transform or rotation matrix for pleeified Euler angles in radi-
ans.

Rz(®)Ry (6)Rz(Y)
For the homogeneous transform value the translational ooe is set to zero.

Cautionary Note that 12 different Euler angle sets or conventions eXis¢ convention used here is the
common one for robotics, but is not the one used for exampled@erospace community.

See Also tr2eul, rpy2tr

References R. P. Paul,Robot Manipulators. Mathematics, Programming, and Control. Cambridge,
Massachusetts: MIT Press, 1981.
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FanuclOL

Purpose Create a Fanuc 10L robot object
Synopsis Fanuc10L
Description Creates theobot objectRwhich describes the kinematic characteristics of a AM1200B

manipulator. The kinematic conventions used are as perdPaZhang, and all quantities
are in standard Sl units.

Also defined is the joint coordinate vecigd corresponding to the mastering position.

See Also robot, puma560akb, stanford, MotomanHP6, S4ABB2p8

Author Wynand Swart, Mega Robots CC, P/O Box 8412, Pretoria, 000duthS Africa,
wynand.swart@gmail.com
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Purpose

Synopsis

Description

Algorithm

Example

Integrate forward dynamics

[t g gd] = fdyn(robot, tO, t1)

[t g gqd] = fdyn(robot, tO, t1, torgfun)

[t g gd] = fdyn(robot, t0, t1, torgfun, qO, qd0) [t
g qd] = fdyn(robot, t0, t1, torgfun, qO, qdO, argl,
arg2, ...)

fdyn integrates the manipulator equations of motion over the fintervalt0 to t1 us-

ing MATLAB's ode45 numerical integration function. Manipulator kinematiadatynamic
chacteristics are given by the robot objextiot . It returns a time vectar, and matrices of
manipulator joint statg and joint velocitiesyd. These matrices have one row per time step
and one column per joint.

Actuator torque may be specified by a user function
tau = torgfun(t, g, qd, argl, arg2, ...)

wheret is the current time, and andqd are the manipulator joint coordinate and velocity
state respectively. Optional arguments passedyio will be passed through to the user
function. Typically this function would be used to impleniesome axis control scheme
as a function of manipulator state and passed in setpoiotrivdtion. Iftorgfun is not
specified then zero torque is applied to the manipulator.

Initial joint coordinates and velocities may be specifiedtfioy optional argumentg0 and
qdo respectively.

The joint acceleration is a function of joint coordinate aetbcity given by

4=M(9) *{1-C(a.99-G(q9) - F(@)}

The following example shows hofdyn()  can be used to simulate a robot and its controller.
The manipulator is a Puma 560 with simple proportional andvatve controller. The
simulation results are shown in the figure, and further gaming is clearly required. Note
that high gains are required on joints 2 and 3 in order to euhe significant disturbance
torque due to gravity.

>> puma560 % load Puma parameters
>> t = [0:.056:5]; % time vector

>> ¢_dmd = jtraj(qz, gr.t); % create a path

>> gt = [t g_dmd];

>> Pgain = [20 100 20 5 5 5]; % set gains
>> Dgain = [-5 -10 -2 0 0 O];
>> [tsim,q,qd] = fdyn(nofriction(p560), 0, 5, 'taufunc’, q z, gz, Pgain, Dgain, qt);

Robotics Toolbox Release 8 Peter Corke, December 2008
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Note the use ofjz a zero vector of length 6 defined ppma560 pads out the two initial condition
arguments, and we place the control gains and the path as optionaleagurhlote also the use of
the nofriction() function, see Cautionary note below. The invoked function is

%
% taufunc.m
%
% user written function to compute joint torque as a function
% of joint error. The desired path is passed in via the global
% matrix gt. The controller implemented is PD with the propor tional
% and derivative gains given by the global variables Pgain an d Dgain
% respectively.
%
function tau = taufunc(t, g, qd, Pgain, Dgain, qt)

% interpolate demanded angles for this time
if t > gt(end,1), % keep time in range
t = gt(end,1);
end
q_dmd = interpl(qt(:,1), qt(:,2:7), 1)}

% compute error and joint torque
e = ¢_dmd - qg;
tau = diag(Pgain)*e + diag(Dgain)*qd;

0.05

Joint 1 (rad)

Joint 2 (rad)

Joint 3 (rad)

0 0.5 1 15 2 25 3 35 4 45 5
Time (s)

Results ofdyn() example. Simulated path shown as solid, and reference path as dashed.

Cautionary The presence of non-linear friction in the dynamic model can prevenintagration from converging.
The functionnofriction() can be used to return a Coulomb friction free robot object.
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See Also accel, nofriction, rne, robot, ode45

References M. W. Walker and D. E. Orin. Efficient dynamic computer simulation ofatdbmechanismsASME
Journal of Dynamic Systems, Measurement and Control, 104:205-211, 1982.
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fkine

Purpose Forward robot kinematics for serial link manipulator

Synopsis T = fkine(robot, q)

Description fkine computes forward kinematics for the joint coordingtgiving a homogeneous transform for
the location of the end-effectorobot is a robot object which contains a kinematic model in either
standard or modified Denavit-Hartenberg notation. Note that the rol@ttadan specify an arbitrary
homogeneous transform for the base of the robot and a tool offset.

If q is avectoritis interpreted as the generalized joint coordinatedkarel returns a homogeneous
transformation for the final link of the manipulator.dfis a matrix each row is interpreted as a joint
state vector, andl is a 4x 4 x m matrix wheremis the number of rows in.

Cautionary Note that the dimensional units for the last column ofTtraatrix will be the same as the dimensional
units used in theobot object. The units can be whatever you choose (metres, inches, cubits or
furlongs) but the choice will affect the numerical value of the elementkériast column off. The
Toolbox definitiongpuma560 andstanford  all use Sl units with dimensions in metres.

See Also link, robot

References R. P. Paul. Robot Manipulators: Mathematics, Programming, and Control. MIT Press, Cambridge,

Massachusetts, 1981.
J. J. CraigJntroduction to Robotics. Addison Wesley, second ed., 1989.
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link/friction 19

Purpose

Synopsis

Description

Algorithm

See Also

Compute joint friction torque
tau f = friction(link, qd)

friction computes the joint friction torque based on friction parameter data, ifiarthe link
objectlink . Friction is a function only of joint velocityd

If gd is a vector thertau _f is a vector in which each element is the friction torque for the the
corresponding element id.

The friction model is a fairly standard one comprising viscous friction dimdction dependent

Coulomb friction S
H(t):{B|g+Ti+7 (_3<0
Big+t, 6>0

link,robot/friction,nofriction
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robot/friction

Purpose Compute robot friction torque vector

Synopsis tau _f = friction(robot, qd)

Description friction computes the joint friction torque vector for the robot objettot with a joint velocity
vectorqgd.

