
COMPUTATIONAL GEOMETRY
INTRODUCTION

PETR FELKEL
FEL CTU PRAGUE

felkel@fel.cvut.cz

https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start

Based on [Berg] and [Kolingerova]

Version from 30.9.2014

Felkel: Computational geometry

(2)

Computational Geometry

1. What is Computational Geometry (CG)?

2. Why to study CG and how?

3. Typical application domains

4. Typical tasks

5. Complexity of algorithms

6. Programming techniques (paradigms) of CG

7. Robustness Issues

8. CGAL – CG algorithm library intro

9. References and resources

10. Course summary

Felkel: Computational geometry

(3)

1. What is Computational Geometry?

� CG Solves geometric problems that require clever

geometric algorithms

� Ex 1: Where is the nearest phone, metro, pub,…?

Ex 2: How to get there?

[Berg]

Felkel: Computational geometry

(4)

1.1 What is Computational Geometry? (…)

� Ex 3: Map overlay

Copyright: http://webhelp.esri.com/arcgisdesktop

Felkel: Computational geometry

(5)

1.2 What is Computational Geometry? (…)

� Good solutions need both:

– Understanding of the

geometric properties of the problem

– Proper applications of

algorithmic techniques (paradigms) and data structures

Felkel: Computational geometry

(6)

1.3 What is Computational Geometry? (…)

� Computational geometry
= systematic study of algorithms and data structures for

geometric objects (points, lines, line segments, n-gons,…)

with focus on exact algorithms that are asymptotically fast

– “Born” in 1975 (Shamos), boom of papers in 90s

(first papers sooner: 1850 Dirichlet, 1908 Voronoi,…)

– Many problems can be formulated geometrically

(e.g., range queries in databases)

Felkel: Computational geometry

(7)

1.4 What is Computational Geometry? (…)

� Problems:

– Degenerate cases (points on line, with same x,…)
• Ignore them first, include later

– Robustness - correct algorithm but not robust
• Limited numerical precision of real arithmetic

• Inconsistent eps tests (a=b, b=c, but a ≠ c)

� Nowadays:

– focus on practical implementations, not just on

asymptotically fastest algorithms

– nearly correct result is better than nonsense or crash

?

2. Why to study computational geometry?

� Graphics- and Vision- Engineer should know it

(„DSA in nth-Dimension“)

� Set of ready to use tools

� You will know new approaches to choose from

Felkel: Computational geometry

(8)

2.1 How to teach computational geometry?

� Typical “mathematician” method:
– definition-theorem-proof

� Our “practical” approach:
– practical algorithms and their complexity

– practical programing using a geometric library

� Is it OK for you?

Felkel: Computational geometry

(9)

Felkel: Computational geometry

(10)

3. Typical application domains

� Computer graphics

– Collisions of objects

– Mouse localization

– Selection of objects in region

– Visibility in 3D (hidden surface removal)

– Computation of shadows

� Robotics

– Motion planning (find path - environment with obstacles)

– Task planning (motion + planning order of subtasks)

– Design of robots and working cells

[Berg]

[Farag]

Felkel: Computational geometry

(11)

� GIS
– How to store huge data

and search them quickly

– Interpolation of heights

– Overlap of different data
• Extract information about regions or relations between data

(pipes under the construction site, plants x average rainfall,…)

• Detect bridges on crossings of roads and rivers…

� CAD/CAM
– Intersections and unions of objects

– Visualization and tests without need to build a prototype

– Manufacturability

3.1 Typical application domains (…)

[Berg]

Felkel: Computational geometry

(12)

3.2 Typical application domains (…)

� Other domains

– Molecular modeling

– DB search

– IC design

[Berg]

[Berg]
[Berg]

Felkel: Computational geometry

(13)

4. Typical tasks in CG

� Geometric searching - fast location of :

The nearest neighbor Points in given range
(range query)

Felkel: Computational geometry

(14)

