A Summary of Our Observations and an Outlook

1．simple matching algorithms do not work
2．stereopsis requires image interpretation in sufficiently complex scenes

```
we have a tradeoff: model strength }\leftrightarrow\mathrm{ universality
```


Outlook：

1．represent the occlusion constraint：correspondences are not independent due to occlusions
－epipolar rectification
－disparity
－uniqueness as an occlusion constraint
2．represent piecewise continuity the weakest of interpretations；piecewise：object boundaries
－ordering as a weak continuity model
3．use a consistent framework
－looking for the most probable solution（MAP）

-Linear Epipolar Rectification for Easier Correspondence Search

Obs:

- if we map epipoles to infinity, epipolar lines become parallel
- we then rotate them to become horizontal
- we then scale the images to make correspoding epipolar lines colinear
- this can be achieved by a pair of homographies applied to the images

Problem: Given fundamental matrix \mathbf{F} or camera matrices $\mathbf{P}_{1}, \mathbf{P}_{2}$, compute a pair of homographies that maps epipolar lines to horizontal with the same row coordinate.

Procedure:

1. find a pair of rectification homographies \mathbf{H}_{1} and \mathbf{H}_{2}.
2. warp images using \mathbf{H}_{1} and \mathbf{H}_{2} and transform the fundamental matrix $\mathbf{F} \mapsto \mathbf{H}_{2}^{-\top} \mathbf{F} \mathbf{H}_{1}^{-1}$ or the cameras $\mathbf{P}_{1} \mapsto \mathbf{H}_{1} \mathbf{P}_{1}, \quad \mathbf{P}_{2} \mapsto \mathbf{H}_{2} \mathbf{P}_{2}$.

- Rectification Homographies

Assumption: Cameras $\left(\mathbf{P}_{1}, \mathbf{P}_{2}\right)$ are rectified by a homography pair $\left(\mathbf{H}_{1}, \mathbf{H}_{2}\right)$:

$$
\mathbf{P}_{i}^{*}=\mathbf{H}_{i} \mathbf{P}_{i}=\mathbf{H}_{i} \mathbf{K}_{i} \mathbf{R}_{i}\left[\begin{array}{ll}
\mathbf{I} & -\mathbf{C}_{i}
\end{array}\right], \quad i=1,2
$$

rectified entities: $\mathbf{F}^{*}, \varrho_{2}^{*}, \stackrel{l}{1}_{*}^{*}$, etc:

- the rectified location difference $d=u_{1}^{*}-u_{2}^{*}$ is called disparity corresponding epipolar lines must be:

1. parallel to image rows \Rightarrow epipoles become $e_{1}^{*}=e_{2}^{*}=(1,0,0)$
2. equivalent $l_{2}^{*}=l_{1}^{*} \Rightarrow$ (a) $\underline{l}_{2}^{*} \simeq \underline{l}_{1}^{*} \simeq \underline{\mathbf{e}}_{1}^{*} \times \underline{\mathbf{m}}_{1}=\left[\underline{\mathbf{e}}_{1}^{*}\right]_{\times} \underline{\mathbf{m}}_{1}$, (b) $\underline{l}_{2}^{*} \simeq \mathbf{F}^{*} \underline{\mathbf{m}}_{1}$

- therefore the canonical fundamental matrix is

$$
\mathbf{F}^{*} \simeq\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right]
$$

A two-step rectification procedure

1. find some pair of primitive rectification homographies $\hat{\mathbf{H}}_{1}, \hat{\mathbf{H}}_{2}$
2. upgrade to a pair of optimal rectification homographies while preserving \mathbf{F}^{*}

Geometric Interpretation of Linear Rectification

What pair of physical cameras is compatible with \mathbf{F}^{*} ?

- we know that $\mathbf{F}=\left(\mathbf{Q}_{1} \mathbf{Q}_{2}^{-1}\right)^{\top}\left[\mathbf{e}_{1}\right]_{\times}$
- we choose $\mathbf{Q}_{1}^{*}=\mathbf{K}_{1}^{*}, \mathbf{Q}_{2}^{*}=\mathbf{K}_{2}^{*} \mathbf{R}^{*}$; then

$$
\left(\mathbf{Q}_{1}^{*} \mathbf{Q}_{2}^{*-1}\right)^{\top}\left[\underline{\mathbf{e}}_{1}^{*}\right]_{\times}=\left(\mathbf{K}_{1}^{*} \mathbf{R}^{* \top} \mathbf{K}_{2}^{*-1}\right)^{\top} \mathbf{F}^{*}
$$