See Also link, link/friction, nofriction
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ftrans

Purpose Force transformation

Synopsis F2 = ftrans(F, T)

Description Transform the force vectdt in the current coordinate frame to force vedi in the second coordi-
nate frame. The second frame is related to the first by the homogetraog®rmT. F2 andF are
each 6-element vectors comprising force and moment compojfigrisF, My My M].

See Also diff2tr

Robotics Toolbox Release 8
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gravlioad

Purpose Compute the manipulator gravity torque components

Synopsis tau _g = gravioad(robot, q)
tau .g = gravload(robot, g, grav)

Description gravload computes the joint torque due to gravity for the manipulator in ppse
If q is arow vectortau _g returns a row vector of joint torques.dfis a matrix each row is interpreted
as as a joint state vector, atall _g is a matrix in which each row is the gravity torque for the the
corresponding row iw.
The default gravity direction comes from the robot object but may leermlden by the optionarav
argument.

See Also robot, link, rne, itorque, coriolis

References M. W. Walker and D. E. Orin. Efficient dynamic computer simulation ofatidmechanismsASME

Journal of Dynamic Systems, Measurement and Control, 104:205-211, 1982.
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Purpose

Synopsis

Description

Algorithm

Cautionary

Inverse manipulator kinematics

ikine(robot, T)
ikine(robot, T, g0)
ikine(robot, T, g0, M)

o 0 o
o nu

ikine returns the joint coordinates for the manipulator described by the afojleot whose end-
effector homogeneous transform is givenTyNote that the robot’s base can be arbitrarily specified
within the robot object.

If Tis a homogeneous transform then a row vector of joint coordinates imeetuThe estimate for
the first step ig|0 if this is given else 0.

If T is a homogeneous transform trajectory of size 4lx m theng will be ann x m matrix where
each row is a vector of joint coordinates corresponding to the lastspbstT. The estimate for the
first step in the sequenced® if this is given else 0. The initial estimate gffor each time step is
taken as the solution from the previous time step.

Note that the inverse kinematic solution is generally not unique, and dsante initial valueO
(which defaults to 0).

For the case of a manipulator with fewer than 6 DOF it is not possible forrttesffector to satisfy
the end-effector pose specified by an arbitrary homogeneousdransThis typically leads to non-
convergence irikine . A solution is to specify a 6-element weighting vectbf,whose elements
are 0 for those Cartesian DOF that are unconstrained and 1 otherwige el@dments correspond
to translation along the X-, Y- and Z-axes and rotation about the X-, Y-Zades respectively.
For example, a 5-axis manipulator may be incapable of independantisobiimy rotation about the
end-effector’s Z-axis. Inthisca$é = [1 1 1 1 1 0] would enable a solution in which the end-
effector adopted the poseexcept for the end-effector rotation. The number of non-zero elements
should equal the number of robot DOF.

The solution is computed iteratively using the pseudo-inverse of the matdpdacobian.

4=3"(QA(F(9)-T)

whereA returns the ‘difference’ between two transforms as a 6-elementivettbsplacements and
rotations (se#r2diff ).

Such a solution is completely general, though much less efficient thaifispeeerse kinematic
solutions derived symbolically.

The returned joint angles may be in non-minimum formgje- 2nTt

This approach allows a solution to obtained at a singularity, but the jointlowaies within the null
space are arbitrarily assigned.
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Note that the dimensional units used for the last column offtheatrix must agree with the dimen-
sional units used in the robot definition. These units can be whateverhanse (metres, inches,
cubits or furlongs) but they must be consistent. The Toolbox definifiomsa560 andstanford

all use Sl units with dimensions in metres.

See Also fkine, tr2diff, jacobO, ikine560, robot

References S. Chieaverini, L. Sciavicco, and B. Siciliano, “Control of robotic systehrough singularities,” in
Proc. Int. Workshop on Nonlinear and Adaptive Control: Issues in Robotics (C. C. de Wit, ed.),
Springer-Verlag, 1991.
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iIkine560

Purpose Inverse manipulator kinematics for Puma 560 like arm
Synopsis g = ikine560(robot, config)
Description ikine560  returns the joint coordinates corresponding to the end-effector hemeogs transform

T. Itis computed using a symbolic solution appropriate for Puma 560 liketsothat is, all revolute
6DOF arms, with a spherical wrist. The use of a symbolic solution meanst tieecutes over 50
times faster thaikine  for a Puma 560 solution.

A further advantage is th#ine560() allows control over the specific solution returnednfig
is a string which contains one or more of the configuration control lettezscod

left-handed (lefty) solution (default)
fright-handed (righty) solution

—

u’ telbow up solution (default)
o’ elbow down solution
' twrist flipped solution
n’ wrist not flipped solution (default)
Cautionary Note that the dimensional units used for the last column ofTtheatrix must agree with the dimen-

sional units used in th@bot object. These units can be whatever you choose (metres, inches, cubits
or furlongs) but they must be consistent. The Toolbox definitipumea560 andstanford — all use
Sl units with dimensions in metres.

See Also fkine, ikine, robot

References R. P. Paul and H. Zhang, “Computationally efficient kinematics for mdatprs with spherical
wrists,” Int. J. Robot. Res., vol. 5, no. 2, pp. 32-44, 1986.

Author Robert Biro and Gary McMurray, Georgia Institute of Technology, 8i28@acmex.gatech.edu
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Inertia
Purpose Compute the manipulator joint-space inertia matrix
Synopsis M = inertia(robot, q)
Description inertia  computes the joint-space inertia matrix which relates joint torque to joint aatiele
T=M(a)4
robot is a robot object that describes the manipulator dynamics and kinemarids} is an n-
element vector of joint state. For an n-axis manipuldis ann x n symmetric matrix.
If g is a matrix each row is interpreted as a joint state vector/|aiscann x n x m matrix wheremis
the number of rows .
Note that if therobot contains motor inertia parameters then motor inertia, referred to the link
reference frame, will be added to the diagonalbf
Example To show how the inertia ‘seen’ by the waist joint varies as a function of jamgles 2 and 3 the
following code could be used.
>> [02,93] = meshgrid(-pi:0.2:pi, -pi:0.2:pi);
>> = [zeros(length(92(:)),1) 92(:) g3(:) zeros(length(q 2()),3);
>> | = inertia(p560, q);
>> surfl(q2, g3, reshape(squeeze(I(1,1,)), size(q2)));
5.5
g3 4 4 q2
See Also robot, rne, itorque, coriolis, gravioad
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References M. W. Walker and D. E. Orin. Efficient dynamic computer simulation ofatidmechanismsASME
Journal of Dynamic Systems, Measurement and Control, 104:205-211, 1982.
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iIshomog

Purpose Test if argument is a homogeneous transform
Synopsis ishomog(x)

Description Returns true ik is a 4x 4 matrix.

