• if $\sigma_4 \ll \sigma_3$, there is a unique solution $\underline{\mathbf{X}} = \mathbf{u}_4$ with residual error $(\mathbf{D} \underline{\mathbf{X}})^2 = \sigma_4^2$ the quality (conditioning) of the solution may be expressed as $q = \sigma_3/\sigma_4$ (greater is better)

Matlab code for the least-squares solver:

```
[U,0,V] = svd(D);
X = V(:,end);
q = sqrt(O(end-1,end-1)/O(end,end));
```

 \circledast P1; 1pt: Why did we decompose **D** and not **Q** = **D**^T**D**?

►Numerical Conditioning

ullet The equation $D\underline{X}=0$ in (14) may be ill-conditioned for numerical computation, which results in a poor estimate for \underline{X} .

Why: on a row of $\mathbf D$ there are big entries together with small entries, e.g. of orders projection centers in mm, image points in px

$$\begin{bmatrix} 10^3 & 0 & 10^3 & 10^6 \\ 0 & 10^3 & 10^3 & 10^6 \\ 10^3 & 0 & 10^3 & 10^6 \\ 0 & 10^3 & 10^3 & 10^6 \end{bmatrix}$$

Quick fix:

1. re-scale the problem by a regular diagonal conditioning matrix $\mathbf{S} \in \mathbb{R}^{4,4}$

$$\mathbf{0} = \mathbf{D}\,\underline{\mathbf{X}} = \mathbf{D}\,\mathbf{S}\,\mathbf{S}^{-1}\underline{\mathbf{X}} = \bar{\mathbf{D}}\,\bar{\underline{\mathbf{X}}}$$

choose ${\bf S}$ to make the entries in $\hat{{\bf D}}$ all smaller than unity in absolute value:

$$S = diag(10^{-3}, 10^{-3}, 10^{-3}, 10^{-6})$$
 $S = diag(1./max(abs(D), 1))$

- 2. solve for $\bar{\mathbf{X}}$ as before
- 3. get the final solution as $\underline{\mathbf{X}} = \mathbf{S} \, \bar{\underline{\mathbf{X}}}$
 - when SVD is used in camera resection, conditioning is essential for success

Algebraic Error vs Reprojection Error

• algebraic error (c – camera index, (u^c, v^c) – image coordinates)

from SVD \rightarrow 90

 $\sigma_4 = 0 \Rightarrow$ non-trivial null space

$$\varepsilon^2(\underline{\mathbf{X}}) = \sigma_4^2 = \sum_{c=1}^2 \left[\left(u^c(\mathbf{p}_3^c)^\top \underline{\mathbf{X}} - (\mathbf{p}_1^c)^\top \underline{\mathbf{X}} \right)^2 + \left(v^c(\mathbf{p}_3^c)^\top \underline{\mathbf{X}} - (\mathbf{p}_2^c)^\top \underline{\mathbf{X}} \right)^2 \right]$$

reprojection error

$$e^{2}(\underline{\mathbf{X}}) = \sum_{c=1}^{2} \left[\left(u^{c} - \frac{(\mathbf{p}_{1}^{c})^{\top} \underline{\mathbf{X}}}{(\mathbf{p}_{3}^{c})^{\top} \underline{\mathbf{X}}} \right)^{2} + \left(v^{c} - \frac{(\mathbf{p}_{2}^{c})^{\top} \underline{\mathbf{X}}}{(\mathbf{p}_{3}^{c})^{\top} \underline{\mathbf{X}}} \right)^{2} \right]$$

- algebraic error zero ⇔ reprojection error zero
- epipolar constraint satisfied ⇒ equivalent results
- in general: minimizing algebraic error is cheap but it gives inferior results
- minimizing reprojection error is expensive but it gives good results
- the midpoint of the common perpendicular to both optical rays gives about 50% greater error in 3D
- ullet the golden standard method deferred to ightarrow 104

- forward camera motion
- ullet error f/50 in image 2, orthogonal to epipolar plane