4.1 Typical tasks in CG

� Convex hull

= smallest enclosing convex polygon in E2 or

n-gon in E3 containing all the points

Convex Hull CH(V)

V – set of points

Felkel: Computational geometry

(15)

4.2 Typical tasks in CG

� Voronoi diagrams

– Space (plane) partitioning into regions whose points are

nearest to the given primitive (most usually a point)

Felkel: Computational geometry

(16)

4.3 Typical tasks in CG

� Planar triangulations and space tetrahedronization

of given point set

[Maur]

Felkel: Computational geometry

(17)

4.4 Typical tasks in CG

� Intersection of objects

– Detection of common parts of objects

– Usually linear (line segments, polygons, n-gons,…)

a

b

c

Felkel: Computational geometry

(18)

4.5 Typical tasks in CG

� Motion planning

– Search for the shortest path between two points in the

environment with obstacles

[Berg]

Felkel: Computational geometry

(19)

5. Complexity of algorithms and data struc.

� We need a measure for comparison of algorithms

– Independent on computer HW and prog. language

– Dependent on the problem size n

– Describing the behavior of the algorithm for different data

� Running time, preprocessing time, memory size

– Asymptotical analysis – O(g(n)), W(g(n)), Q(g(n))

– Measurement on real data

� Differentiate:

– complexity of the algorithm (particular sort) and

– complexity of the problem (sorting)
– given by number of edges, vertices, faces,…
– equal to the complexity of the best algorithm

Felkel: Computational geometry

(20)

5.1 Complexity of algorithms

� Worst case behavior

– Running time for the “worst” data

� Expected behavior (average)

– expectation of the running time for problems of particular

size and probability distribution of input data

– Valid only if the probability distribution is the same as

expected during the analysis

– Typically much smaller than the worst case behavior

– Ex.: Quick sort O(n2) worst and O(n logn) expected

Felkel: Computational geometry

(22)

6. Programming techniques (paradigms) of CG

� 3 phases of a geometric algorithm development

1. Ignore all degeneracies and design an algorithm

2. Adjust the algorithm to be correct for degenerate cases
– Degenerate input exists

– Integrate special cases in general case

– It is better than lot of case-switches (typical for beginners)

– e.g.:

lexicographic order for points on vertical lines

or Symbolic perturbation schemes

3. Implement alg. 2 (use sw library)

Felkel: Computational geometry

(23)

6.1 Sorting

� A preprocessing step

� Simplifies the following processing steps

� Sort according to:

– coordinates x, y,…, or lexicographically to [y,x],

– angles around point

� O(n logn) time and O(n) space

Felkel: Computational geometry

(24)

6.2 Divide and Conquer (divide et impera)

� Split the problem until it is solvable, merge results

� Prerequisite

– The input data set must be separable

– Solutions of subsets are independent

– The result can be obtained by merging of sub-results

DivideAndConquer(S)

1. If known solution then return it

2. else

3. Split input S to k distinct subsets Si
4. Foreach i call DivideAndConquer(Si)

5. Merge the results and return the solution

Felkel: Computational geometry

(25)

6.3 Sweep algorithm

� Split the space by a hyperplane (2D: sweep line)
– “Left” subspace – solution known

– “Right” subspace – solution unknown

� Stop in event points and update the status

� Data structures:
– Event points – points, where to stop the sweep line

and update the status, sorted

– Status – state of the algorithm in the current position of
the sweep line

� Prerequisite:
– Left subspace does not influence the right subspace

Felkel: Computational geometry

(26)

6.3b Sweep-line algorithm

Event points

a

b

c

Status: {a}, {a,b}, {c,a,b}, {c,b,a},…

Felkel: Computational geometry

(27)

6.4 Prune and search

� Eliminate parts of the state space, where the

solution clearly does not exist

– Binary search

– Search trees

– Back-tracking (stop if solution worse than current

optimum)