See Also isrot, isvec

Robotics Toolbox Release 8
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ISrot

Purpose Test if argument is a rotation matrix
Synopsis isrot(x)

Description Returns true ik is a 3x 3 matrix.
See Also ishomog, isvec
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ISveC

Purpose Test if argument is a 3-vector

Synopsis isvec(x)

Description Returns true ik is , either a 3< 1 or 1x 3 matrix.
See Also ishomog, isrot

Robotics Toolbox Release 8
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itorque

Purpose Compute the manipulator inertia torque component

Synopsis tau _i = itorque(robot, g, qdd)

Description itorque  returns the joint torque due to inertia at the specified ppaed acceleratiogdd which is
given by

L =M(9)§

If g andgdd are row vectorsitorque is a row vector of joint torques. i andqdd are matrices,
each row is interpreted as a joint state vector, gaodjue  is a matrix in which each row is the
inertia torque for the corresponding rowsepéndqgdd .
robot is a robot object that describes the kinematics and dynamics of the netoipand drive. If
robot contains motor inertia parameters then motor inertia, referred to the lialerefe frame, will
be included in the diagonal dfand influence the inertia torque result.

See Also robot, rne, coriolis, inertia, gravioad
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jacob0

32

Purpose

Synopsis

Description

See Also

References

Compute manipulator Jacobian in base coordinates

jacobO(robot, q)

jacob0 returns a Jacobian matrix for the robot objeuhot
base coordinate frame.

in the posey and as expressed in the

The manipulator Jacobian matriQJq, maps differential velocities in joint spacq, to Cartesian
velocity of the end-effector expressed in the base coordinate frame.

Ox = OJq(Q)g

For an n-axis manipulator the Jacobian is;am®matrix.

jacobn, diff2tr, tr2diff, robot

R. P. Paul, B. Shimano and G. E. MayeKinematic Control Equations for Smple Manipulators.
IEEE Systems, Man and Cybernetics 11(6), pp 449-455, June 1981.
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jacobn
Purpose Compute manipulator Jacobian in end-effector coordinates
Synopsis jacobn(robot, q)
Description jacobn returns a Jacobian matrix for the robot objesbot in the posey and as expressed in the
end-effector coordinate frame.
The manipulator Jacobian matriQJq, maps differential velocities in joint spacq, to Cartesian
velocity of the end-effector expressed in the end-effector coordfrentee.
"x="Jq(a)q
The relationship between tool-tip forces and joint torques is given by
I — an(g)/nE
For an n-axis manipulator the Jacobian is;am®matrix.
See Also jacobo, diff2tr, tr2diff, robot
References R. P. Paul, B. Shimano and G. E. MayeKinematic Control Equations for Smple Manipulators.

IEEE Systems, Man and Cybernetics 11(6), pp 449-455, June 1981.
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jtraj 34

Purpose

Synopsis

Description

See Also

Compute a joint space trajectory between two joint coordinate poses

[@ qd qdd] = jtraj(q0, g1, n)
[0 qd qdd] = jtraj(@0, g1, n, qdO, qdi)
[ qd gdd] = jtraj(q0, ql, t)
[0 qd qdd] = jtraj(g0, gl, t, qdO, gqdl)

jtraj  returns a joint space trajectogyfrom joint coordinates)0 to g1. The number of points is
or the length of the given time vector. A 7th order polynomial is used with default zero boundary
conditions for velocity and acceleration.

Non-zero boundary velocities can be optionally specifieqds andqdl.

The trajectory is a matrix, with one row per time step, and one column per joh#.function can
optionally return a velocity and acceleration trajectorieggsindgdd respectively.

ctraj
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link

Purpose Link object

Synopsis L = link
L = link([alpha, a, theta, d], convention)
L = link(falpha, a, theta, d, sigma], convention)

L = link(dyn _row, convention)
A = link(q)
show(L)
Description Thelink function constructs &nk object. The object contains kinematic and dynamic parameters

as well as actuator and transmission parameters. The first form sedudefault object, while the
second and third forms initialize the kinematic model based on Denavit angberg parameters.
The dynamic model can be initialized using the fourth form of the construdteredyn _row is a

1 x 20 matrix which is one row of the legadyn matrix.

By default the standard Denavit and Hartenberg conventions armadshut this can be overridden
by the optionatonvention  argument which can be set to eitherodified’ or'standard’
(default). Note that any abbreviation of the string can be usetinied’ or even'm’ .

The second last form given above is not a constructor but a link mettawdeturns the link transfor-
mation matrix for the given joint coordinate. The argument is given to thedlrject using paren-
thesis. The single argument is taken as the link variglalad substituted fod or D for a revolute or
prismatic link respectively.

The Denavit and Hartenberg parameters describe the spatial relgibesiveen this link and the pre-
vious one. The meaning of the fields for each kinematic convention ammnatized in the following
table.

variable DH MDH description

alpha aj aj_1 link twist angle

A A Ai_1 linklength

theta 6; 0 link rotation angle

D Di Dj link offset distance

sigma Oj Oj joint type; O for revolute, non-zero for prismatic

Since Matlab does not support the concept of public class variableodseltave been written to
allow link object parameters to be referenced (r) or assigned (ayes by the following table
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Method Operations Returns

link .alpha r+a link twist angle

link A r+a link length

link .theta r+a link rotation angle

link .D r+a link offset distance

link .sigma r+a joint type; O for revolute, non-zero for prismatic

link .RP r joint type; 'R’ or 'P’

link .mdh r+a DH convention: 0 if standard, 1 if modified

link I r 3 x 3 symmetric inertia matrix

link .l a assigned from a:33 matrix or a 6-element vec-
tor interpretted afxx lyy Iz lxy lyz Ixz]

link .m r+a link mass

link .r r+a 3x 1 link COG vector

link .G r+a gear ratio

link .Jm r+a motor inertia

link .B r+a viscous friction

link .Tc r Coulomb friction, 1x 2 vector wherét™ 17

link .Tc a Coulomb friction; for symmetric friction this is
a scalar, for asymmetric friction itis a 2-element
vector for positive and negative velocity

link .dh r+a row of legacy DH matrix

link .dyn r+a row of legacy DYN matrix

link .glim r+a joint coordinate limits, 2-vector

link .islimit(q) r return true if value ofy is outside the joint limit
bounds

link .offset r+a joint coordinate offset (see discussion for

robot object).