 X_T – noiseless ground truth position X_r – reprojection error minimizer

 X_a - algebraic error minimizer m - measurement (m_T with noise in v^2)

$$C_2$$
 m_r
 m_g
 m_g
 m_g

►We Have Added to The ZOO

continuation from \rightarrow 68

problem	given	unknown	slide
camera resection	6 world–img correspondences $\left\{(X_i,m_i) ight\}_{i=1}^6$	P	62
exterior orientation	${f K}$, 3 world–img correspondences $ig\{(X_i,m_i)ig\}_{i=1}^3$	R, t	66
relative orientation	3 world-world correspondences $\left\{(X_i,Y_i) ight\}_{i=1}^3$	R, t	69
fundamental matrix	7 img-img correspondences $ig\{(m_i,m_i')ig\}_{i=1}^7$	\mathbf{F}	83
relative orientation	$\left[\mathbf{K}, 5 \; img ext{-img} \; correspondences \; \left\{ (m_i, m_i') ight\}_{i=1}^5$	R, t	87
triangulation	${f P}_1$, ${f P}_2$, 1 img-img correspondence (m_i,m_i')	X	88

A bigger ZOO at http://cmp.felk.cvut.cz/minimal/

calibrated problems

- have fewer degenerate configurations
- can do with fewer points (good for geometry proposal generators \rightarrow 117)
- algebraic error optimization (SVD) makes sense in camera resection and triangulation only
- but it is not the best method; we will now focus on 'optimizing optimally'

Module V

Optimization for 3D Vision

- The Concept of Error for Epipolar Geometry
- Levenberg-Marquardt's Iterative Optimization
- 53The Correspondence Problem
- Optimization by Random Sampling

covered by

- [1] [H&Z] Secs: 11.4, 11.6, 4.7
- [2] Fischler, M.A. and Bolles, R.C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Communications of the ACM 24(6):381–395, 1981

additional references

P. D. Sampson. Fitting conic sections to 'very scattered' data: An iterative refinement of the Bookstein algorithm. *Computer Vision, Graphics, and Image Processing*, 18:97–108, 1982.

O. Chum, J. Matas, and J. Kittler. Locally optimized RANSAC. In *Proc DAGM*, LNCS 2781:236–243. Springer-Verlag, 2003.

O. Chum, T. Werner, and J. Matas. Epipolar geometry estimation via RANSAC benefits from the oriented epipolar constraint. In *Proc ICPR*, vol 1:112–115, 2004.

▶The Concept of Error for Epipolar Geometry

Background problems: (1) Given at least 8 matched points $x_i \leftrightarrow y_j$ in a general position, estimate the most 'likely' fundamental matrix \mathbf{F} ; (2) given \mathbf{F} triangulate 3D point from $x_i \leftrightarrow y_j$.

$$\mathbf{x}_i = (u_i^1, \, v_i^1), \quad \mathbf{y}_i = (u_i^2, \, v_i^2), \qquad i = 1, 2, \dots, k, \quad k \geq 8$$

