

WINDOWING

PETR FELKEL

FEL CTU PRAGUE
felkel@fel.cvut.cz
http://service.felk.cvut.cz/courses/X36VGE

Based on [Berg], [Mount]

Version from 16.12.2011

Talk overview

- Windowing
- Windowing of axis parallel line segments (interval tree - IT)
- Line stabbing (interval tree with sorted lists)
- Line segment stabbing (IT with range trees)
- Line segment stabbing (IT with priority search trees)
- Windowing of line segments in general position
- segment tree

Windowing queries - examples

Windowing versus range queries

- Range queries (range trees in Lecture 03)
- Points
- Often in higher dimensions
- Windowing queries
- Line segments, curves, ...
- Usually in low dimension (2D, 3D)

Windowing queries

- Preprocess the data into a data structure
- so that the ones intersected by the query rectangle can be reported efficiently
- Two cases

Axis parallel line segments
Arbitrary line segments

Windowing of axis parallel line segments

Window query

- Given

- a set of orthogonal line segments S (preprocessed),
- and orthogonal query rectangle $W=\left[x: x^{\prime}\right] \times\left[y: y^{\prime}\right]$
- Count or report all the line segments of S that intersect W
- Such segments have
a) 1 endpoint in
b) 2 end points in - Included
c) no end point in - Cross over

Line segments with 1 or 2 points inside

a) 1 point inside

- Use a range tree (Lesson 3)
- $\mathrm{O}(n \log n)$ storage
- $\mathrm{O}\left(\log ^{2} n+k\right)$ query time or
- $\mathrm{O}(\log n+k)$ with fractional cascading

b) 2 points inside - as a) 1 point inside
- Avoid reporting twice

1. Mark segment when reported (clear after the query)
2. When end point found, check the other end-point. Report only the leftmost or bottom endpoint

Line segments that cross over the window

c) No points inside

- not detected using a range tree
- Cross the boundary twice or contain one boundary edge
- It is enough to
 detect segments intersected by the left and bottom boundary edges (not having end point inside)
- For left boundary: Report the segments intersecting vertical query line segment (B)
- Let's discuss vertical query line first (A)
- Bottom boundary is rotated 90°

A: Segment intersected by vertical line

- Query line $\ell:=\left(\mathrm{x}=\mathrm{q}_{\mathrm{x}}\right)$

Report the segments stabbed by a vertical line
= 1 dimensional problem (ignore y coordinate)

=> Report the interval containing query point q_{x}

Interval tree principle

Static interval tree [Edelsbrunner80]

Primary structure - static tree for endpoints

Secondary lists - sorted segments in M

Interval tree construction

ConstructIntervalTree(S)

Input: \quad Set S of intervals on the real line
Output: The root of an interval tree for S

1. if $(|S|==0)$ return null // no more
2. else
3. x Med = median endpoint of intervals in $S \quad / /$ median endpoint

4. $\quad R=\{[x \mid 0, x h i]$ in $S|x| 0>x M e d\}$
// right of median
5. $M=\{[$ xlo, xhi $]$ in $S|x| 0<=x M e d<=x h i ~\}$
// contains median
6. $M L=$ sort M in increasing order of xlo
// sort M
7. $\quad \mathrm{MR}=$ sort M in decreasing order of xhi
8. $\mathrm{t}=$ new IntTreeNode(xMed, ML, MR) // this node
9. t.left = ConstructIntervalTree(L) // left subtree
10. t.right $=$ ConstructIntervalTree $(R)+{ }^{2}+{ }^{+}++/ /$right subtree
11. return t

Line stabbing query for an interval tree

Stab(t, xq)
Input: IntTreeNode t, Scalar xq
Output: prints the intersected intervals

	if ($t==$ null) return	// fell out of tree
	if ($\mathrm{xq}<\mathrm{t} . \mathrm{xMed}$)	// left of median?
3.	for ($\mathrm{i}=0 ; \mathrm{i}$ < t.ML.length; $\mathrm{i}++$)	// traverse ML
4.	if (t.ML[i].lo <= xq) print(t.ML[i])	// ..report if in range
5.	else break	// ..else done
6.	stab(t.left, xq)	// recurse on left
	else // (xq $\geq \mathrm{t} . \mathrm{xMed}$)	// right of or equal to median
8.	for ($\mathrm{i}=0$; i < t.MR.length; i++) \{	// traverse MR
9.	if (t.MR[i].hi $\geq \mathrm{xq}$) print(t.MR[i])	// ..report if in range
10	else break	// ..else done
	stab(t.right, xq)	// recurse on right