The default is for standard Denavit-Hartenberg conventions, ziet®mfr, mass and inertias.

The display

method displays as many link parameters as have been initialized for that link

>> L = link([-pi/2, 0.02, 0, 0.15))
L =

-1.570796
>> L.RP
ans =

R
>> L.mdh
ans =

0

>> L.G = 100;
>> L. Tc = 5;
>> L

0.020000

Robotics Toolbox Release 8

0.000000

0.150000 R (std)
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Algorithm

See Also

References
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L =
-1.570796 0.020000 0.000000 0.150000 R (std)

>> show(L)

alpha = -1.5708

A = 0.02

theta =0

D = 0.15

sigma =0

mdh =0

G = 100

Tc =55

>>

For the standard Denavit-Hartenberg conventions the homogenensi®tra

cosBj —sinb; cosa; sinG; sina; aj cosH;
sinG;  cosBijcosn;  —coshsinaj & sinG;
0 sina; COSOlj di
0 0 0 1

i-1p, —

represents each link's coordinate frame with respect to the previous &iokrdinate system. For a
revolute joint6; is offset by

For the modified Denavit-Hartenberg conventions it is instead

cosb; —sinG; 0 ai_1
iflAi _ sinBjcosnj_1 cosBicosaj_; —sinaj_; —d;sinaj_1
sinBjsinaj_; cosh;sinaj_1  COSOj_1 di cosaj_1

0 0 0 1

showlink, robot

R. P. Paul. Robot Manipulators: Mathematics, Programming, and Control. MIT Press, Cambridge,
Massachusetts, 1981.
J. J. CraigJntroduction to Robotics. Addison Wesley, second ed., 1989.
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maniplty

Purpose Manipulability measure

Synopsis m = maniplty(robot, q)

m = maniplty(robot, g, which)

Description maniplty computes the scalar manipulability index for the manipulator at the given panipu-
lability varies from 0 (bad) to 1 (goodjobot is a robot object that contains kinematic and optionally
dynamic parameters for the manipulator. Two measures are suppodete selected by the optional
argumentvhich can be eithetyoshikawa’ (default) or'asada’ . Yoshikawa's manipulability
measure is based purely on kinematic data, and gives an indication ofdrbthe manipulator is
from singularities and thus able to move and exert forces uniformly irr@ittions.

Asada’s manipulability measure utilizes manipulator dynamic data, and tedicaw close the inertia
ellipsoid is to spherical.
If g is a vectormaniplty returns a scalar manipulability index.dfis a matrixmaniplty  returns
a column vector and each row is the manipulability index for the pose spkbifiehe corresponding
row of g.
Algorithm Yoshikawa’s measure is based on the condition number of the manipiéatobian
Nyoshi = 1/ [9(a)I(Q)’|
Asada’s measure is computed from the Cartesian inertia matrix
M (x) = J(q) "M (a)I(a)
The Cartesian manipulator inertia ellipsoid is
XM (x)x =1
and gives an indication of how well the manipulator can accelerate in édloh Gartesian directions.
The scalar measure computed here is the ratio of the smallest/largesti@ligss
~ minx
Nasada = maxx
Ideally the ellipsoid would be spherical, giving a ratio of 1, but in practice wélless than 1.
See Also jacob0, inertia,robot
References T. Yoshikawa, “Analysis and control of robot manipulators with recamay,” in Proc. 1st Int. Symp.

Robotics Research, (Bretton Woods, NH), pp. 735747, 1983.
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MotomanHP6

Purpose

Synopsis

Description

See Also

Author

Create a Motoman HP 6 robot object

MotomanHP6

Creates theobot objectR which describes the kinematic characteristics of a Motoman HP6 manipu-
lator. The kinematic conventions used are as per Paul and Zhang|] gndratities are in standard Sl
units.

Also defined is the joint coordinate vecigd corresponding to the zero position.

robot, puma560akb, stanford, Fanuc1OL, S4ABB2p8

Wynand Swart, Mega Robots CC, P/O Box 8412, Pretoria, 0001, SouthicaAf
wynand.swart@gmail.com
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robot/nofriction

Purpose Remove friction from robot object

Synopsis robot2 = nofriction(robot)
robot2 = nofriction(robot, 'all’)

Description Return a new robot object with modified joint friction properties. The fiosin sets the Coulomb
friction values to zero in the constituent links The second form sets vismodisCoulomb friction
values in the constituent links are set to zero.

The resulting robot object has its name string prepended with 'NF/".

This is important for forward dynamics computatiddyn() ) where the presence of friction can
prevent the numerical integration from converging.

See Also link/nofriction, robot, link, friction, fdyn
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link/nofriction
Purpose Remove friction from link object
Synopsis link2 = nofriction(link)
link2 = nofriction(link, 'all’)
Description Return a new link object with modified joint friction properties. The firstniosets the Coulomb

friction values to zero. The second form sets both viscous and Coulactibr values to zero.

This is important for forward dynamics computatiddyn() ) where the presence of friction can
prevent the numerical integration from converging.

See Also robot/nofriction, link, friction, fdyn
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oaztr, oa2r

Purpose Convert OA vectors to homogeneous transform or rotation matrix

Synopsis T = oa2tr(o, a)

R = oa2r(o, a)

Description Returns a homogeneous transform or rotation matrix specified in tertine @artesian orientation
and approach vectosanda respectively.

Algorithm
R=[oxa o 4]
whereg'andd are unit vectors correspondingdcanda respectively.
Cautionary An extra cross-product is used to ensure orthonormalitg.the only column that is guaranteed to be
unchanged from that specified in the call.
See Also rpy2tr, eul2tr
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Purpose

Synopsis

Description

See Also

Perturb robot dynamic parameters

robot2 = perturb(robot, p)

Return a new robot object with randomly modified dynamic parameteds mizss and inertia. The
perturbation is multiplicative so that values are multiplied by random nunibéhe interval (1-p) to

(1+p).

Useful for investigating the robustness of various model-based d¢@uhemes where one model
forms the basis of the model-based controller and the peturbed modeldgar the actual plant.

The resulting robot object has its name string prepended with 'P/'.

fdyn, rne, robot
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Purpose

Synopsis

Description

See Also

References

Create a Puma 560 robot object

pumas60

Creates theobot objectp560 which describes the kinematic and dynamic characteristics of a Uni-
mation Puma 560 manipulator. The kinematic conventions used are asudexrfel Zhang, and all
guantities are in standard Sl units.