- detected points (measurements) x_i , y_i
- we introduce matches $\mathbf{Z}_i = (u_i^1, v_i^1, u_i^2, v_i^2) \in \mathbb{R}^4$; $S = \left\{\mathbf{Z}_i\right\}_{i=1}^k$
- corrected points $\hat{\boldsymbol{x}}_i$, $\hat{\boldsymbol{y}}_i$; $\hat{\mathbf{Z}}_i = (\hat{u}_i^1, \hat{v}_i^1, \hat{u}_i^2, \hat{v}_i^2)$; $\hat{\boldsymbol{S}} = \{\hat{\mathbf{Z}}_i\}_{i=1}^k$ are correspondences
- correspondences satisfy the epipolar geometry exactly $\hat{\mathbf{y}}_i^{\mathsf{T}} \mathbf{F} \hat{\mathbf{x}}_i = 0$, $i = 1, \dots, k$
- small correction is more probable
- let $\mathbf{e}_{i}(\cdot)$ be the <u>'reprojection error'</u> (vector) per match i, $\mathbf{e}_{i}(x_{i}, y_{i} \mid \hat{x}_{i}, \hat{y}_{i}, \mathbf{F}) = \begin{bmatrix} \mathbf{x}_{i} \hat{\mathbf{x}}_{i} \\ \mathbf{y}_{i} \hat{\mathbf{y}}_{i} \end{bmatrix} = \mathbf{e}_{i}(\mathbf{Z}_{i} \mid \hat{\mathbf{Z}}_{i}, \mathbf{F}) = \mathbf{Z}_{i} \hat{\mathbf{Z}}_{i}(\mathbf{F})$ (15)
 - $\|\mathbf{e}_i(\cdot)\|^2 \stackrel{\text{def}}{=} \mathbf{e}_i^2(\cdot) = \|\mathbf{x}_i \hat{\mathbf{x}}_i\|^2 + \|\mathbf{y}_i \hat{\mathbf{y}}_i\|^2 = \|\mathbf{Z}_i \hat{\mathbf{Z}}_i(\mathbf{F})\|^2$

▶cont'd

• the total reprojection error (of all data) then is

$$L(S \mid \hat{\mathbf{S}}, \mathbf{F}) = \sum_{i=1}^{k} \mathbf{e}_i^2(x_i, y_i \mid \hat{\mathbf{x}}_i, \hat{\mathbf{y}}_i, \mathbf{F}) = \sum_{i=1}^{k} \mathbf{e}_i^2(\mathbf{Z}_i \mid \hat{\mathbf{Z}}_i, \mathbf{F})$$

• and the optimization problem is

$$(\hat{S}^*, \mathbf{F}^*) = \arg \min_{\substack{\mathbf{F} \\ \text{rank } \mathbf{F} = 2}} \min_{\substack{\hat{\mathbf{y}}_i^{\mathsf{T}} \mathbf{F} \hat{\mathbf{x}}_i = 0}} \sum_{i=1}^{\kappa} \mathbf{e}_i^2(x_i, y_i \mid \hat{x}_i, \hat{y}_i, \mathbf{F})$$
(16)

Three possible approaches

- they differ in how the correspondences \hat{x}_i , \hat{y}_i are obtained:
 - 1. direct optimization of reprojection error over all variables \hat{S} , **F**
 - 2. Sampson optimal correction = partial correction of \mathbf{Z}_i towards $\hat{\mathbf{Z}}_i$ used in an iterative minimization over \mathbf{F}
 - 3. removing \hat{x}_i , \hat{y}_i altogether = marginalization of $L(S, \hat{S} \mid \mathbf{F})$ over \hat{S} followed by minimization over \mathbf{F} not covered, the marginalization is difficult

 \rightarrow 97

Method 1: Reprojection Error Optimization

- we need to encode the constraints $\hat{\mathbf{y}}_{_i} \mathbf{F} \, \hat{\mathbf{x}}_{i} = 0$, $\mathrm{rank} \, \mathbf{F} = 2$
- idea: reconstruct 3D point via equivalent projection matrices and use reprojection error
- equivalent projection matrices are see [H&Z,Sec. 9.5] for complete characterization

$$\mathbf{P}_1 = \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix}, \quad \mathbf{P}_2 = \begin{bmatrix} \begin{bmatrix} \mathbf{e}_2 \end{bmatrix}_{\mathsf{X}} \mathbf{F} + \mathbf{e}_2 \mathbf{e}_1^{\mathsf{T}} & \mathbf{e}_2 \end{bmatrix}$$
(17)

The part the left and right nullspace basis vectors of \mathbf{F} (i.e. the eninoles) verify that \mathbf{F} is