< >

prune

Felkel: Computational geometry

(28)

6.5 Locus approach

� Subdivide the search space into regions of

constant answer

� Use point location to determine the region

– Nearest neighbor search example

Region of the
constant answer:
All points in this
region are nearest
to the yellow point

Felkel: Computational geometry

(29)

6.6 Dualisation

� Use geometry transform to change the problem

into another that can be solved more easily

� Points ↔ hyper planes

– Preservation of incidence (A œ p fl p*œ A*)

� Ex. 2D: determine if 3 points lie on a common line

p

A*

B

B*
A

p*

↔

C

C*

Felkel: Computational geometry

(30)

6.7 Combinatorial analysis

= The branch of mathematics which studies the

number of different ways of arranging things

� Ex. How many subdivisions of a point set can be

done by one line?

Felkel: Computational geometry

(31)

6.8 New trends in Computational geometry

� From 2D to 3D and more from mid 80s, from linear
to curved objects

� Focus on line segments, triangles in E3 and hyper
planes in Ed

� Strong influence of combinatorial geometry

� Randomized algorithms

� Space effective algorithms (in place, in situ, data
stream algs.)

� Robust algorithms and handling of singularities

� Practical implementation in libraries (LEDA, CGAL,

� …

7. Robustness issues

� Geometry in theory is exact

� Geometry with floating-point arithmetic is not exact
– Limited numerical precision of real arithmetic

– Numbers are rounded to nearest possible representation

– Inconsistent epsilon tests (a=b, b=c, but a∫c)

� Naïve use of floating point arithmetic causes

geometric algorithm to
– Produce slightly or completely wrong output

– Crash after invariant violation

– Infinite loop

Felkel: Computational geometry

(32)

[siggraph2008-CGAL-course]

Geometry in theory is exact

� ccw(s,q,r) & ccw(p,s,r) & ccw(p,q,s) => ccw(p,q,r)

� Correctness proofs of algorithms rely on such

theorems

Felkel: Computational geometry

(33)

[siggraph2008-CGAL-course]

[http://cs.wikipedia.org/wiki/Soubor:Single_double_extended2.gif]

Floating-point arithmetic is not exact

a) Limited numerical precision of real numbers

� Numbers represented as normalized

� The mantissa m is a 24-bit (53-bit) value whose

most significant bit (MSB) is always 1 and is,

therefore, not stored.

� Stored numbers (results) are rounded to 24/53 bits

mantissa – lower bits are lost

Felkel: Computational geometry

(34)

±m2e

1

Normalized mantisa 23 bit1

Floating-point arithmetic is not exact

b) Smaller numbers are shifted right during additions

and subtractions to align the digits of the same order

Example for float:

� 12 – p for p ~ 0.5
– 1210 = 11002 = 01000001010000000000000000000000 2

– p = 0.510 = 001111110000000000000000000000002

– p = 0.500000810 = 001111110000000000000000000011012

– Mantissa of p is shifted 4 bits right to align with 12
(to have the same exponent 23)

p = 0.500000810 = 0100000100001000000000000000000021101
–> four least significant bits (LSB) are lost

– The result is 11.5 instead of 11.4999992

Felkel: Computational geometry

(35)

23

2-1

1

Floating-point arithmetic is not exact

b) Smaller numbers are shifted right during additions

and subtractions to align the digits of the same order

Example for float:

� 12 – p for p ~ 0.5 (such as 0.5+2^(-23))

– Mantissa of p is shifted 4 bits right to align with 12
–> four least significant bits (LSB) are lost

� 24 – p for p ~ 0.5
– Mantissa of p is shifted 5 bits right to align with 25 -> 5 LSB are lost

Try it on [http://www.h-schmidt.net/FloatConverter/IEEE754.html or

http://babbage.cs.qc.cuny.edu/IEEE-754/index.xhtml]

Felkel: Computational geometry

(36)

