»cont'd

e if 04 < 03, there is a unique solution X = u4 with residual error (D X)? = o3
the quality (conditioning) of the solution may be expressed as ¢ = 03/04 (greater is better)

Matlab code for the least-squares solver:

[U,0,V] = svd(D);
X = V(:,end);
q = sqrt(0(end-1,end-1)/0(end,end)) ;

® P1; 1pt: Why did we decompose D and not Q = D' D?
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» Numerical Conditioning

e The equation DX = 0 in (14) may be ill-conditioned for
numerical computation, which results in a poor estimate for X.

Why: on a row of D there are big entries together with small
entries, e.g. of orders projection centers in mm, image points in px

102 0 10% 10°
0o 10® 10® 10°
102 0 10° 10°
0 10® 10® 10°

Quick fix:
1. re-scale the problem by a regular diagonal conditioning matrix S € R**
0=DX=DSS 'X=DX
choose S to make the entries in D all smaller than unity in absolute value:
S = diag(1073,1073,1073,107°) S = diag(1./max(abs(D), 1))

2. solve for X as before B
3. get the final solution as X =S X

e when SVD is used in camera resection, conditioning is essential for success —62
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Algebraic Error vs Reprojection Error

® algebraic error (¢ — camera index, (u®, v®) — image coordinates) from SVD —90
2
2 2 T T+)\2 T T2
200 =af = 3 [ (w0 TX - ) X) + (05X - 05 7x)]
c=1
® reprojection error 2 T 2 T 2
! 25 — e (DX e (97X
X =3 v~ mo7x ) TV ooTx
=1 (pg) X (pg) X
® algebraic error zero <> reprojection error zero o4 = 0 = non-trivial null space
® epipolar constraint satisfied = equivalent results
® in general: minimizing algebraic error is cheap but it gives inferior results
® minimizing reprojection error is expensive but it gives good results
® the midpoint of the common perpendicular to both optical rays gives about 50% greater error in 3D
® the golden standard method — deferred to —104

® forward camera motion
® error f/50 in image 2, orthogonal to epipolar plane

X — noiseless ground truth position
X, — reprojection error minimizer
X, - algebraic error minimizer
m — measurement (mr with noise in v?)
(‘] (‘2
mgy 1 m
PRl I . * mg,
el mr=m e my
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»We Have Added to The ZOO

continuation from —68

problem given unknown | slide
camera resection 6 world—img correspondences {(X,', mi)}?zl P 62
exterior orientation | K, 3 world—img correspondences { (X, mi)}?zl R, t 66
relative orientation | 3 world-world correspondences { (X, Yi)}f:l R, t 69
fundamental matrix | 7 img—img correspondences {(m, m;)}:zl F 83
relative orientation | K, 5 img—img correspondences {(m, m;)}le R, t 87
triangulation Pi, Po, 1 img-img correspondence (m;, m;) X 88

calibrated problems

A bigger ZOO at http://cmp.felk.cvut.cz/minimal/

e have fewer degenerate configurations
e can do with fewer points (good for geometry proposal generators —117)

e algebraic error optimization (SVD) makes sense in camera resection and triangulation only

e but it is not the best method; we will now focus on ‘optimizing optimally’
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Module V

Optimization for 3D Vision

@ The Concept of Error for Epipolar Geometry
@ Levenberg-Marquardt's lterative Optimization
@ The Correspondence Problem

@ Optimization by Random Sampling

covered by
[1] [H&Z] Secs: 11.4, 11.6, 4.7
[2] Fischler, M.A. and Bolles, R.C . Random Sample Consensus: A Paradigm for Model
Fitting with Applications to Image Analysis and Automated Cartography.
Communications of the ACM 24(6):381-395, 1981
additional references
P. D. Sampson. Fitting conic sections to ‘very scattered’ data: An iterative refinement of the Bookstein

algorithm. Computer Vision, Graphics, and Image Processing, 18:97-108, 1982.

@ O. Chum, J. Matas, and J. Kittler. Locally optimized RANSAC. In Proc DAGM, LNCS 2781:236-243.
Springer-Verlag, 2003.