Also defines the joint coordinate vectayg, qr andgstretch  corresponding to the zero-angle,
ready and fully extended (in X-direction) poses respectively.

Y, Z

Details of coordinate frames used for the Puma 560 shown here in itazgl® pose.

robot, puma560akb, stanford, Fanuc1OL, MotomanHP6, S4ABB2p8

R. P. Paul and H. Zhang, “Computationally efficient kinematics for maatprs with spherical
wrists,” Int. J. Robot. Res., vol. 5, no. 2, pp. 32-44, 1986.

P. Corke and B. Armstrong-&ouvry, “A search for consensus among model parametersteejfmr
the PUMA 560 robot,” inProc. |EEE Int. Conf. Robotics and Automation, (San Diego), pp. 1608—
1613, May 1994.

P. Corke and B. Armstrong-&fouvry, “A meta-study of PUMA 560 dynamics: A critical appraisal of
literature data,Robotica, vol. 13, no. 3, pp. 253—-258, 1995.
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pumab60akb

Purpose

Synopsis

Description

See Also

References

Create a Puma 560 robot object

puma560akb

Creates theobot objectp560m which describes the kinematic and dynamic characteristics of a Uni-
mation Puma 560 manipulator. It uses Craig’s modified Denavit-Hartgnizgation with the partic-
ular kinematic conventions from Armstrong, Khatib and Burdick. All dit@s are in standard Sl
units.

Also defines the joint coordinate vectayg, gr andqgstretch  corresponding to the zero-angle,
ready and fully extended (in X-direction) poses respectively.

robot, puma560, stanford, Fanuc10L, MotomanHP6, S4ABB2p8

B. Armstrong, O. Khatib, and J. Burdick, “The explicit dynamic modetl anertial parameters of
the Puma 560 arm,” iroc. 1EEE Int. Conf. Robotics and Automation, vol. 1, (Washington, USA),
pp. 510-18, 1986.
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ginterp

PUI‘pOSE Interpolate unit-quaternions
Synopsis QI = ginterp(Q1, Q2, r)
Description Return a unit-quaternion that interpolates between Q1 and Q2ases between 0 and 1 inclusively.

This is a spherical linear interpolation (slerp) that can be interpreted apatagon along a great
circle arc on a sphere.

If r is a vector, then a cell array of quaternions is returned correspotasuycessive values of

Examples A simple example

>> 1 = quaternion(rotx(0.3))

gl =
0.98877 <0.14944, 0, 0>

>> 2 = quaternion(roty(-0.5))

92 =
0.96891 <0, -0.2474, 0>

>> ginterp(ql, g2, 0)

ans =
0.98877 <0.14944, 0, 0>

>> ginterp(ql, g2, 1)

ans =
0.96891 <0, -0.2474, 0>

>> ginterp(gl, g2, 0.3)

ans =
0.99159 <0.10536, -0.075182, 0>

>>

References K. Shoemake, “Animating rotation with quaternion curves.,"Froceedings of ACM SIGGRAPH,
(San Francisco), pp. 245-254, The Singer Company, Link Flight BionuDivision, 1985.
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quaternion

Purpose Quaternion object

Synopsis g = quaternion(qq)

g = quaternion(v, theta)
g = quaternion(R)
g = quaternion([s vx vy vz])

Description guaternion is the constructor for guaternion object. The first form returns a new object with the
same value as its argument. The second form initializes the quaterniontatian@ftheta about
the vectow.

Examples A simple example

>> quaternion(1, [1 0 0])

ans =
0.87758 <0.47943, 0, 0>

>> quaternion( rotx(1) )

ans =
0.87758 <0.47943, 0, 0>

>>

The third form sets the quaternion to a rotation equivalent to the give Botation matrix, or the
rotation submatrix of a 4 4 homogeneous transform.

The fourth form sets the four quaternion elements directly whdgethe scalar component apek
vy vz] the vector.

All forms, except the last, return a unit quaternion, ie. one whose itafgnis unity.

Some operators are overloaded for the quaternion class
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gl + g2 returns the elementwise sum of quaternion elements

gl - g2 returns he elementwise sum of quaternion elements

gl * g2 returns quaternion product or compounding

q*v returns a quaternion vector product, that is the vecisrotated
by the quaternionvis a 3x 3 vector

ql / g2 returnsgy * g *

gAj returnsg! wherej is an integer exponent. Fgr> 0 the result
is obtained by repeated multiplication. Fok 0 the final result
is inverted.

double(q) returns the quaternion coeffients as a 4-element row vector

inv(q) returns the quaterion inverse

norm(q) returns the quaterion magnitude

plot(q) displays a 3D plot showing the standard coordinate frame after
rotation byq.

unit(q) returns the corresponding unit quaterion

Some public class variables methods are also available for referelyce on

method Returns

quaternion .d  return 4-vector of quaternion elements
quaternion .s  return scalar component

qguaternion .v  return vector component

quaternion .t return equivalent homogeneous transformation

matrix
quaternion .r return equivalent orthonormal rotation matrix

Examples

>> t = rotx(0.2)
t =

1.0000 0 0 0
0 0.9801  -0.1987 0
0 0.1987 0.9801 0
0 0 0 1.0000
>> 1 = quaternion(t)

ql =
0.995 <0.099833, 0, 0>

>> qlr
ans =
1.0000 0 0
0 0.9801  -0.1987
0 0.1987 0.9801

>> 2 = quaternion( roty(0.3) )

92 =
0.98877 <0, 0.14944, 0>
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>> gl * g2
ans =

0.98383 <0.098712, 0.14869, 0.014919>

>> qlrgl
ans =
0.98007 <0.19867, 0, 0>

>> ql72
ans =
0.98007 <0.19867, 0, 0>

>> ql*inv(ql)
ans =
1 <0, 0, 0>

>> qliql
ans =
1 <0, 0, 0>

>> ql/g2
ans =

0.98383 <0.098712, -0.14869, -0.014919>

>> ql*g2™-1
ans =

0.98383 <0.098712, -0.14869, -0.014919>

At the moment vectors or arrays of quaternions are not supportadcah however use cell arrays to

hold a number of quaternions.

guaternion/plot

K. Shoemake, “Animating rotation with quaternion curves.,"Hroceedings of ACM SIGGRAPH,
(San Francisco), pp. 245-254, The Singer Company, Link Flight boruDivision, 1985.

Robotics Toolbox Release 8

Peter Corke, December 2008



quaternion/plot 50

guaternion/plot

Purpose

Synopsis

Description

Examples

See Also

Plot quaternion rotation

plot(Q)

plot is overloaded foiquaternion objects and displays a 3D plot which shows how the standard
axes are transformed under that rotation.