- \circledast H3; 2pt: Assuming e_1 , e_2 are the left and right nullspace basis vectors of F (i.e. the epipoles), verify that F is a fundamental matrix of P_1 , P_2 . Hint: A is skew symmetric iff $\mathbf{x}^{\top} A \mathbf{x} = 0$ for all vectors \mathbf{x} .
 - 1. compute $\mathbf{F}^{(0)}$ by the 7-point algorithm $\rightarrow 83$; construct camera $\mathbf{P}_2^{(0)}$ from $\mathbf{F}^{(0)}$ using (17)
 - 2. triangulate 3D points $\hat{\mathbf{X}}_i^{(0)}$ from matches (x_i, y_i) for all $i = 1, \dots, k$
 - 3. starting from $\mathbf{P}_2^{(0)}$, $\hat{\mathbf{X}}^{(0)}$ minimize the reprojection error (15)

$$(\hat{\mathbf{X}}^*, \mathbf{P}_2^*) = \arg\min_{\mathbf{P}_2, \hat{\mathbf{X}}} \sum_{i=1}^k \mathbf{e}_i^2(\mathbf{Z}_i \mid \hat{\mathbf{Z}}_i(\hat{\mathbf{X}}_i, \mathbf{P}_2))$$

where

$$\hat{\mathbf{Z}}_i = (\hat{\mathbf{x}}_i, \hat{\mathbf{y}}_i)$$
 (Cartesian), $\hat{\mathbf{x}}_i \simeq \mathbf{P}_1 \hat{\mathbf{X}}_i$, $\hat{\mathbf{y}}_i \simeq \mathbf{P}_2 \hat{\mathbf{X}}_i$ (homogeneous)

Non-linear, non-convex problem

- 4. compute \mathbf{F} from \mathbf{P}_1 , \mathbf{P}_2^*
 - 3k+12 parameters to be found: latent: $\hat{\mathbf{X}}_i$, for all i (correspondences!), non-latent: \mathbf{P}_2
- minimal representation: 3k + 7 parameters, $\mathbf{P_2} = \mathbf{P_2}(\mathbf{F})$
- there are pitfalls; this is essentially bundle adjustment; we will return to this later \rightarrow 136

 \rightarrow 88

 \rightarrow 145

► Method 2: First-Order Error Approximation

An elegant method for solving problems like (16):

- ullet we will get rid of the latent parameters \hat{X} needed for obtaining the correction [H&Z, p. 287], [Sampson 1982]
- we will recycle the algebraic error $\boldsymbol{\varepsilon} = \mathbf{y}^{\top} \mathbf{F} \, \mathbf{x} \, \text{from} \, \rightarrow \! 83$

$$\operatorname{ror}_{\mathbf{e}_{i}} = \|\mathbf{Z}_{i} - \hat{\mathbf{Z}}_{i}\|^{2}$$

- consider matches \mathbf{Z}_i , correspondences $\hat{\mathbf{Z}}_i$, and reprojection error $\mathbf{e}_i = \langle \! | \mathbf{Z}_i \hat{\mathbf{Z}}_i \rangle \! \rangle$ • correspondences satisfy $\hat{\mathbf{y}}_i^{\mathsf{T}} \mathbf{F} \hat{\mathbf{x}}_i = 0$, $\hat{\mathbf{x}}_i = (\hat{u}^1, \hat{v}^1, 1), \ \hat{\mathbf{y}}_i = (\hat{u}^2, \hat{v}^2, 1)$
- this is a manifold $\mathcal{V}_F \in \mathbb{R}^4$: a set of points $\hat{\mathbf{Z}} = (\hat{u}^1,\,\hat{v}^1,\,\hat{u}^2,\,\hat{v}^2)$ consistent with \mathbf{F}
- algebraic error vanishes for $\hat{\mathbf{Z}}_i$: $\mathbf{0} = \boldsymbol{\varepsilon}_i(\hat{\mathbf{Z}}_i) = \hat{\mathbf{y}}_i^{\mathsf{T}} \mathbf{F} \hat{\mathbf{x}}_i$