@ O. Chum, T. Werner, and J. Matas. Epipolar geometry estimation via RANSAC benefits from the oriented
epipolar constraint. In Proc ICPR, vol 1:112-115, 2004.
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» The Concept of Error for Epipolar Geometry

Background problems: (1) Given at least 8 matched points x; <+ y; in a general position,
estimate the most ‘likely’ fundamental matrix F; (2) given F triangulate 3D point from z; <> y;.

xi:(u.},v}), yi:(u?,vf), i=1,2,...,k, k>8

ZT; F
O - —
image 1 image 2

e detected points (measurements) z;, y;

e we introduce matches Z; = (uj,v;,u?,v?) €R?; S = {Zi}le

. A 5 1 A2 . 5k
e corrected points &, 7i; Zi = (4F,0F, 47, 07); S = {Zi}i—l are correspondences

e correspondences satisfy the epipolar geometry exactly }:/j Fx,=0,i=1,...,k
e small correction is more probable
e let e;(-) be the ‘reprojection error’ (vector) per match i,

A X; — X - S
ei(wi,yi | ©4,7i, F) = { . ] =ei(Z2;| 7, F) =7Z; — Z;(F)
Yi Y

def ~ ~ 5
lei()I* = €F() = llxi = %ill* + lly; = 901> = 1Zi — Zo(F)]”

(15)
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»cont’d

e the total reprojection error (of all data) then is

k k
L(S |5, F) =Y el(zi,yi | #:,0:,F) =Y ei(Zi|Z;,F)
=1 i=1

e and the optimization problem is

k
(8*,F*) = arg min min Z e (xi, i | &4, 7i, F) (16)
¥ 5 i=1
rank F = 2 ):’TF’:‘ =0

Three possible approaches

e they differ in how the correspondences &;, ; are obtained:

1. direct optimization of reprojection error over all variables S, F —97

2. Sampson optimal correction = partial correction of Z; towards Z; used in an iterative
minimization over F —98

3. removing &;, §; altogether = marginalization of L(S, S | F) over S followed by
minimization over F not covered, the marginalization is difficult
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Method 1: Reprojection Error Optimization

® we need to encode the constraints ):11 Fx%x, =0, rankF =2
e idea: reconstruct 3D point via equivalent projection matrices and use reprojection error
® equivalent projection matrices are see [H&Z,Sec. 9.5] for complete characterization

Pi=[1 0], Po=[le),Freel e an

® H3; 2pt: Assuming e1, ex are the left and right nullspace basis vectors of F' (i.e. the epipoles), verify that F is
a fundamental matrix of Py, P2. Hint: A is skew symmetric iff x| Ax = 0 for all vectors x.

1. compute FO by the 7-point algorithm —83; construct camera Péo) from F(©) using (17)

2. triangulate 3D points Xl(-o) from matches (z;,y;) foralli=1,... k —88

)

3. starting from Péo), X(O minimize the reprojection error (15)
k

(X", P5) =arg min Y e7(Z; | Zi(X;,P2))
P2, X 25
where R ~ ~
Z; = (%X4,y;) (Cartesian), %; ~P1X;, ¥ ~P2X; (homogeneous)
Non-linear, non-convex problem

4. compute F from Py, P3

® 3k + 12 parameters to be found: latent: X, for all i (correspondences!), non-latent: Py
® minimal representation: 3k + 7 parameters, P> = P (F) —145
® there are pitfalls; this is essentially bundle adjustment; we will return to this later —136
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»Method 2: First-Order Error Approximation

An elegant method for solving problems like (16):

o we will get rid of the latent parameters X needed for obtaining the correction
[H&Z, p. 287], [Sampson 1982]
o we will recycle the algebraic error e = XTFX from —83
vedk>"

e consider matches Z;, correspondences Zl, and reprojection error, nei = Z -7 K

e correspondences satisfy ):rq Fx =0, % = (a*,0%,1), yl = (a%,0%,1)
e this is a manifold Vr € R*: a set of points Z = (a!, ¢*, 42, 0* ) consistent with F

e algebraic error vanishes for Zi: 0= sz(Z) = YL-TF X

Sampson’s idea: Linearize the algebraic error €(Z) at Z; (where it is
non-zero) and evaluate the resulting linear function at Z; (where it is
zero). The zero-crossing replaces Vg by a linear manifold £. The
point on Vg closest to Z; is replaced by the closest point on L.
aEi(ZZ’)
0Z;

€i(zi) ~ Ei(zi)+ (Zz'*zi) = O

II\
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»Sampson’s Approximation of Reprojection Error

o linearize €(Z) at match Z;, evaluate it at correspondence Z;