A rotation of 0.3rad about the X axis. Clearly the X axis is invariant underrtitation.

>> g=quaternion(rotx(0.3))

q:

0.85303<0.52185, 0, 0>

>> plot(q)

05 z

guaternion
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me

Purpose Compute inverse dynamics via recursive Newton-Euler formulation

Synopsis tau = rne(robot, q, qd, qdd)
tau = rne(robot, [q qd qdd])
tau = rne(robot, g, qd, qdd, grav)
tau = rne(robot, [q qd qdd], grav)
tau = rne(robot, g, qd, qdd, grav, fext)
tau = rne(robot, [q gqd qdd], grav, fext)

Description rne computes the equations of motion in an efficient manner, giving joint &agla function of joint
position, velocity and acceleration.
If g, gd andgdd are row vectors thetau is a row vector of joint torques. ki, qd andqdd are
matrices thenau is a matrix in which each row is the joint torque for the corresponding rdveg o
qd andqdd.
Gravity direction is defined by the robot object but may be overriddeproyiding a gravity acceler-
ation vectomgrav = [gx gy 0z]
An external force/moment acting on the end of the manipulator may alspdmfied by a 6-element
vectorfext = [Fx Fy Fz Mx My Mz] inthe end-effector coordinate frame.
The torque computed may contain contributions due to armature inertiaianéiction if these are
specified in the parameter matdyn .
The MEX-file version of this function is over 1000 times faster than the M-8lee Section 1 of this
manual for information about how to compile and install the MEX-file.

Algorithm Coumputes the joint torque

T=M(a)§+C(q.99+F(9) +G(a)

whereM is the manipulator inertia matrix; is the Coriolis and centripetal torque the viscous and
Coulomb friction, and5 the gravity load.

Cautionary The MEX file currently ignores support base and tool transforms.

See Also robot, fdyn, accel, gravload, inertia, friction

Limitations A MEX file is currently only available for Sparc architecture.
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References J. Y. S. Luh, M. W. Walker, and R. P. C. Paul. On-line computationa¢sehfor mechanical manip-
ulators. ASME Journal of Dynamic Systems, Measurement and Control, 102:69—76, 1980.
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robot
Purpose Robot object
Synopsis r = robot
r = robot(rr)
r = robot(link ...)
r = robot(DH ...)
r = robot(DYN ...)
Description robot is the constructor for a robot object. The first form creates a defahtitr and the second

form returns a new robot object with the same value as its argument. Fdddim creates a robot
from a cell array of link objects which define the robot’s kinematics artiboplly dynamics. The
fourth and fifth forms create a robot object from legacy DH and DY@t matrices.

The last three forms all accept optional trailing string arguments whieliaken in order as being
robot name, manufacturer and comment.

Since Matlab does not support the concept of public class variableodseltave been written to
allow robot object parameters to be referenced (r) or assigned (ayen by the following table

method Operation Returns

robot .n r number of joints

robot .link r+a cell array of link objects

robot .name r+a robot name string

robot .manuf r+a robot manufacturer string

robot .comment r+a general comment string

robot .gravity r+a 3-element vector defining gravity direction

robot .mdh r DH convention: 0 if standard, 1 if modified.
Determined from the link objects.

robot .base r+a homogeneous transform defining base of robot

robot .tool r+a homogeneous transform defining tool of robot

robot .dh r legacy DH matrix

robot .dyn r legacy DYN matrix

robot .q r+a joint coordinates

robot .glim r+a joint coordinate limitsn x 2 matrix

robot .islimit r joint limit vector, for each joint set to -1, O or

1 depending if below low limit, OK, or greater
than upper limit

robot .offset r+a joint coordinate offsets

robot .plotopt r+a options fomplot()

robot .lineopt r+a line style for robot graphical links
robot .shadowopt r+a line style for robot shadow links
robot .handle r+a graphics handles

Some of these operations at the robot level are actually wrappensdastuilarly named link object
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functions:offset , glim , islimit

The offset vector is added to the user specified joint angles befolldraamatic or dynamic function is
invoked (it is actually implemented within the link object). Similarly it is subtractiéek @n operation
such as inverse kinematics. The need for a joint offset vector aresseube of the constraints of
the Denavit-Hartenberg (or modified Denavit-Hartenberg) notation.pbise of the robot with zero
joint angles is frequently some rather unusual (or even unachieyaise) The joint coordinate offset
provides a means to make an arbitrary pose correspond to the zerarjglatcase.

Default values for robot parameters are:

robot.name 'noname’
robot.manuf
robot.comment

robot.gravity (00981 m/s?

robot.offset ones(n,1)

robot.base eye(4,4)

robot.tool eye(4,4)

robot.lineopt 'Color’, 'black’, 'Linewidth’, 4

robot.shadowopt  'Color’, 'black’, 'Linewidth’, 1

The multiplication operatot:, is overloaded and the product of two robot objects is a robot which is
the series connection of the multiplicands. Tool transforms of all but gtedé@ot are ignored, base
transform of all but the first robot are ignored.

Theplot function is also overloaded and is used to provide a robot animation.

>> L{1} = link([ pi2 0 0 0]
L =
[1x1 link]

>> 1{2} = link( 0 0 05 0J)
L =
[IXL link]  [LxL link]

>> 1 = robot(L)

r =

(2 axis, RR)
grav = [0.00 0.00 9.81]
standard D&H parameters
alpha A theta D RIP
1.570796 0.000000 0.000000 0.000000 R (std)
0.000000 0.000000 0.500000 0.000000 R (std)

Robotics Toolbox Release 8 Peter Corke, December 2008



robot 55

>>

See Also link,plot
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robot/plot

Purpose Graphical robot animation

Synopsis plot(robot, q)
plot(robot, g, arguments...)

/\

0.8
0.6

Description plot is overloaded forobot objects and displays a graphical representation of the robot given the
kinematic information irobot . The robot is represented by a simple stick figure polyline where
line segments join the origins of the link coordinate frames, if a matrix representing a joint-space
trajectory then an animation of the robot motion is shown.

GRAPHICAL ANNOTATIONS

The basic stick figure robot can be annotated with

e shadow on the ‘floor’

e XYZ wrist axes and labels, shown by 3 short orthogonal line segmehtshvare colored:
red (X or normal), green (Y or orientation) and blue (Z or approaghgy can be optionally
labelled XYZ or NOA.

e joints, these are 3D cylinders for revolute joints and boxes for prismatitsjoin

e the robot’s name

All of these require some kind of dimension and this is determined using plesineuristic from
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the workspace dimensions. This dimension can be changed by settingilifiioative scale factor
using themag option below. These various annotations do slow the rate at which animatitbihe

rendered.