- we look for $\mathbf{R}^{*}, \mathbf{K}_{1}^{*}, \mathbf{K}_{2}^{*}$ compatible with

$$
\left(\mathbf{K}_{1}^{*} \mathbf{R}^{* \top} \mathbf{K}_{2}^{*-1}\right)^{\top} \mathbf{F}^{*}=\lambda \mathbf{F}^{*}, \quad \mathbf{R}^{*} \mathbf{R}^{* \top}=\mathbf{I}, \quad \mathbf{K}_{1}^{*}, \mathbf{K}_{2}^{*} \text { upper triangular }
$$

- we also want \mathbf{b}^{*} from $\underline{\mathbf{e}}_{1}^{*} \simeq \mathbf{P}_{1}^{*} \underline{\mathbf{C}}_{2}^{*}=\mathbf{K}_{1}^{*} \mathbf{b}^{*}$
b^{*} in cam. 1 frame
- result:

$$
\mathbf{R}^{*}=\mathbf{I}, \quad \mathbf{b}^{*}=\left[\begin{array}{l}
b \tag{33}\\
0 \\
0
\end{array}\right], \quad \mathbf{K}_{1}^{*}=\left[\begin{array}{ccc}
k_{11} & k_{12} & k_{13} \\
0 & f & v_{0} \\
0 & 0 & 1
\end{array}\right], \quad \mathbf{K}_{2}^{*}=\left[\begin{array}{ccc}
k_{21} & k_{22} & k_{23} \\
0 & f & v_{0} \\
0 & 0 & 1
\end{array}\right]
$$

- rectified cameras are in canonical relative pose
- rectified calibration matrices can differ in the first row only
- when $\mathbf{K}_{1}^{*}=\mathbf{K}_{2}^{*}$ then the rectified pair is called the standard stereo pair and the homographies standard rectification homographies
- standard rectification homographies: points at infinity have zero disparity

$$
\mathbf{P}_{i}^{*} \underline{\mathbf{X}}_{\infty}=\mathbf{K}\left[\begin{array}{ll}
\mathbf{I} & -\mathbf{C}_{i}
\end{array}\right] \underline{\mathbf{X}}_{\infty}=\mathbf{K} \mathbf{X}_{\infty} \quad i=1,2
$$

- this does not mean that the images are not distorted after rectification

-Primitive Rectification

Goal: Given fundamental matrix \mathbf{F}, derive some simple rectification homographies $\mathbf{H}_{1}, \mathbf{H}_{2}$

1. Let the SVD of \mathbf{F} be $\mathbf{U D V}^{\top}=\mathbf{F}$, where $\mathbf{D}=\operatorname{diag}\left(1, d^{2}, 0\right), \quad 1 \geq d^{2}>0$
2. Write \mathbf{D} as $\mathbf{D}=\mathbf{A}^{\top} \mathbf{F}^{*} \mathbf{B}$ for some regular \mathbf{A}, \mathbf{B}. For instance $\quad\left(\mathbf{F}^{*}\right.$ is given $\left.\rightarrow 152\right)$

$$
\mathbf{A}=\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & -d & 0 \\
1 & 0 & 0
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & d & 0
\end{array}\right]
$$

3. Then

$$
\mathbf{F}=\mathbf{U D V}^{\top}=\underbrace{\mathbf{U A}^{\top}}_{\hat{\mathbf{H}}_{2}^{\top}} \mathbf{F}^{*} \underbrace{\mathbf{B V}^{\top}}_{\hat{\mathbf{H}}_{1}}
$$

and the primitive rectification homographies are

$$
\hat{\mathbf{H}}_{2}=\mathbf{A} \mathbf{U}^{\top}, \quad \hat{\mathbf{H}}_{1}=\mathbf{B V} \mathbf{V}^{\dagger}
$$

\circledast P1; 1pt: derive some other admissible \mathbf{A}, \mathbf{B}

- rectification homographies do exist $\rightarrow 152$
- there are other primitive rectification homographies, these suggested are just simple to obtain

- The Degrees of Freedom in Epipolar Rectification

Proposition 1 Homographies \mathbf{A}_{1} and \mathbf{A}_{2} are rectification-preserving if the images stay rectified, i.e. if $\mathbf{A}_{2}^{-\top} \mathbf{F}^{*} \mathbf{A}_{1}^{-1} \simeq \mathbf{F}^{*}$, which gives

$$
\mathbf{A}_{1}=\left[\begin{array}{ccc}
l_{1} & l_{2} & l_{3} \\
0 & s_{v} & t_{v} \\
0 & q & 1
\end{array}\right], \quad \mathbf{A}_{2}=\left[\begin{array}{ccc}
r_{1} & r_{2} & r_{3} \\
0 & s_{v} & t_{v} \\
0 & q & 1
\end{array}\right]
$$

where $s_{v} \neq 0, t_{v}, l_{1} \neq 0, l_{2}, l_{3}, r_{1} \neq 0, r_{2}, r_{3}, q$ are 9 free parameters.