Sampson's idea: Linearize the algebraic error $\varepsilon(\mathbf{Z})$ at \mathbf{Z}_i (where it is non-zero) and evaluate the resulting linear function at $\hat{\mathbf{Z}}_i$ (where it is zero). The zero-crossing replaces \mathcal{V}_F by a linear manifold \mathcal{L} . The point on \mathcal{V}_F closest to \mathbf{Z}_i is replaced by the closest point on \mathcal{L} .

$$\boldsymbol{\varepsilon}_i(\hat{\mathbf{Z}}_i) \approx \boldsymbol{\varepsilon}_i(\mathbf{Z}_i) + \frac{\partial \boldsymbol{\varepsilon}_i(\mathbf{Z}_i)}{\partial \mathbf{Z}_i} (\hat{\mathbf{Z}}_i - \mathbf{Z}_i)$$

►Sampson's Approximation of Reprojection Error

ullet linearize $oldsymbol{arepsilon}(\mathbf{Z})$ at match \mathbf{Z}_i , evaluate it at correspondence $\hat{\mathbf{Z}}_i$

$$0 = \varepsilon_i(\hat{\mathbf{Z}}_i) \approx \varepsilon_i(\mathbf{Z}_i) + \underbrace{\frac{\partial \varepsilon_i(\mathbf{Z}_i)}{\partial \mathbf{Z}_i}}_{\mathbf{J}_i(\mathbf{Z}_i)} \underbrace{(\hat{\mathbf{Z}}_i - \mathbf{Z}_i)}_{\mathbf{e}_i(\hat{\mathbf{Z}}_i, \mathbf{Z}_i)} \stackrel{\text{def}}{=} \varepsilon_i(\mathbf{Z}_i) + \mathbf{J}_i(\mathbf{Z}_i) \, \mathbf{e}_i(\hat{\mathbf{Z}}_i, \mathbf{Z}_i)$$

- goal: compute $\underline{\text{function}}\ \mathbf{e}_i(\cdot)$ from $\varepsilon_i(\cdot)$, where $\mathbf{e}_i(\cdot)$ is the distance of $\mathbf{\hat{Z}}_i$ from \mathbf{Z}_i
- ullet we have a linear underconstrained equation for ${f e}_i(\cdot)$
- we look for a minimal $e_i(\cdot)$ per match i

$$\mathbf{e}_i(\cdot)^* = \arg\min_{\mathbf{e}_i(\cdot)} \|\mathbf{e}_i(\cdot)\|^2$$
 subject to $\boldsymbol{\varepsilon}_i(\cdot) + \mathbf{J}_i(\cdot) \, \mathbf{e}_i(\cdot) = 0$

$$\mathbf{e}_{i}^{*}(\cdot) = -\mathbf{J}_{i}^{\top}(\mathbf{J}_{i}\mathbf{J}_{i}^{\top})^{-1}\boldsymbol{\varepsilon}_{i}(\cdot)$$

$$\|\mathbf{e}_{i}^{*}(\cdot)\|^{2} = \boldsymbol{\varepsilon}_{i}^{\top}(\cdot)(\mathbf{J}_{i}\mathbf{J}_{i}^{\top})^{-1}\boldsymbol{\varepsilon}_{i}(\cdot)$$
(18)

- this maps $\varepsilon_i(\cdot)$ to an estimate of $\mathbf{e}_i(\cdot)$ per correspondence
- we often do not need \mathbf{e}_i , just $\|\mathbf{e}_i\|^2$ exception: triangulation $\rightarrow 104$
- the unknown parameters $\mathbf F$ are inside: $\mathbf e_i = \mathbf e_i(\mathbf F)$, $\boldsymbol \varepsilon_i = \boldsymbol \varepsilon_i(\mathbf F)$, $\mathbf J_i = \mathbf J_i(\mathbf F)$

▶Example: Fitting A Circle To Scattered Points

Problem: Fit a zero-centered circle \mathcal{C} to a set of 2D points $\{x_i\}_{i=1}^k$, $\mathcal{C}: \|\mathbf{x}\|^2 - r^2 = 0$.

