»Matching Table

Based on scene opacity and the observation on mutual exclusion we expect each pixel to
match at most once.

1

2 -
3 -
1\ 2/ 3/ 4 1 \2\3 |4 4 -
T T2 5 -
, 1 2 3 45
4 Cy
rays in epipolar plane matching table T'
matching table
e rows and columns represent optical rays
e nodes: possible correspondence pairs
e full nodes: matches
e numerical values associated with nodes: descriptor similarities see next
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»Constructing A Suitable Image Similarity Statistic

e let p; = (I,7) and L(l), R(r) be (left, right) image descriptors (vectors) constructed from
local image neighborhood windows
Cov (XM

in matching table 7" ? =

val () - var(q)

‘block’ in the left image:

L(l)

L]

® a simple block SimilaTrity is SAD(l,r) = |[L(I) = R(r)||1 L1 metric (sum of absolute differences)
L) — R(r)|?
o2(l,7)
o 02 — the difference scale; a suitable (plug-in) estimate is % [var(L(1)) + var(R(r))], giving
2 cov(L(1),R(r))
var(L(l)) + var(R(r))

® a scaled-descriptor similarity is sim(l,r) = smaller is better

sim(l,r) =1 — var(+), cov(-) is sample (co-)variance (34)

p(L1).R(M)
e p— MNCC - Moravec's Normalized Cross-Correlation statistic  bigger is better [Moravec 1977]
p? € 0,1], sign p ~ ‘phase’
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How A Scene Looks in The Filled-In Matching Table

scene left image

11 x 11 window

a good tradeoff  occlusion artefacts

right image

undiscriminable

e MNCC p used™
(a=158=1) I/

e high-correlation structures
correspond to scene objects

constant disparity

e a diagonal in matching
table

® zero disparity is the main
diagonal nonstd rectification

depth discontinuity

e horizontal or vertical jump
in matching table

large image window

® better correlation

® worse occlusion localization
repeated texture

® horizontal and vertical
block repetition
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Image Point Descriptors And Their Similarity

Descriptors: Image points are tagged by their (viewpoint-invariant) physical properties:

e texture window [Moravec 77]
e a descriptor like DAISY [Tola et al. 2010]
e learned descriptors

o reflectance profile under a moving illuminant

e photometric ratios [Wolff & Angelopoulou 93-94]
e dual photometric stereo [lkeuchi 87]
e polarization signature

L]

e similar points are more likely to match
e image similarity values for all ‘match candidates’ give the 3D matching table

video
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»Marroquin’s Winner Take All (WTA) Matching Algorithm

1. per left-image pixel: find the most similar right-image pixel using SAD —164

2. select disparity range this is a critical weak point
3. represent the matching table diagonals in a compact form

“o.d 1

2

3 1 2 3 4 5 6
N d=0--0--0-0--0-0--0--
5 | . d=1----- 0-0--0-0--0--
6 d=2------- o--0-0--0--

4. use an ‘image sliding & cost aggregation algorithm’

[TTTIITTTITTT

-
3
2

ime CTTTTTITTTTTT] image shifted by d = 1 pixel

3. O

5. take the maximum over disparities d
6. threshold results by maximal allowed SAD dissimilarity
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A Matlab Code for WTA

function dmap = marroquin(iml,imr,disparityRange)
% iml, imr - rectified gray-scale images
% disparityRange - non-negative disparity range

% (c) Radim Sara (sara@cmp.felk.cvut.cz) FEE CTU Prague, 10 Dec 12

thr = 20;
r = 2;
winsize = 2*r+[1 1];

% bad match rejection threshold
% 5x5 window (neighborhood) for r=2

% the size of each local patch; it is N=(2r+1) "2 except for boundary pixels
N = boxing(ones(size(iml)), winsize);

% computing dissimilarity per pixel (unscaled SAD)
for d = O:disparityRange % cycle over all disparities
slice = abs(imr(:,1:end-d) - iml(:,d+1:end)); ' pixelwise dissimilarity
V(:,d+1:end,d+1) = boxing(slice, winsize)./N; % window aggregation

end

% collect winners, threshold, and output disparity map
[cmap,dmap] = min(V,[],3);
dmap(cmap > thr) = NaN; % mask-out high dissimilarity pixels
end % of marroquin
function ¢ = boxing(im, wsz)
% if the mex is not found, run this slow version:

c = conv2(ones(1,wsz(1)), ones(wsz(2),1), im, ’same’);
end % of boxing
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WTA: Some Results

results are fairly bad

false matches in textureless image regions and on repetitive structures (book shelf)
a more restrictive threshold (thr = 10) does not work as expected

we searched the true disparity range, results get worse if the range is set wider

chief failure reasons:
e unnormalized image dissimilarity does not work well
e no occlusion model (it just ignores the occlusion structure we have discussed —162)
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»A Principled Approach to Similarity

