

WINDOWING

PETR FELKEL

FEL CTU PRAGUE felkel@fel.cvut.cz http://service.felk.cvut.cz/courses/X36VGE

Based on [Berg], [Mount]

Version from 16.12.2011

Talk overview

- Windowing
- Windowing of axis parallel line segments (interval tree - IT)
 - Line stabbing (interval tree with sorted lists)
 - Line segment stabbing (IT with range trees)
 - Line segment stabbing (*IT* with *priority search trees*)
- Windowing of line segments in general position

Windowing queries - examples

Felkel: Computational geometry

Windowing versus range queries

- Range queries (range trees in Lecture 03)
 - Points
 - Often in higher dimensions
- Windowing queries
 - Line segments, curves, ...
 - Usually in low dimension (2D, 3D)

Windowing queries

- Preprocess the data into a data structure
 - so that the ones intersected by the query rectangle can be reported efficiently

Windowing of axis parallel line segments

Window query

- Given
 - a set of orthogonal line segments S (preprocessed),
 - and orthogonal query rectangle $W = [x : x'] \times [y : y']$
- Count or report all the line segments of S that intersect W
- Such segments have

 a) 1 endpoint in
 b) 2 end points in Included
 c) no end point in Cross over

Line segments with 1 or 2 points inside

- a) 1 point inside
 - Use a range tree (Lesson 3)
 - $O(n \log n)$ storage
 - $O(\log^2 n + k)$ query time or
 - O(log n + k) with fractional cascading

- b) 2 points inside as a) 1 point inside
 - Avoid reporting twice
 - 1. Mark segment when reported (clear after the query)
 - 2. When end point found, check the other end-point. Report only the leftmost or bottom endpoint

Line segments that cross over the window

- c) No points inside
 - not detected using a range tree
 - Cross the boundary twice or contain one boundary edge
 - It is enough to
 detect segments intersected by the left and bottom boundary edges (not having end point inside)
 - For left boundary: Report the segments intersecting vertical query *line segment* (B)

Felkel: Computational geometry

- Let's discuss vertical query line first (A
 - Bottom boundary is rotated 90°

A: Segment intersected by vertical line

Interval tree principle

Static interval tree [Edelsbrunner80]

Primary structure – static tree for endpoints

Secondary lists – sorted segments in M

Interval tree construction

ConstructIntervalTree(S)

Input: Set S of intervals on the real line Output: The root of an interval tree for S if (|S| == 0) return null // no more 2 else 3. xMed = median endpoint of intervals in S // median endpoint $L = \{ [xlo, xhi] in S | xhi < xMed \} \}$ // left of median 4. 5. $R = \{ [xlo, xhi] in S | xlo > xMed \} \}$ // right of median $M = \{ [xlo, xhi] in S | xlo \leq xMed \leq xhi \}$ // contains median 6. ML = sort M in increasing order of xlo 7. // sort M MR = sort M in decreasing order of xhi 8 t = new IntTreeNode(xMed, ML, MR) // this node 9 t.left = ConstructIntervalTree(L) 10. // left subtree t.right = ConstructIntervalTree(R) 11. // right subtree 12. return t Felkel: Computational geometry

Line stabbing query for an interval tree

```
Stab(t, xq)
Input:
         IntTreeNode t, Scalar xq
Output: prints the intersected intervals
1. if (t == null) return
                                                   // fell out of tree
   if (xq < t.xMed)
2.
                                                   // left of median?
       for (i = 0; i < t.ML.length; i++)
3.
                                                   // traverse ML
              if (t.ML[i].lo \le xq) print(t.ML[i])
4.
                                                   // ..report if in range
5
              else break
                                                   // ..else done
6.
       stab(t.left, xq)
                                                   // recurse on left
    else // (xq \geq t.xMed)
                                                   // right of or equal to median
7.
       for (i = 0; i < t.MR.length; i++) {
8.
                                                   // traverse MR + + +
              if (t.MR[i].hi \ge xq) print(t.MR[i]) // ..report if in range
9.
                                                  // ..else done
10.
              else break
       stab(t.right, xq)
11.
                                // recurse on right
    Note: Small inefficiency for xq == t.xMed – recurse on right
                                    Felkel: Computational geometry
```

