» Three-Point Exterior Orientation Problem (P3P)

Calibrated camera rotation and translation from Perspective images of 3 reference Points.
Problem: Given K and three corresponding pairs {(mi, Xi)}le, find R, C by solving

Aimi:KR(XifC), i:1,2,3

1. Transform v; def K~ 'm;. Then

configuration w/o rotation in (11)

2. Eliminate R by taking rotation preserves length: ||Rx|| = ||x||
def
il - il = 1% = C|| = = (11)

3. Consider only angles among v; and apply Cosine Law per
triangle (C,X;,X;) 4,7 =1,2,3, i #j

d?j = z? + zf — 22; zj ¢ij,
zi = ||Xi = Cll, dij = X5 — Xl cij = cos(Lv; v;)

4. Solve system of 3 quadratic eqs in 3 unknowns z; [Fischler & Bolles, 1981]
there may be no real root; there are up to 4 solutions that cannot be ignored (verify on additional points)

5. Compute C by trilateration (3-sphere intersection) from X; and z;; then \; from (11) and R
from (10)

Similar problems (P4P with unknown f) at http://cmp.felk.cvut.cz/minimal/ (with code)
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http://cmp.felk.cvut.cz/minimal/

Degenerate (Critical) Configurations for Exterior Orientation

unstable solution

o« e center of projection (' located on the orthogonal circular
‘,—' O“\| cylinder with base circumscribing the three points X;
v i E unstable: a small change of X results in a large change of C'
: X : can be detected by error propagation
A3 I
T SRR -
g Y degenerate
hE o’ . . . .
X, X, e camera C'is coplanar with points (X1, X2, X3) but is not
on the circumscribed circle of (X1, X2, X3)
camera sees point on a line
X, )
L “q no solution
! i
X;' ----- ‘X2 1. C cocyclic with (X1, X2, X3)  camera sees points on a line

e additional critical configurations depend on the method to solve the quadratic
equations

[Haralick et al. 1JCV 1994]
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»Populating A Little ZOO of Minimal Geometric Problems in CV

problem given unknown | slide
camera resection | 6 world—img correspondences {(Xi, mi)}le P 62
exterior orientation | K, 3 world-img correspondences {(Xi, mi)}?zl R, C 66
relative orientation | 3 world-world correspondences {(Xi, Yi)}f:l R, t 69

e camera resection and exterior orientation are similar problems in a sense:

e we do resectioning when our camera is uncalibrated
e we do orientation when our camera is calibrated

e relative orientation involves no camera (see next)

e more problems to come

3D Computer Vision: III. Computing with a Single Camera (p. 68/189) ©aC  R. Sira, CMP; rev. 22-Oct-2019 =@l



The Relative Orientation Problem

Problem: Given point triples (X1, X2, X3) and (Y1, Y2,Y3) in a general position in R?
such that the correspondence X; <+ Y; is known, determine the relative orientation (R, t)
that maps X; to Y, i.e.
Y, =RX;+t, i=1,2,3.
Applies to:
e 3D scanners
e partial reconstructions from different viewpoints

Obs: Let the centroid be X = %ZZ X; and analogically for Y. Then
Y =RX +t.
Therefore
Z; ¥ (v, - ¥)=R(X; - X) ¥ rwW;,
If all dot products are equal, ZiTZj = WiTWj fori,5 =1,2,3, we have
R* = [W1 Wo W3} -1 [Zl Zs Z3]
Otherwise (in practice) we setup a minimization problem

R* = i Z; —RW,||? st. RTR=1I, detR=1
oramin 312~ RW* s . de

argmin 3 [|Z; — RW;|* = argmin 3 (|1Zi[* — 22] RW, + [Wi[]*) = - -
3 3

T
— argmf%xz Z;, RWV;
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cont'd (What is Linear Algebra Telling Us?)

Obs 1: Let A: B =}, . ai;bi; be the dot-product (Frobenius inner product) over real
matrices. Then
A:B=B:A=tr(A'B)

Obs 2: (cyclic property for matrix trace)
tr(ABC) = tr(CAB)
Obs 3: (Z;, W; are vectors)
Z!RW,; = tr(Z{ RW,) = tr(W,Z; R) = (Z;W/ ) : R=R: (Z;W,)
Let the SVD be

T def

Z Z;W,] € M=UDV"
Then

R:M=R:(UDV") =tr(R'UDV') =tr(V'R'UD) = (U'RV): D

3D Computer Vision: III. Computing with a Single Camera (p. 70/189) 9©aC  R. Sira, CMP; rev. 22-Oct-2019 =@l



cont'd: The Algorithm

We are solving

R = arg ml%xz Z; RW; = arg max (UTRV) :D

e It follows that UT RV must be (1) orthogonal, (2) diagonal, (3) positive definite
e Since U, V are orthogonal matrices then the solution to the problem among
R* = USV", where S is diagonal and orthogonal, i.e. one of
+diag(1,1,1), =+diag(1,-1,-1), +diag(-1,1,—-1), =+diag(—1,-1,1)

e UV is not necessarily positive definite
We choose S so that (R*)TR* =1

Alg:
1. Compute matrix M = 3", Z; W, .
2. Compute SVD M = UDV .
3. Compute all Ry = US, VT that give R/ Ry, = 1.
4. Compute tx =Y — RpX.

e The algorithm can be used for more than 3 points
e Triple pairs can be pre-filtered based on motion invariants (lengths, angles)
e The P3P problem is very similar but not identical
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Module [V