Empirical Distribution of MNCC p for Matches and Non-Matches

MNCC, 5.5 window, 50 KITTI images
T T T

T T T

T T

empirical density

-08 08 -04 02 o 02 04 1
»

e histograms of p computed from 5 x 5 correlation window
e KITTI dataset

e 4.2-10° ground-truth (LiDAR) matches for p1(p) (green),
e 4.2-105 random non-matches for po(p) (red)

Obs:
e non-matches (red) may have arbitrarily large p
e matches (green) may have arbitrarily low p
e p =1 is improbable for matches
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Match Likelihood

a=10, =15
e pis just a statistic

e we need a probability distribution on [0, 1],
e.g. Beta distribution

1 a—1 —
B, B) lpl* 71 (1 = |p|)?

IS
o

pi(p) =

Be(p;a,8)
w
E

[N
N

e note that uniform distribution is obtained for
a=p8=1 1 0
e when a =2 and 8 =1 then p1(:) = 2|p|

0 -2
0 0.2 04 p 06 0.8 1

the mode is at ,/ +B 2~097351’oro¢_10 B =15

if we chose 8 = 1 then the mode was at p =1
perfect similarity is ‘suspicious’ (depends on expected camera noise level)
from now on we will work with negative log-likelihood

Vi(p(l,r)) = —logpi(p(l,T)) (35)

smaller is better
we may also define similarity (and negative log-likelihood V5 (p(l,7))) for non-matches
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»A Principled Approach to Matching

e given matching M what is the likelihood of observed data D?
e data — all pairwise costs in matching table T’
e matches — pairs p; = (l;,7:), i=1,...,n

e matching: partitioning matching table 7" to matched M and excluded E' pairs
T=MUE, MNE=0

e matching cost (negative log-likelihood, smaller is better)

V(D[ M)=>"Vi(D|p)+ > Vo(D|p)

peEM peE
Vi(D | p) — negative log-probability of data D at matched pixel p (35)
Vo(D | p) — ditto at unmatched pixel p —170 and —171

e matching problem

M* = ar mln D|M
g, min V(D[ M)

M(T) — the set of all matchings in table T

e symmetric: formulated over pairs, invariant to left <> right image swap
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»(cont’d) Log-Likelihood Ratio

e we need to reduce matching to a standard polynomial-complexity problem

e we convert the matching cost to an ‘easier’ sum

vo | M) = S 9 ) S ve(D | p) +ZVoDlp) S V(D | p)
peEM peEE peEM

=Y ) (WD Ip) - V(D p)+ !ZVOD;D )+ > Vo(D | p)

peE peM
—L(D | p) Z Vo(D | p) = const
peT
e hence
arg min V(D | M) =ar max L(D 36
£, i, VD1 M) =ore e 5 LD 1) (36)

L(D | p) — logarithm of matched-to-unmatched likelihood ratio (bigger is better)

why this way: we want to use maximum-likelihood but our measurement is all data D

e (36) is max-cost matching (maximum assignment) for the maximum-likelihood (ML)
matching problem
e use Hungarian (Munkres) algorithm and threshold the result with T: L(D | p) >T >0
e or step back: sacrifice symmetry to speed and use dynamic programming
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Some Results for the Maximum-Likelihood (ML) Matching

e unlike the WTA we can efficiently control the density/accuracy tradeoff black = no match
e middle row: threshold T for L(D | p) set to achieve error rate of 3% (and 61% density results)
e bottom row: threshold T set to achieve density of 76% (and 4.3% error rate results)
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»Basic Stereoscopic Matching Models

® notice many small isolated errors in the ML matching (/4 v
e we need a stronger model ¢