Complexity of line stabbing via interval tree

- Construction O(n log n) time
 - Each step divides at maximum into two halves or less (minus elements of M) => tree height O(log n)
 - If presorted the endpoints in three lists L,R,M
 then median in O(1) and copy to new L,R,M in O(n)]
- Vertical line stabbing query $O(k + \log n)$ time
 - One node processed in O(1 + k'), k'=reported intervals
 - v visited nodes in O(v + k), k=total reported intervals
 - -v = tree height = O(log n)
- Storage O(n)
 Tree has O(n) nodes, each segment stored twice
 + + + + (two endpoints)
 Felkel: Computational geometry

A: Segment intersected by vertical line - 1D Query line $\ell := (x = q_x)$

Report the segments stabbed by a vertical line

= 1 dimensional problem (ignore y coordinate)

=> Report the interval containing query point q_x DS: Interval tree $t \neq t \neq t \neq t \neq t$ Felke: Computational geometry

(x,y)

(x',y)

A: Segment intersected by vertical line - 2D

Data structure for endpoints

- Storage of ML and MR
 - Sorted lists not enough for line segments
 - Use two range trees
- Instead O(n) sequential search in ML and MR perform O(log n) search in range tree with fractional cascading

2D range tree (without fractional casc. - see more in Lecture 3)

Complexity of line segment stabbing

- Construction O(n log n) time
 - Each step divides at maximum into two halves L,R
 or less (minus elements of M) => tree height O(log n)
 - If the range trees are efficiently build in O(n)
- Vertical line segment stab. q. $O(k + \log^2 n)$ time
 - One node processed in O(log n + k'), k'=reported inter.
 - v visited nodes in O($v \log n + k$), k=total reported inter.
 - $-v = \text{tree height} = O(\log n)$
 - $-O(k + \log^2 n)$ time range tree with fractional cascading

Felkel: Computational geometry

- $O(k + \log^3 n)$ time range tree without fractional casc.
- Storage O(*n* log *n*)
 - $\neq \pm \frac{1}{2}$ Dominated by the range trees

- Priority search trees in case c) on slide 8
 - Exploit the fact that query rectangle in range queries is unbounded
 - Can be used as secondary data structures for both left and right endpoints (ML and MR) of segments (intervals) in nodes of interval tree
 - Improve the storage to O(n) for horizontal segment intersection with window edge (Range tree has O(n log n))
- For cases a) and b) O(n log n) remains

we need range trees for windowing segment endpoints

Rectangular range queries variants

- Let $P = \{ p_1, p_2, \dots, p_n \}$ is set of points in plane
- Goal: rectangular range queries of the form $(-\infty : q_x] \times [q_y; q'_y]$
- In 1D: search for nodes v with $v_x \in (-\infty; q_x]$
 - range tree $O(\log n + k)$ time
 - ordered list O(1 + k) time (start in the leftmost, stop on *v* with $v_x > q_x$) - use heap O(1 + k) time

(traverse all children, stop when $v_x > q_x$)

■ In 2D – use heap for points with $x \in (-\infty : q_x]$ + integrate information about y-coordinate

Felkel: Computational geometry

Heap for 1D unbounded range queries

- Traverse all children, stop when $v_x > q_x$
- Example: Query $(-\infty:10]$ report 6 stop 11 99 19 9 12 100 50 [Berg Felkel: Computational geometry

Priority search tree (PST)

- Heap in 2D can incorporate info about both x, y
 - BST on y-coordinate (horizontal slabs) ~ range tree
 - Heap on x-coordinate (minimum x from slab along x)
- If P is empty, PST is empty leaf
- else
 - p_{min} = point with smallest x-coordinate in P
 - y_{med} = y-coord. median of points $P \setminus \{p_{min}\}$
 - $P_{below} := \{ p \in P \setminus \{p_{min}\} : p_y \le y_{med} \}$
 - $P_{above} := \{ p \in P \setminus \{p_{min}\} : p_y > y_{med} \}$
- Point p_{min} and scalar y_{med} are stored in the root
- The left subtree is PST of *P*_{below}
- The right subtree is PST of *P*_{above}