general	transformation		standard
l_{1}, r_{1}	horizontal scales		
l_{2}, r_{2}	horizontal shears		
$l_{3}, r_{3}=r_{1}$			
q	horizontal shifts		
$l_{2}=r_{2}$			
$l_{3}=r_{3}$			

- q is rotation about the baseline
- s_{v} changes the focal length
proof: find a rotation \mathbf{G} that brings \mathbf{K} to upper triangular form via $R Q$ decomposition: $\mathbf{A}_{1} \mathbf{K}_{1}^{*}=\hat{\mathbf{K}}_{1} \mathbf{G}$ and $\mathbf{A}_{2} \mathbf{K}_{2}^{*}=\hat{\mathbf{K}}_{2} \mathbf{G}$

The Rectification Group

Corollary for Proposition 1 Let $\overline{\mathbf{H}}_{1}$ and $\overline{\mathbf{H}}_{2}$ be (primitive or other) rectification homographies. Then $\mathbf{H}_{1}=\mathbf{A}_{1} \overline{\mathbf{H}}_{1}, \quad \mathbf{H}_{2}=\mathbf{A}_{2} \overline{\mathbf{H}}_{2}$ are also rectification homographies.

Proposition 2 Pairs of rectification-preserving homographies $\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right)$ form a group with group operation $\left(\mathbf{A}_{1}^{\prime}, \mathbf{A}_{2}^{\prime}\right) \circ\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right)=\left(\mathbf{A}_{1}^{\prime} \mathbf{A}_{1}, \mathbf{A}_{2}^{\prime} \mathbf{A}_{2}\right)$.
Proof:

- closure by Proposition 1
- associativity by matrix multiplication
- identity belongs to the set
- inverse element belongs to the set by $\mathbf{A}_{2}^{\top} \mathbf{F}^{*} \mathbf{A}_{1} \simeq \mathbf{F}^{*} \Leftrightarrow \mathbf{F}^{*} \simeq \mathbf{A}_{2}^{-\top} \mathbf{F}^{*} \mathbf{A}_{1}^{-1}$

-Primitive Rectification Suffices for Calibrated Cameras

Obs: calibrated cameras: $d=1 \Rightarrow \hat{\mathbf{H}}_{1}, \hat{\mathbf{H}}_{2}$ are orthogonal

1. determine primitive rectification homographies $\left(\hat{\mathbf{H}}_{1}, \hat{\mathbf{H}}_{2}\right)$ from the essential matrix
2. choose a suitable common calibration matrix \mathbf{K}, e.g.

$$
\mathbf{K}=\left[\begin{array}{ccc}
f & 0 & u_{0} \\
0 & f & v_{0} \\
0 & 0 & 1
\end{array}\right], \quad f=\frac{1}{2}\left(f^{1}+f^{2}\right), \quad u_{0}=\frac{1}{2}\left(u_{0}^{1}+u_{0}^{2}\right), \quad \text { etc. }
$$

3. the final rectification homographies applied as $\mathbf{P}_{i} \mapsto \mathbf{H}_{i} \mathbf{P}_{i}$ are

$$
\mathbf{H}_{1}=\mathbf{K} \hat{\mathbf{H}}_{1} \mathbf{K}_{1}^{-1}, \quad \mathbf{H}_{2}=\mathbf{K} \hat{\mathbf{H}}_{2} \mathbf{K}_{2}^{-1}
$$

- we got a standard stereo pair ($\rightarrow 153$) and non-negative disparity let $\mathbf{K}_{i}^{-1} \mathbf{P}_{i}=\mathbf{R}_{i}\left[\begin{array}{ll}\mathbf{I} & -\mathbf{C}_{i}\end{array}\right], \quad i=1,2 \quad$ note we started from \mathbf{E}, not \mathbf{F}

$$
\begin{aligned}
& \mathbf{H}_{1} \mathbf{P}_{1}=\mathbf{K} \hat{\mathbf{H}}_{1} \mathbf{K}_{1}^{-1} \mathbf{P}_{1}=\mathbf{K}_{\mathbf{R}^{*}}^{\mathbf{B V}^{\top} \mathbf{R}_{1}}\left[\begin{array}{ll}
\mathbf{I} & -\mathbf{C}_{1}
\end{array}\right]=\mathbf{K R}^{*}\left[\begin{array}{ll}
\mathbf{I} & -\mathbf{C}_{1}
\end{array}\right] \\
& \mathbf{H}_{2} \mathbf{P}_{2}=\mathbf{K} \hat{\mathbf{H}}_{2} \mathbf{K}_{2}^{-1} \mathbf{P}_{2}=\underbrace{\mathbf{A U}^{\top} \mathbf{R}_{2}}_{\mathbf{R}^{*}}\left[\begin{array}{ll}
\mathbf{I} & -\mathbf{C}_{2}
\end{array}\right]=\mathbf{K R}^{*}\left[\begin{array}{ll}
\mathbf{I} & -\mathbf{C}_{2}
\end{array}\right]
\end{aligned}
$$