OPTIONS

Options are specified by a variable length argument list comprising saimdjsiumeric values. The

allowed values are:

workspace w

perspective

ortho

base, nobase
wrist, nowrist
name, noname
shadow, noshadow
joints, nojoints

Xyz
noa

mag scale
erase, noerase
loop, noloop

set the 3D plot bounds or workspace to the mdttirin xmax ymin ymax
zmin zmax]

show a perspective view

show an orthogonal view

control display of base, a line from the floor upto joint 0

control display of wrist axes

control display of robot name near joint O

control display of a 'shadow’ on the floor

control display of joints, these are cylinders for revolute joints and béxes
prismatic joints

wrist axis labels are X, Y, Z

wrist axis labels are N, O, A

annotation scale factor

control erasure of robot after each change

control whether animation is repeated endlessly

The options come from 3 sources and are processed in the order:

1. Cell array of options returned by the functi®bOTBOTOPT found on the user’s current

path.

2. Cell array of options returned by thglotopt
method.

by the.plotopt

method of theobot object. These are set

3. List of arguments in the command line.

GETTING GRAPHICAL ROBOT STATE

Each graphical robot has a unique tag set equal to the robot's nahenpiét is called it looks for
all graphical objects with that name and moves them. The graphical hobds a copy of theobot
object asUserData . That copy contains the graphical handles of all the graphical suheeles of
the robot and also the current joint angle state.

This state is used, and adjusted, by thivebot
obtained byg = plot(robot)

obj() isgiven.

function. The current joint angle state can be
. If multiple instances exist, that of the first one returnedibg-

To animate two Pumas moving in the same figure window.

>> clf
>> p560b = p560;

>> p560b.name = 'Another Puma 560’;
>> p560h.base = transl([-.05 0.5 0]);

Robotics Toolbox Release 8
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>>
>>
>

\Y

>>
>>
>>
>>
>>
>>

plot(p560, ar);
hold on

plot(p560b, qr);
t = [0:0.056:10];

% display it at ready position

% display it at ready position

jt = jtraj(gr, gstretch, t); % trajectory to stretch pose
for g = jt', % for all points on the path

plot(p560, q);

plot(p560b, );

end

To show multiple views of the same robot.

>>
>>
>>
>>
>>
>>

clf

figure
plot(p560, qz);
figure
plot(p560, qz);
plot(p560, qr);

% create a new figure
% add a graphical robot

% create another figure
% add a graphical robot
% both robots should move

Now the two figures can be adjusted to give different viewpoints, foristaplan and elevation.

plot()

options are only processed on the first call when the graphical objestablished, they are

skipped on subsequent calls. Thus if you wish to change options, ceefigtine before replotting.

drivebot, fkine, robot
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rotx, roty, rotz

Purpose

Synopsis

Description

See Also

Rotation about X, Y or Z axis

R = rotx(theta)
R = roty(theta)
R = rotz(theta)

Return a rotation matrix representing a rotationhafta

rotvec

Robotics Toolbox Release 8

radians about the X, Y or Z axes.
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rpy2tr, rpy2r

Purpose

Synopsis

Description

See Also

References

Roll/pitch/yaw angles to homogeneous transform or rotation matrix

T = rpy2tr([r p y])
T = rpy2tr(r,p,y)

Pyl
1}

rpy2r([r p yl)
rpy2r(r,p,y)

Py
1}

Returns a homogeneous transform or rotation matrix for the specifigatai/yaw angles in radians.

Rx (MR (p)Rz(y)

For the homogeneous transform value the translational componenhtdszezo.

tr2rpy, eul2tr

R. P. Paul,Robot Manipulators: Mathematics, Programming, and Control.  Cambridge, Mas-
sachusetts: MIT Press, 1981.
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rtdemo

Purpose Robot Toolbox demonstration

Synopsis rtdemo

Description This script provides demonstrations for most functions within the Robd@begbox. It pops up a
graphical menu of demos which will run in the command window. The dedigplay tutorial infor-
mation and require the user to hit the enter key to display the next padeéxito
Demos can also be accessed throMATLAB’s own demo system, using tltemos command or
the command menu option. Then the user can navigate to the Robot Tat@bwxmenu.

Cautionary This script clears all variables in the workspace and deletes all figiti@dso adds thelemos direc-

tory to yourMATLAB path on first invocation.
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Purpose

Synopsis

Description

See Also

Author

Create a Motoman HP 6 robot object

S4ABB2p8

Creates theobot objectR which describes the kinematic characteristics of an ABB S4 2.8 manipula-
tor. The kinematic conventions used are as per Paul and Zhang, aneatities are in standard Sl
units.

Also defined is the joint coordinate vectgd corresponding to the synchronization position.

robot, puma560akb, stanford, Fanuc1OL, MotomanHP6

Wynand Swart, Mega Robots CC, P/O Box 8412, Pretoria, 0001, SouthicaAf
wynand.swart@gmail.com
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showlink
Purpose Show robot link details
Synopsis showlink(robot)
showlink(link)
Description Displays in detail all the parameters, including all defined inertial parametka link. The first form
provides this level of detail for all links in the specified manipulator. roll/gitelv angles in radians.
Examples To show details of Puma link 2

>> showlink(p560.link{2})

alpha =0
A = 0.4318
theta =0
D =0
sigma =0
mdh =0
offset = 0
m =174
r = -0.3638

0.006

0.2275

= 0.13 0
0 0.524
0 0

Jm = 0.0002
G = 107.815
B = 0.000817
Tc = 0.126 -0.071
glim =
>>
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stanford
Purpose Create a Stanford manipulator robot object
Synopsis stanford

2

1

N O <
Stanford arm
Description Creates theobot objectstan which describes the kinematic and dynamic characteristics of a Stan-
ford manipulator. Specifies armature inertia and gear ratios. All quarditees standard S| units.

See Also robot, puma560, puma560akb, Fanuc10L, MotomanHP6, S4ABB2p8
References R. Paul, “Modeling, trajectory calculation and servoing of a computetrotbed arm,” Tech. Rep.

AIM-177, Stanford University, Artificial Intelligence Laboratory, 187

R. P. Paul,Robot Manipulators: Mathematics, Programming, and Control. ~ Cambridge, Mas-
sachusetts: MIT Press, 1981.
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tr2angvec

Purpose Convert a homogeneous transform or rotation matrix to angle/vector for

Synopsis [theta, v] = tr2angvec(T)

Description Converts a homogeneous transform or rotation matrix to a rotatithetd radians about the vector
V.