Orientation predicate - definition

orientation �,
, � = sign	 det	

1 �� ��
1
�
�
1 �� ��

=	

= sign
� − �� �� − �� −
� − �� �� − �� ,

						where	point	� = �� , �� , …

= third	coordinate	of	= � × �� ,	

Three points orientation �,
, � =
– lie on common line = 0

– form a left turn = +1 (positive)

– form a right turn = –1 (negative)

Felkel: Computational geometry

(37)

r

q

p

�

��

Experiment with orientation predicate

� orientation(p,q,r) = sign((px-rx)(qy-ry)-(py-ry)(qx-rx))

Felkel: Computational geometry

(38)

r = [24, 24]

q = [12, 12]

[0.5, 0.5]

p = [0.5 + dx, 0.5 + dy], dx = k.253

– right turn

dx,
p

dy,

Ideal return values

double

Value of the LSB

+ left turn

Real results of orientation predicate

� orientation(p,q,r) = sign((px-rx)(qy-ry)-(py-ry)(qx-rx))

Felkel: Computational geometry

(39)

Return values during the experiment for exponent -52

Pivot r Pivot p

Floating point orientation predicate double exp=-53

Felkel: Computational geometry

(40)

[Kettner] with correct coolors

Pivot p

Errors from shift ~0.5 right in subtraction

� 4 bits shift => 24 values rounded to the same value

� 5 bits shift => 25 values rounded to the same value

� Combined intervals of size 8, 16, 24,…

Felkel: Computational geometry

(41)

0 16 32 48 64 80 96

0 8 16 24 32 40 48 56 64 72 80

0 8 16 24 32 40 48 56 64 72 80 88

Orientation predicate – pivot selection

orientation �,
, � = 	sign	 det	

1 �� ��
1
�
�
1 �� ��

	=	

The	formula	depends	on	choose	for	the		pivot	– row to	
be	subtracted	from other	rows

= 	sign
� − �� �� − �� −
� − �� �� − ��

= 	sign �� −
� �� −
� − �� −
� �� −
�

= 	sign �� − ��
� − �� − �� − ��
� − ��

Felkel: Computational geometry

(42)

= sign
� − �� �� − �� −
� − �� �� − ��

= sign �� −
� �� −
� − �� −
� �� −
�

= sign �� − ��
� − �� − �� − ��
� − �� 	

Which	order	is	the	worst?

Little improvement - selection of the pivot

� Pivot – subtracted from the rows in the matrix

=> Pivot q (point with middle x or y coord.) is the best

But it is not used – pivot search is too complicated

in comparison to the predicate itself

Felkel: Computational geometry

(43)

Pivot p Pivot q Pivot r

[Kettner]

(b) double exp=-53

Wrong approach – epsilon tweaking

� Use tolerance ε =0.00005 to 0.0001 for float

� Points are declared collinear if float_orient returns

a value ≤ ε 0.5+2^(-23) , the smallest repr. value 0.500 000 06

� Boundary is fractured as before, but brighter
Felkel: Computational geometry

(44)

Boundary for ε= 0.00005

[Kettner]

Boundary for ε= 0.0001

Felkel: Computational geometry

(45)

Exact Geometric Computing [Yap]

� Make sure that the control flow in the
implementation corresponds to the control flow
with exact real arithmetic

[siggraph2008-CGAL-course]

Solution

1. Use predicates, that always return the correct

result -> such as YAP, LEDA or CGAL

2. Change the algorithm to cope with floating point

predicates but still return something meaningfull

(hard to define)

3. Perturb the input so that the floating point

implementation gives the correct result on it

Felkel: Computational geometry

(46)

Felkel: Computational geometry

(49)

Computational Geometry

Algorithms Library

8. CGAL

Slides from [siggraph2008-CGAL-course]

Felkel: Computational geometry

(50)