- 1. consider radial error as the 'algebraic error' $\varepsilon(\mathbf{x}) = \|\mathbf{x}\|^2 r^2$ 'arbitrary' choice 2. linearize it at $\hat{\mathbf{x}}$ $\|\mathbf{x}\|^2 r^2$ we are dropping i in ε_i , \mathbf{e}_i etc for clarity

we are dropping
$$i$$
 in ε_i , \mathbf{e}_i etc for clarity
$$\varepsilon(\hat{\mathbf{x}}) \approx \varepsilon(\mathbf{x}) + \underbrace{\frac{\partial \varepsilon(\mathbf{x})}{\partial \mathbf{x}}}_{\mathbf{J}(\mathbf{x}) = 2\mathbf{x}^{\top}} \underbrace{(\hat{\mathbf{x}} - \mathbf{x})}_{\mathbf{e}(\hat{\mathbf{x}}, \mathbf{x})} = \cdots = 2\mathbf{x}^{\top} \hat{\mathbf{x}} - (r^2 + \|\mathbf{x}\|^2) \stackrel{\text{def}}{=} \varepsilon_L(\hat{\mathbf{x}}) = \mathcal{O}$$

- $\varepsilon_L(\hat{\mathbf{x}}) = 0$ is a line with normal $\frac{\mathbf{x}}{\|\mathbf{x}\|}$ and intercept $\frac{r^2 + \|\mathbf{x}\|^2}{2\|\mathbf{x}\|}$ not tangent to C, outside!
- 3. using (18), express error approximation e^* as

$$\|\mathbf{e}^*\|^2 = \boldsymbol{\varepsilon}^{ op} (\mathbf{J} \mathbf{J}^{ op})^{-1} \boldsymbol{\varepsilon} = \frac{(\|\mathbf{x}\|^2 - r^2)^2}{4\|\mathbf{x}\|^2}$$

4. fit circle

 \mathbf{x}_2

$$\varepsilon(\mathbf{x}) = 0$$
 this examp

 $\varepsilon_{L2}(\mathbf{x}) = 0$

this example results in a convex quadratic optimization problem

 $r^* = \arg\min_{r} \sum_{i=1}^{k} \frac{(\|\mathbf{x}_i\|^2 - r^2)^2}{4\|\mathbf{x}_i\|^2} = \dots = \left(\frac{1}{k} \sum_{i=1}^{k} \frac{1}{\|\mathbf{x}_i\|^2}\right)^{-\frac{1}{2}}$

- note that

$$\varepsilon_{L2}(\mathbf{x}) = 0 \qquad \arg\min_{r} \sum_{i=1}^{k} (\|\mathbf{x}_i\|^2 - r^2)^2 = \left(\frac{1}{k} \sum_{i=1}^{k} \|\mathbf{x}_i\|^2\right)^{\frac{1}{2}}$$
3D Computer Vision: V. Optimization for 3D Vision (p. 100/189) 290 R. Šára, CMP; rev. 5-Nov-2019

Circle Fitting: Some Results

medium isotropic noise

big radial noise

big isotropic noise

opt: 1.8, Smp: 1.9, dir: 2.3

1.8, 2.0, 2.2

1.6, 1.8, 2.6

1.6, 2.0, 2.4 mean ranks over 10 000 random trials with k = 32 samples

algebrai c green - ground truth

red - Sampson error minimizer blue - direct radial error minimizer

black - optimal estimator for isotropic error

 $r \approx \frac{3}{4k} \sum_{i=1}^{k} \|\mathbf{x}_i\| + \sqrt{\left(\frac{3}{4k} \sum_{i=1}^{k} \|\mathbf{x}_i\|\right)^2 - \frac{1}{2k} \sum_{i=1}^{k} \|\mathbf{x}_i\|^2}$

optimal estimator for isotropic error (black, dashed):

which method is better?