Priority search tree definition

```
PrioritySearchTree(P)
Input: set P of points in plane
Output: priority search tree T
1. if P=\phi then PST is an empty leaf
2.
    else
                = point with smallest x-coordinate in P
3.
       p<sub>min</sub>
                = y-coord. median of points P \setminus \{p_{min}\}
4.
       Y<sub>med</sub>
        Split points P \setminus \{p_{min}\} into two subsets – according to y_{med}
5.
6.
                P_{below} := \{ p \in P \setminus \{p_{min}\} : p_v \leq y_{med} \}
7.
                P_{above} := \{ p \in P \setminus \{p_{min}\} : p_v > y_{med} \}
        T = newTreeNode()
                                                                 Notation in alg:
8.
        T.p = p_{min} // point [ x, y ]
9
                                                                 ... p(v)
10. T.y = y_{mid} // skalar
                                     11.T.left = PrioritySearchTree(P_{below})... lc(v)12.T.rigft = PrioritySearchTree(P_{above})... rc(v)
13. O(n \log n), but O(n) if presorted on y-coordinate and bottom up
                                  Felkel: Computational geometry
```

Priority search tree construction example

Query Priority Search Tree

QueryPrioritySearchTree(T, $(-\infty : q_x] \times [q_y; q'_y]$) Input: A priority search tree and a range, unbounded to the left Output: All points lying in the range

- 1. Search with q_y and q'_y in T // BST on *y*-coordinate select *y* range Let v_{split} be the node where the two search paths split (split node)
- 2. for each node v on the search path of q_v or q'_v // points along the paths
- 3. if $p(v) \in (-\infty; q_x] \times [q_y; q'_y]$ then report p(v) // starting in tree root

Felkel: Computational geometry

Vsplit

- 6. ReportInSubtree($rc(v), q_x$) // report right subtree
- 7. for each node v on the path of q'_y in right subtree of v_{split}
- 8. if the search path goes right at v9. **ReportInSubtree**($lc(v), a_v$) // re
 - **ReportInSubtree**(Ic(v), q_x) // rep. left subtree

Reporting of subtrees between the paths

ReportInSubtree(v, q_x **)**

Input: The root *v* of a subtree of a priority search tree and a value q_x . *Output:* All points in the subtree with *x*-coordinate at most q_x .

+ + + + + + + + +

Felkel: Computational geometry

- 1. if v is not a leaf and $x(p(v)) \le q_x$
- 2. Report p(v).
- 3. ReportInSubtree($lc(v), q_x$)
- 4. ReportInSubtree($rc(v), q_x$)

 $/\!/ x \in (-\infty : q_x]$

Priority search tree query

Priority search tree complexity

For set of *n* points in the plane

- Build O(n log n)
- Storage O(n)
- Query $O(k + \log n)$
 - points in query range (- ∞ : q_x] × [q_y ; q'_y])
 - k is number of reported points
- Use PST as associated data structure for interval trees for storage of M

Windowing of arbitrary oriented line segments

- Two cases of intersection
 - a,b) Endpoint inside the query window => range tree
 - c) Segment intersects side of query window => ???
- Intersection with BBOX?
 - Intersection with 4n sides
 - But segments may not intersect the window

Exploits locus approach

- Partition parameter space into regions of same answer
- Localization of such region = knowing the answer
- For given set S of *n* intervals (segments) on real line
 - Finds *m* elementary intervals (induced by interval end-points)
 - Partitions 1D parameter space into these elementary
 intervals

$$(-\infty: p_1), [p_1: p_1], (p_1: p_2), [p_2: p_2], \dots,$$

 $(p_{m-1}: p_m), [p_m: p_m], (p_m: -p_m), [p_m: -p_m), [p_m: -p_m], (p_m: -p_m), [p_m: p_m], (p_m: -p_m), (p_m:$

- Stores intervals s_i with the elementary intervals
- Reports the intervals s_i containing query point q_x .

Felkel: Computational geometry

Segment tree example

Intervals

Segment tree definition

Segment tree

- Skeleton is a balanced binary tree T
- Leaves ~ elementary intervals Int(v)
- Internal nodes v
 - ~ union of elementary intervals of its children
 - Store: 1. interval Int(v) = union of elementary intervals
 - of its children segments s_i
 - 2. canonical set S(v) of intervals $[x : x'] \in S$
 - Holds $Int(v) \subseteq [x : x']$ and $Int(parent(v)] \not\subseteq [x : x']$ (node interval is not larger than a segment)
 - Intervals [x : x'] are stored as high as possible, such that

Felkel: Computational geometry

Int(v) is completely contained in the segment

Segments span the slab

Query segment tree

QuerySegmentTree(v, q_x) Input: The root of a (subtree of a) segment tree and a query point q_x Output: All intervals in the tree containing q_x .