Computing with a Camera Pair

@® Camera Motions Inducing Epipolar Geometry

@®Estimating Fundamental Matrix from 7 Correspondences
@®Estimating Essential Matrix from 5 Correspondences

@ Triangulation: 3D Point Position from a Pair of Corresponding Points

covered by
[1] [H&Z] Secs: 9.1, 9.2, 9.6, 11.1, 11.2, 11.9, 12.2, 12.3, 12.5.1
[2] H. Li and R. Hartley. Five-point motion estimation made easy. In Proc ICPR 2006, pp. 630-633

additional references

@ H. Longuet-Higgins. A computer algorithm for reconstructing a scene from two projections. Nature, 293
(5828):133-135, 1981
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»Geometric Model of a Camera Pair

Epipolar geometry:

e brings constraints necessary for inter-image matching

e its parametric form encapsulates information about the relative pose of two cameras
Description

® baseline b joins projection centers Cp, C2

b=Cy—-Cy
® epipole e; € m; is the image of Cj:
e1 ~P1C2, e ~P2C
e |, € m; is the image of epipolar plane

e=(C2,X,C1)

® [; is the epipolar line in image 7; induced
two-camera setup by m; in image m;

Epipolar constraint: corresponding d2, b, d1 are coplanar a necessary condition —86
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Epipolar Geometry Example: Forward Motion

image 1 image 2
e red: correspondences click on the image to see their IDs
e green: epipolar line pairs per correspondence same ID in both images

How high was the camera above the floor?

o~
movement Il

2 1
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»Cross Products and Maps by Skew-Symmetric 3 x 3 Matrices

e There is an equivalence b x m = [b], m, where [b], is

a 3 x 3 skew-symmetric matrix

0 —bs b b1
[bl, = | b3 0 —bi, assuming b = [bs
by b 0 bs
Some properties
T .
1. [b]>< = —[b}>< the general antisymmetry property
2. A is skew-symmetric iff x Ax =0 for all x skew-sym mtx generalizes cross products
3. [b]} = —Ib|* - [b],
4. ||bl I, = V2| Frobenius norm (J|A[|r = \/tr(ATA) = /5, lai; )
5. [b],b=0
6. rank [b], =2 iff ||b]| >0 check minors of [b],,
7. eigenvalues of [b], are (0, A, —))
8. for any regular B: BT [Bz], B =detB|z], follows from the factoring on —38
9. in particular: if RR" =1 then [Rb], = R[b],R"

e note that if Ry is rotation about b then Ryb = b

e note [b], is not a homography; it is not a rotation matrix

it is a logarithm of a rotation mtx
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»Expressing Epipolar Constraint Algebraically

P = [Qi qi} =K; [Ri ti]7 i=1,2

R, — relative camera rotation, Ra; = RZRIT

to1 — relative camera translation, ta; = t2 — R21t1 = —R2b —73

b - baseline vector (world coordinate system)

‘ ’ remember: C = —-Q 'q=—-R'"t —32 and 34

0=d; p. ~ (Q;'m)" QL =m; Q; ' Q(e1 xm)=my (Q; Q [e1],) mu
~— —— N~ —_—

normal of € optical ray  optical plane

image of € in 72 fundamental matrix F

Epipolar constraint mJ Fm; =0 is a point-line incidence constraint
® point my is incident on epipolar line 15 ~ Fmy

e Fe; = F ey = 0 (non-trivially)
e point my is incident on epipolar line I; ~ F"'mjy

o all epipolars meet at the epipole
e ~QCr+q; =Q,C:—Q,Ci =KiR,b= ~KiRiR; t21 = ~KiRg tn

_ _ ® 1 _ _
F=Q; Q] [e], =Q; Q] [KiRib], = -+ ~K5  [~tn] RoiK;' fundamental

E =[-t21],Ro1 = [R2b] R2; =Ra1[Rib], = Rai[-Raitai],

essential

N——
baseline in Cam 2 baseline in Cam 1
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» The Structure and the Key Properties of the Fundamental Matrix

left epipole right epipole
—1\—T -T T —75 ” -T -1
F= ( QQQl ) [el]x = K2 R21K1 [el]x = [Heel]xHe = K2 [_t21}><R21 Kl
N—— N——r
epipolar homography H, HgT essential matrix E
1. E captures relative camera pose only [Longuet-Higgins 1981]
(the change of the world coordinate system does not change E)

R, t]=[Ri t]- Lf& ﬂ = [RR Rit+t],

P Ry SRR == Ra =t Ryt ==t
2. the translation length t2; is lost since E is homogeneous

3. F maps points to lines and it is not a homography

4. H. maps epipoles to epipoles, H. T epipolar lines to epipolar lines: 1, ~ H. "1,

e replacement for H; T for epipolar line map: I ~ Fle1], It
e proof by point/line ‘transmutation’ (left)
e point e; does not lie on line e; (dashed): girg] #0

e Flei], is not a homography, unlike HZ T but it does the
same job for epipolar line mapping
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»Some Mappings by the Fundamental Matrix

er ~ null(F), e ~null(F")
e1 ~H, 'e e2 ~ Hees

L ~F m I~ Fmy
h~HL b~H 'L
L~F'le],l, L~Flel]L

e F[e1], maps lines to lines but it is not a homography

e H. = Q2Q1_1 is the epipolar homography—77
H;T maps epipolar lines to epipolar lines, where
He = Q,Q; ' = KaRo1 K[ '

you have seen this —59

H, or F ey«
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Thank You
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