- error should model noise, radial noise and isotropic noise behave differently
- ground truth: Normally distributed isotropic error, Gamma-distributed radial error
- Sampson: better for the radial distribution model; Direct: better for the isotropic model
- no matter how corrected, the algebraic error minimizer is not an unbiased parameter estimator Cramér-Rao bound tells us how close one can get with unbiased estimator and given k

► Sampson Error for Fundamental Matrix Manifold

The epipolar algebraic error is

$$\varepsilon_i(\mathbf{F}) = \mathbf{y}_i^{\mathsf{T}} \mathbf{F} \, \mathbf{x}_i, \quad \mathbf{x}_i = (u_i^1, v_i^1), \quad \mathbf{y}_i = (u_i^2, v_i^2), \qquad \varepsilon_i \in \mathbb{R}$$

$$\mathsf{Let}\ \mathbf{F} = \begin{bmatrix} \mathbf{F_1} & \mathbf{F_2} & \mathbf{F_3} \end{bmatrix} \ (\mathsf{per}\ \mathsf{columns}) = \begin{bmatrix} (\mathbf{F^1})^\top \\ (\mathbf{F^2})^\top \\ (\mathbf{F^3})^\top \end{bmatrix} \ (\mathsf{per}\ \mathsf{rows}), \quad \mathbf{S} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \ \mathsf{then}$$

Sampson

$$\begin{aligned} \mathbf{J}_i(\mathbf{F}) &= \begin{bmatrix} \partial \varepsilon_i(\mathbf{F}) \\ \partial u_i^1 \end{bmatrix}, \, \frac{\partial \varepsilon_i(\mathbf{F})}{\partial v_i^1}, \, \frac{\partial \varepsilon_i(\mathbf{F})}{\partial u_i^2}, \, \frac{\partial \varepsilon_i(\mathbf{F})}{\partial v_i^2} \end{bmatrix} \qquad \qquad \mathbf{J}_i \in \mathbb{R}^{1,4} \qquad \text{derivatives over point coordinates} \\ &= \begin{bmatrix} (\mathbf{F}_1)^\top \underline{\mathbf{y}}_i, \, (\mathbf{F}_2)^\top \underline{\mathbf{y}}_i, \, (\mathbf{F}^1)^\top \underline{\mathbf{x}}_i, \, (\mathbf{F}^2)^\top \underline{\mathbf{x}}_i \end{bmatrix} = \begin{bmatrix} \mathbf{S}\mathbf{F}^\top \underline{\mathbf{y}}_i \\ \mathbf{S}\mathbf{F}\mathbf{x}_i \end{bmatrix}^\top \end{aligned}$$

$$\mathbf{e}_i(\mathbf{F}) = -\frac{\mathbf{J}_i(\mathbf{F})\,\varepsilon_i(\mathbf{F})}{\|\mathbf{J}_i(\mathbf{F})\|^2}$$

$$e_i(\mathbf{F}) \stackrel{\mathrm{def}}{=} \|\mathbf{e}_i(\mathbf{F})\| = \frac{\mathbf{\underline{y}}_i^\top \mathbf{F} \underline{\mathbf{x}}_i}{\|\mathbf{J}_i(\mathbf{F})\|} = \frac{\underline{\mathbf{y}}_i^\top \mathbf{F} \underline{\mathbf{x}}_i}{\sqrt{\|\mathbf{S} \mathbf{F} \underline{\mathbf{x}}_i\|^2 + \|\mathbf{S} \mathbf{F}^\top \underline{\mathbf{y}}_i\|^2}} \qquad e_i(\mathbf{F}) \in \mathbb{R} \qquad \underset{\mathsf{Sampson error}}{\mathsf{scalar}}$$

- Sampson error 'normalizes' the algebraic error
- automatically copes with multiplicative factors $\mathbf{F} \mapsto \lambda \mathbf{F}$

 $\mathbf{e}_i(\mathbf{F}) \in \mathbb{R}^4$

Sampson error

vector