Segment tree construction

ConstructSegmentTree(*S*) Input: Set of intervals *S* - segments Output: segment tree

- 1. Sort endpoints of segments in S -> get elemetary intervals ...O(n log n)
- 2. Construct a binary search tree T on elementary intervals ...O(n) (bottom up) and determine the interval Int(v) it represents
- 3. Compute the canonical subsets for the nodes (lists of their segments):

Segment tree construction – interval insertion

```
InsertSegmentTree(v, [x : x'])
Input:
         The root of a (subtree of a) segment tree and an interval.
Output: The interval will be stored in the subtree.
    if Int(v) \subseteq [x : x']
                                              // Int(v) contains s_i = [x : x']
       store [ x : x' ] at v
2
    else if Int(lc(v)) \cap [x : x'] \neq \phi
3.
            InsertSegmentTree(lc(v), [x : x'])
4.
          if Int(rc(v)) \cap [x : x'] \neq \phi
5.
             InsertSegmentTree(rc(v), [x : x'])
6.
One interval is stored at most twice in one level =>
Single interval insert O(log n)
Construction total O(n \log n)
                                      Felkel: Computational geometry
```

Segment tree complexity

A segment tree for set *S* of *n* intervals in the plane,

- Build O(n log n)
- Storage O(n log n)
- Query $O(k + \log n)$
 - Report all intervals that contain a query point
 - k is number of reported intervals

Segment tree versus Interval tree

Segment tree

- $O(n \log n)$ storage x O(n) of Interval tree
- But returns exactly the intersected segments s_i, interval tree must search the lists ML and/or MR

Good for

- 1. extensions (allows different structuring of intervals)
- 2. stabbing counting queries
 - store number of intersected intervals in nodes
 - O(n) storage and $O(\log n)$ query time = optimal
- 3. higher dimensions multilevel segment trees
 - (Interval and priority search trees do not exist in ^dims)

Felkel: Computational geometry

Windowing of arbitrary oriented line segments

- Let S be a set of arbitrarily oriented line segments in the plane.
- Report the segments intersecting a vertical query segment q := q_x × [q_y : q'_y]
- Segment tree T on x intervals of segments in S
 - node v of T corresponds to vertical slab $Int(v) \times (-\infty : \infty)$
 - segments span the slab of the node, but not of its parent
 - segments do not intersect
 segments can be vertically ordered in the slab BST

Segments between vertical segment endpoints

- Segments (in the slab) do not mutually intersect
 - => segments can be vertically ordered and stored in BST
 - Each node v of the segment tree has an associated BST
 - BST T(v) of node v stores the canonical subset S(v) according to the vertical order
 - Intersected segments can be found by searching T(v) in O(k_v + log n), k_v is the number of intersected segments

Felkel: Computational geometry

- Segment s is intersected by vert.query segment q iff
 - The lower endpoint of q is below s and
 - The upper endpoint of *q* is above *s*

Windowing complexity

Structure associated to node (BST) uses storage linear in the size of S(v)

- Build $O(n \log n)$
- Storage $O(n \log n)$
- Query $O(k + \log^2 n)$
 - Report all segments that contain a query point
 - k is number of reported segments

References

[Berg]	Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars:
	Computational Geometry: Algorithms and Applications, Springer-
	Verlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-
	77973-5, Chapters 3 and 9, http://www.cs.uu.nl/geobook/

[Mount] David Mount, - CMSC 754: Computational Geometry, Lecture Notes for Spring 2007, University of Maryland, Lectures 7,22, 13,14, and 30.

http://www.cs.umd.edu/class/spring2007/cmsc754/lectures.shtml

[Rourke] Joseph O'Rourke: .: Computational Geometry in C, Cambridge University Press, 1993, ISBN 0-521- 44592-2 <u>http://maven.smith.edu/~orourke/books/compgeom.html</u>

- [Vigneron] Segment trees and interval trees, presentation, INRA, France, http://w3.jouy.inra.fr/unites/miaj/public/vigneron/cs4235/slides.html
- [Schirra] Stefan Schirra. Geometrische Datenstrukturen. Sommersemester 2009 <u>http://wwwisg.cs.uni-</u> magdeburg.de/ag/lehre/SS2009/GDS/slides/S10.pdf