% (Z; — Zi) d:ef 51-(Zi) +J1(Z1)61(Z,7 Zi)
——

Ji(Zi)  ei(Z;,Z;)

e goal: compute function e;(-) from &;(-), where e;(-) is the distance of Z, from Z;
e we have a linear underconstrained equation for e;(-)

e we look for a minimal e;(-) per match i
I®

e;(-)" = arg m(lr)l lles () subject to &;(-) +J:(-)ei(:) =0

e which has a closed-form solution note that J;(-) is not invertible! ® P1; 1pt: derive e} ()

pseudo-inverse

()= =31 (3:3))ei()

N _ (18)
el (I = & ()@:IT) " e
e this maps &;(-) to an estimate of e;(-) per correspondence
e we often do not need e;, just Hei||2 exception: triangulation —104

e the unknown parameters F are inside: e; = e;(F), &; = &;(F), J; = J:(F)

3D Computer Vision: V. Optimization for 3D Vision (p. 99/189) 9a( R. Sdra, CMP; rev. 5-Nov-2019 =il



ﬂw: )

»Example: Fitting A Circle To Scattered Points
Ix[|* =% = 0.

Problem: Fit a zero-centered circle C to a set of 2D points {xz i1,
e(x) = ||XH2 —r? ‘arbitrary’ choice

1 consider radial error as the ‘algebraic error’
we are droppinig™ in €;, e; etc for clarity

. linearize it at % "X'lz (‘L-t ZXT(X X\

. Oe(x) . - N
e(®) ~ e(x) + a(x) k—x)==2x"%5— (" +|x|°) ¥ er(x) =O
——
J(x)=2xT e(&,x)
er (%) =0 is a line with normal ﬁ and intercept % not tangent to C, outside!

3. using (18), express error approximation e as
(lx[* —7*)

le"||* =" (3IT) e =
Af|x|J>

4. fit circle
: (

e this example results in a convex quadratic optimization problem

e note that
argmmzuxm . ( znxﬂ)
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Circle Fitting: Some Results

medium radial noise medium isotropic noise big radial noise

big isotropic noise

opt: 1.8, Smp: 1.9, dir: 2.3 1.8, 2.0, 2.2 16,138, 26 1.6, 2.0, 2.4
mean ranks over 10000 random trials with k = 32 samples
optimal estimator for isotropic error (black, dashed):
green — ground truth ‘\/(7{ LVQf C P P ( )
red — Sampson erre#”“minimizer k k 2 k
3 3 1 R
blue — diectradtal error minimizer r= 4]; Z [l Il + 1k Z [l |l - [I53 |
black — optimal estimator for isotropic error =t =t i=1

which method is better?

e error should model noise, radial noise and isotropic noise behave differently

e ground truth: Normally distributed isotropic error, Gamma-distributed radial error

e Sampson: better for the radial distribution model; Direct: better for the isotropic model

® no matter how corrected, the algebraic error minimizer is not an unbiased parameter estimator
Cramér-Rao bound tells us how close one can get with unbiased estimator and given k
3D Computer Vision: V. Optimization for 3D Vision (p. 101/189) 9aC
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»Sampson Error for Fundamental Matrix Manifold

The epipolar algebraic error is

s(F) =yl Fxi, xi=(u,v), y,=(u,v), eccR
(FI)T 1 0 O
Let F=[F, Fy Fs] (per columns) = [(F°)"| (perrows), S= , then
(F3)T 0 1 0
Sampson
_ [0ei(F) 0ei(F) Oei(F) Oei(F) 1,4 derivatives over
JZ(F) - |: 8u11 ’ avil ’ au? ’ 8”1‘2 Ji €R point coordinates
SFTy, 1"
= [(FI)TX'D (FQ)TX'D (FI)T&a (FQ)T&] = |:SF)S};,:|
- Ji(F)ei(F) 4 Sampson errol
ez(F) = —7”‘11(]5‘)”2 ez(F) eR sl rror
T
ei(F) def lles (F)] ei(F) Yi ¥%i ei(F) € R scalar

e Sampson error ‘normalizes’ the algebraic error

IEM | JISFxil|2 + IS Ty, |2

e automatically copes with multiplicative factors F — AF

e actual optimization not yet covered —108

Sampson error

7
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Thank You
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€] mp=m
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