See Also rotx, roty, rotz
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Purpose

Synopsis

Description

See Also

References

Convert a homogeneous transform to a differential motion vector

o
1]

tr2diff(T)
tr2diff(T1, T2)

o
1

The first form oftr2diff returns a 6-element differential motion vector representing the incriaine
translation and rotation described by the homogeneous tran3fdtris assumed that is of the form

0 -8 & dy
& 0 & dy
-8 & 0 d
0o 0 0 0

The translational elements dfare assigned directly. The rotational elements are computed from the
mean of the two values that appear in the skew-symmetric matrix.

The second form ofr2diff returns a 6-element differential motion vector representing the dis-
placement fronT1 to T2, that is, T2 - T1.

d= B,—B
1/2(ng x Ny +01 X 0y + 3y X &)

diff2tr

R. P. Paul,Robot Manipulators: Mathematics, Programming, and Control.  Cambridge, Mas-
sachusetts: MIT Press, 1981.
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tr2eul

Purpose Convert a homogeneous transform or rotation matrix to Euler angles

Synopsis e = tr2eul(M)

Description Returns a vector of Euler angleg B, ], in radians, corresponding ¥ Mis either a rotation matrix,
or the rotation part of the homogeneous transform is taken.

R=Rz(®)Ry(8)Rz(Y)

Cautionary Note that 12 different Euler angle sets or conventions exist. The ctiowarsed here is the common
one for robotics, but is not the one used for example in the aerospauauanity.

See Also eul2tr, tr2rpy

References R. P. Paul,Robot Manipulators: Mathematics, Programming, and Control.  Cambridge, Mas-

sachusetts: MIT Press, 1981.
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tr2jac
Purpose Compute a Jacobian to map differential motion between frames
Synopsis jac = tr2jac(T)
Description tr2jac  returns a 6< 6 Jacobian matrix to map differential motions or velocities between frames
related by the homogeneous transfoFm
If T represents a homogeneous transformation from frame A to fraf&B then
BX _ B\]AAX
whereBJ, is given bytr2jac(T)
See Also tr2diff, diff2tr
References R. P. Paul,Robot Manipulators: Mathematics, Programming, and Control.  Cambridge, Mas-

sachusetts: MIT Press, 1981.
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Purpose

Synopsis

Description

See Also

References

Convert a homogeneous transform or rotation matrix to roll/pitch/yaw angle

e = tr2rpy(T)

Returns a vector of roll/pitch/yaw angles, [roll, pitch, yaw], in radianstegponding toM Mis either
a rotation matrix, or the rotation part of the homogeneous transform in.take

R=Rx("Ry(p)Rz(y)

rpy2tr, tr2eul

R. P. Paul,Robot Manipulators: Mathematics, Programming, and Control.  Cambridge, Mas-
sachusetts: MIT Press, 1981.
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transl

Purpose Translational transformation

Synopsis T = transl(x, y, 2)
T = transl(v)
v = transl(T)
xyz = transl(TC)

Description The first two forms return a homogeneous transformation repregemtimanslation expressed as three
scalarx, y andz, or a Cartesian vectar.
The third form returns the translational part of a homogeneous tnansf®a 3-element column vector.
The fourth form returns a matrix whose columns are the X, Y and Z caduwhthe 4x 4 x m Cartesian
trajectory matrixTC.

See Also ctraj
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trinterp

Purpose Interpolate homogeneous transforms

Synopsis T = trinterp(TO, T1, r)

Description trinterp interpolates between the two homogeneous transf@irendT1 asr varies between 0
and 1 inclusively. This is generally used for computing straight line ort&gan’ motion. Rotational
interpolation is achieved using quaternion spherical linear interpolation.

Examples Interpolation of homogeneous transformations.

>> tl=rotx(.2)

tl =
1.0000 0 0 0
0 0.9801  -0.1987 0
0 0.1987 0.9801 0
0 0 1.0000

>> t2=transl(1,4,5)*roty(0.3)

2 =
0.9553 0 0.2955 1.0000
0 1.0000 0 4.0000
-0.2955 0 0.9553 5.0000
0 0 0 1.0000

>> trinterp(t1,t2,0) % should be t1

ans =
1.0000 0 0 0
0 0.9801  -0.1987 0
0 0.1987 0.9801 0
0 0 0 1.0000

>> frinterp(t1,t2,1) % should be t2

ans =
0.9553 0 0.2955 1.0000
0 1.0000 0 4.0000
-0.2955 0 0.9553 5.0000
0 0 0 1.0000
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>> trinterp(t1,t2,0.5) % ’half way' in between

ans =
0.9887 0.0075 0.1494
0.0075 0.9950  -0.0998
-0.1494 0.0998 0.9837
0 0 0

>>

ctraj, ginterp

R. P. Paul,Robot Manipulators: Mathematics, Programming, and Control.

sachusetts: MIT Press, 1981.
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trnorm

Purpose Normalize a homogeneous transformation

Synopsis TN = trnorm(T)

Description Returns a normalized copy of the homogeneous transformati&inite word length arithmetic can
lead to homogeneous transformations in which the rotational submatrixt isrthmgonal, that is,
det(R) # —1.

Algorithm Normalization is performed by orthogonalizing the rotation submatexo x a, 0=ax n.

See Also oa2tr

References J. Funda, “Quaternions and homogeneous transforms in robotiesfels thesis, University of Penn-

sylvania, Apr. 1988.
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trplot
Purpose Plot a homogeneous transform
Synopsis trplot(T)
Description Displays a 3D plot which shows how the standard axes are transforyrtée transformatio.
Examples Display the coordinate frame represented by a homogeneous transfor
>> tr = trotx(.2)*troty(.3)*transl(1,2,3)
ans =
0.9553 0 0.2955 1.8419
0.0587 0.9801 -0.1898 1.4495
-0.2896 0.1987 0.9363 2.9166
0 0 0 1.0000
>> trplot(tr)
4
35 7
, :
25
N2
15
1
0.5
See Also @quaternion/plot
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twolink
Purpose Load kinematic and dynamic data for a simple 2-link mechanism
Synopsis twolink
2
1
Description Creates theobot objecttl which describes the kinematic and dynamic characteristics of a simple
two-link planar manipulator. The manipulator operates in the horizonta) @{&he and is therefore
not influenced by gravity.
Mass is assumed to be concentrated at the joints. All masses and lerytimstar
See Also pumas60, stanford
References Fig 3-6 of “Robot Dynamics and Control” by M.W. Spong and M. Vidygaa 1989.
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unit

Purpose Unitize a vector

Synopsis vn = unit(v)

Description unit  returns a unit vector aligned with

Algorithm y
=y
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