Potential models for M (from weaker to stronger)
1. Uniqueness: Every image point matches at most once
e excludes semi-transparent objects
e used by the ML matching algorithm (but not by the WTA algorithm)
(2 i onotonicity: Matched pixel ordering is preserved
o Forall (i,j5) € M,(k,))e M, k>i=1>j
Notation: (i,j5) € M or j = M (i) — left-image pixel 7 matches right-image pixel j

o excludes thin objects close to the cameras
e used by 3LDP [SP]

LS. Coherence: Objects occupy well-defined 3D volumes

e concept by [Prazdny 85]

e algorithms are based on image/disparity map segmentation

e a popular model (segment-based, bilateral filtering and their successors)
e used by Stable Segmented 3LDP [Aksoy et al. PRRS 2008]

4. Continuity: There are no occlusions or self-occlusions
e too strong, except in some applications
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Understanding Occlusion Structure in Matching Table

) (lk
f @ binocularly visible foreground points
le Ij e . @ binocularly visible background pts violating ordering
e .-+ depth discontinuity in right image . i
g o . © monocularly visible points
[0
2 dy; critical disparity
©
X
Q
o depth discontinuity in left image
©
E
5 <
A FuE
|nV|S|bI§ ° .
| L
; L

right image pixel index
reJ

e this leads to the concept of ‘forbidden zone’

3D Computer Vision: VIL. Stercovision (p. 176/189) DA R. Séra, CMP; rev. 7-Jan-2020 <@l



»Formally: Uniqueness and Ordering in Matching Table T’

X-zone and F-zone

e Uniqueness Constraint:

A set of pairs M = {p;};-_,, p; € T is a matching iff

X(p)

Vpi,p; € M : p; & X(p:).
X-zone, pi & X (p1)

e Ordering Constraint:

. Matching M is monotonic iff
VU Vpi,pj € M : pj & F(ps).

; F-zone, p; & F(p;)

p; & X(pi),

e ordering constraint: matched points form a monotonic set
in both images
p;j & F(pi) o o
e ordering is a powerful constraint: in n X n table we have
monotonic matchings O(4™) < O(n!) all matchings
® 2: how many are there maximal monotonic matchings? (e.g. 27 for n = 4; hard!)

e uniqueness constraint is a basic occlusion model

e ordering constraint is a weak continuity model and partly also an occlusion model

e monotonic matching can be found by dynamic programming
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Some Results: AppleTree

right image ML —173

3LDP w/ordering naive DP Stable Segmented 3LDP
[SP] [Cox et al. 1992] [Aksoy et al. PRRS 2008]

o 3LDP parameters «;, Ve learned on Middlebury stereo data http://vision.middlebury.edu/stereo/
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Some Results: Larch

right image ML —173

3LDP w/ordering [SP] naive DP Stable Segmented 3LDP

® naive DP does not model mutual occlusion
® but even 3LDP has errors in mutually occluded region

e Stable Segmented 3LDP has few errors in mutually occluded region since it uses a coherence
model
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Algorithm Comparison

Marroquin’s Winner-Take-All (WTA —167)

the ur-algorithm very weak model
dense disparity map
O(N3) algorithm, simple but it rarely works

Maximum Likelihood Matching (ML —173)

semi-dense disparity map

many small isolated errors

models basic occlusion

O(N3log(NV)) algorithm max-flow by cost scaling

MAP with Min-Cost Labeled Path (3LDP)

semi-dense disparity map

models occlusion in flat, piecewise continuos
scenes

has ‘illusions’ if ordering does not hold
O(N?) algorithm

Stable Segmented 3LDP

better (fewer errors at any given density)
O(N?31log N) algorithm
requires image segmentation itself a difficult task

density [%]

98
95
90

80
70

50

ROC curves and their average error rate bounds

/ ——3LDP (3.65+0.26)| |

WTA (4.71£0.17)
ML (4.60 + 0.65)
——— GCS (4.29+1.47) ||

0.5 1 2 3 5 10 20

inaccuracy [%]

ROC-like curve captures the
density/accuracy tradeoff

numbers: AUC (smaller is better)
GCS is the one used in the exercises

more algorithms at
http://vision.middlebury.edu/
stereo/ (good luck!)
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Thank You
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ROC curves and their average error rate bounds

P

~N © © ©
o O o O o
L L L L L

50 -

density [%]

3LDP (3.65 + 0.26)
WTA (4.71+0.17)
54 SR ML (4.60 £ 0.65) |
——— GCS (4.29 + 1.47)

0.5 1 2 3 5 10 20
inaccuracy [%]
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