- one can prove that $\mathbf{B} \mathbf{V}^{\top} \mathbf{R}_{1}=\mathbf{A} \mathbf{U}^{\top} \mathbf{R}_{2}$ with the help of essential matrix decomposition (13)
- points at infinity project to $\mathbf{K} \mathbf{R}^{*}$ in both images \Rightarrow they have zero disparity

-Summary \& Remarks: Linear Rectification

- rectification is done with a pair of homographies (one per image)
\Rightarrow rectified camera centers are equal to the original ones
- binocular rectification: a 9-parameter family of rectification homographies
- trinocular rectification: has 9 or 6 free parameters (depending on additional constrains)
- in general, linear rectification is not possible for more than three cameras
- rectified cameras are in canonical orientation
\Rightarrow rectified image projection planes are coplanar
- equal rectified calibration matrices give standard rectification
\Rightarrow rectified image projection planes are equal
- primitive rectification is standard in calibrated cameras
standard rectification homographies reproject onto a common image plane parallel to the baseline

Corollary

- standard rectified pair: disparity vanishes when corresponding 3D points are at infinity
- known F used alone gives no constraints on standard rectification homographies
- for that we need either of these:

1. projection matrices, or calibrated cameras, or
2. a few points at infinity calibrating $k_{1 i}, k_{2 i}, i=1,2,3$ in (33)

Optimal and Non-linear Rectification

Optimal choice for the free parameters

- by minimization of residual image distortion, eg. [Gluckman \& Nayar 2001]

$$
\mathbf{A}_{1}^{*}=\arg \min _{\mathbf{A}_{1}} \iint_{\Omega}\left(\operatorname{det} J\left(\mathbf{A}_{1} \hat{\mathbf{H}}_{1} \underline{\mathbf{x}}\right)-1\right)^{2} d \mathbf{x}
$$

- by minimization of image information loss [Matoušek, ICIG 2004]
- non-linear rectification suitable for forward motion non-parametric: [Pollefeys et al. 1999] analytic: [Geyer \& Daniilidis 2003]

－Binocular Disparity in Standard Stereo Pair

－Assumptions：single image line，standard camera pair

$$
\begin{aligned}
b & =z \cot \alpha_{1}-z \cot \alpha_{2} \\
u_{1} & =f \cot \alpha_{1} \\
b & =\frac{b}{2}+x-z \cot \alpha_{2}
\end{aligned}
$$

$X=(x, z)$ from disparity $d=u_{1}-u_{2}:$

$$
z=\frac{b f}{d}, \quad x=\frac{b}{d} \frac{u_{1}+u_{2}}{2}, \quad y=\frac{b v}{d}
$$

f, d, u, v in pixels，b, x, y, z in meters

Observations

－constant disparity surface is a frontoparallel plane
－distant points have small disparity
－relative error in z is large for small disparity

$$
\frac{1}{z} \frac{d z}{d d}=-\frac{1}{d}
$$

－increasing the baseline or the focal length increases disparity and reduces the error

Structural Ambiguity in Stereovision

- we can recognize matches but have no scene model
- lack of an occlusion model structural ambiguity in the presence of
- lack of a continuity model

$$
\Rightarrow \quad \text { repetitions (or lack of texture) }
$$

left image

interpretation 1

right image

interpretation 2

Understanding Basic Occlusion Types

- surface point at the intersection of rays l and r_{1} occludes a world point at the intersection $\left(l, r_{3}\right)$ and implies the world point $\left(l, r_{2}\right)$ is transparent, therefore

$$
\left(l, r_{3}\right) \text { and }\left(l, r_{2}\right) \text { are excluded by }\left(l, r_{1}\right)
$$

- in half-occlusion, every world point such as X_{1} or X_{2} is excluded by a binocularly visible surface point such as $Y_{1}, Y_{2}, Y_{3} \quad \Rightarrow$ decisions on correspondences are not independent
- in mutual occlusion this is no longer the case: any X in the yellow zone is not excluded
\Rightarrow decisions in the zone are independent on the rest

Thank You