CGAL

� Large library of geometric algorithms

– Robust code, huge amount of algorithms

– Users can concentrate on their own domain

� Open source project

– Institutional members

(Inria, MPI, Tel-Aviv U, Utrecht U, Groningen U, ETHZ,

Geometry Factory, FU Berlin, Forth, U Athens)

– 500,000 lines of C++ code

– 10,000 downloads/year (+ Linux distributions)

– 20 active developers

– 12 months release cycle

Felkel: Computational geometry

(51)

CGAL algorithms and data structures

[siggraph2008-CGAL-course]

Felkel: Computational geometry

(52)

Exact geometric computing

Predicates Constructions

orientation in_circle intersection circumcenter

[siggraph2008-CGAL-course]

Felkel: Computational geometry

(53)

CGAL Geometric Kernel (see [Hert] for details)

� Encapsulates
– the representation of geometric objects

– and the geometric operations and predicates on these objecrts

� CGAL provides kernels for
– Points, Predicates, and Exactness

– Number Types

– Cartesian Representation

– Homogeneous Representation

Felkel: Computational geometry

(54)

Points, predicates, and Exactness

[CGAL at SCG ‘99]

Felkel: Computational geometry

(55)

Number Types

[CGAL at SCG ‘99]

Precission

x

slow-down

Felkel: Computational geometry

(57)

Cartesian with double

[CGAL at SCG ‘99]

…

Felkel: Computational geometry

(58)

Cartesian with Filtered_exact and leda_real

[CGAL at SCG ‘99]

One single-line declaration

changes the

precision of all computations

…

Number type

Felkel: Computational geometry

(60)

9 References – for the lectures

� Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars:
Computational Geometry: Algorithms and Applications, Springer-Verlag,
3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-77973-5
http://www.cs.uu.nl/geobook/

� [Mount] Mount, D.: Computational Geometry Lecture Notes for Spring 2007
http://www.cs.umd.edu/class/spring2007/cmsc754/Lects/comp-geom-
lects.pdf

� Franko P. Preperata, Michael Ian Shamos: Computational Geometry. An
Introduction. Berlin, Springer-Verlag,1985

� Joseph O´Rourke: .: Computational Geometry in C, Cambridge University
Press, 1993, ISBN 0-521- 44592-2
http://maven.smith.edu/~orourke/books/compgeom.html

� Ivana Kolingerová: Aplikovaná výpočetní geometrie, Přednášky, MFF UK
2008

� Kettner et al. Classroom Examples of Robustness Problems in Geometric
Computations, CGTA 2006,
http://www.mpi-inf.mpg.de/~kettner/pub/nonrobust_cgta_06.pdf

Felkel: Computational geometry

(61)

9.1 References – CGAL

CGAL

� www.cgal.org

� Kettner, L.: Tutorial I: Programming with CGAL

� Alliez, Fabri, Fogel: Computational Geometry Algorithms Library,
SIGGRAPH 2008

� Susan Hert, Michael Hoffmann, Lutz Kettner, Sylvain Pion, and Michael Seel.

An adaptable and extensible geometry kernel. Computational Geometry:

Theory and Applications, 38:16-36, 2007. [doi:10.1016/j.comgeo.2006.11.004]

Felkel: Computational geometry

(62)

9.2 Collections of geometry resources

� N. Amenta, Directory of Computational Geometry Software,
http://www.geom.umn.edu/software/cglist/.

� D. Eppstein, Geometry in Action,
http://www.ics.uci.edu/~eppstein/geom.html.

� Jeff Erickson, Computational Geometry Pages,
http://compgeom.cs.uiuc.edu/~jeffe/compgeom/

Felkel: Computational geometry

(64)

10. Computational geom. course summary

� Gives an overview of geometric algorithms

� Explains their complexity and limitations

� Different algorithms for different data

� We focus on

– discrete algorithms and precise numbers and predicates

– principles more than on precise mathematical proofs

– practical experiences with geometric sw