Note: Small inefficiency for $x q==$ t.xMed - recurse on right

Complexity of line stabbing via interval tree

－Construction－O（ $n \log n$ ）time
－Each step divides at maximum into two halves or less （minus elements of M ）$=>$ tree height $\mathrm{O}(\log n)$
－If presorted the endpoints in three lists L, R, M then median in $\mathrm{O}(1)$ and copy to new L, R, M in $\mathrm{O}(n)$ ］
－Vertical line stabbing query $-\mathrm{O}(k+\log n)$ time
－One node processed in $\mathrm{O}\left(1+\mathrm{k}^{\prime}\right)$ ， $\mathrm{k}^{\prime}=$ reported intervals
$-v$ visited nodes in $\mathrm{O}(v+\mathrm{k})$ ， $\mathrm{k}=$ total reported intervals
$-v=$ tree height $=\mathrm{O}(\log n)$
－Storage－O（n）
－Tree has $O(n)$ nodes，each segment stored twice
杜在寺（two endpoints）
DCGI

A: Segment intersected by vertical line - 1D

- Query line $\ell:=\left(x=q_{x}\right)$

Report the segments stabbed by a vertical line
= 1 dimensional problem (ignore y coordinate)

=> Report the interval containing query point q_{x}

DS: Interval tree
[Berg]

A: Segment intersected by vertical line - 2D

- Query line $\underset{+}{ }:=q_{x} \times[-\infty: \infty]$
- Horizontal segment of M stabs the query line ℓ iff its left endpoint lies in halph-space

$$
\left(-\infty: q_{x}\right] \times[-\infty: \infty]
$$

- In IT node with stored median xMid report all segments from M
- whose left point lies in $\left(-\infty: q_{x}\right]$
if ℓ lies left from xMid
- whose right point lies in $\left(q_{x}:+\infty\right]$

B: Segment intersected by vertical line segment

- Query segment $q:=q_{x} \times\left[q_{y}: q_{y}^{\prime}\right]$
- Horizontal segment of M stabs the query segment q iff its left endpoint lies in semi-infinite rectangular region

$$
\left(-\infty: q_{x}\right] \times\left[q_{y} ; q_{y}^{\prime}\right]
$$

- In IT node with stored median xMid report all segments
- whose left point lies in $\left(-\infty: q_{x}\right] \times\left[q_{y} ; q_{y}^{\prime}\right]$ if q lies left from x Mid
- whose right point lies in
$\left(q_{x}:+\infty\right] \times\left[q_{y} ; q_{y}^{\prime}\right]$
$\rightarrow \pm$ if q lies right from xMid

Data structure for endpoints

- Storage of ML and MR
- Sorted lists not enough for line segments
- Use two range trees
- Instead O(n) sequential search in ML and MR perform O(log n) search
in range tree with fractional cascading

2D range tree (without fractional casc. - see more in Lecture 3)

Complexity of line segment stabbing

- Construction - O(n log n) time
- Each step divides at maximum into two halves L,R or less (minus elements of M$)=>$ tree height $\mathrm{O}(\log n)$
- If the range trees are efficiently build in $\mathrm{O}(n)$
- Vertical line segment stab. q. $-\mathrm{O}\left(k+\log ^{2} n\right)$ time
- One node processed in $\mathrm{O}\left(\log n+\mathrm{k}^{\prime}\right)$, $\mathrm{k}^{\prime}=$ reported inter.
$-v$ visited nodes in $\mathrm{O}(v \log n+\mathrm{k})$, $\mathrm{k}=$ total reported inter.
$-v=$ tree height $=\mathrm{O}(\log n)$
$-\mathrm{O}\left(k+\log ^{2} n\right)$ time - range tree with fractional cascading
$-\mathrm{O}\left(k+\log ^{3} n\right)$ time - range tree without fractional casc.
- Storage - O($n \log n$)
\neq Dominated by the range trees
- Priority search trees - in case c) on slide 8
- Exploit the fact that query rectangle in range queries is unbounded
- Can be used as secondary data structures for both left and right endpoints (ML and MR) of segments (intervals) in nodes of interval tree
- Improve the storage to $O(n)$ for horizontal segment intersection with window edge (Range tree has $O(n \log n)$)
- For cases a) and b) - $\mathrm{O}(n \log n)$ remains
- we need range trees for windowing segment endpoints

Rectangular range queries variants

- Let $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ is set of points in plane
- Goal: rectangular range queries of the form $\left(-\infty: q_{x}\right] \times\left[q_{y} ; q_{y}^{\prime}\right]$
- In 1D: search for nodes v with $v_{x} \in\left(-\infty: q_{x}\right]$
- range tree $\quad \mathrm{O}(\log n+k)$ time
- ordered list $\mathrm{O}(1+k)$ time (start in the leftmost, stop on v with $v_{x}>q_{x}$)
- use heap $\quad \mathrm{O}(1+k)$ time (traverse all children, stop when $v_{x}>q_{x}$)
- In 2D - use heap for points with $x \in\left(-\infty: q_{x}\right]$
+ integrate information about y-coordinate

Heap for 1D unbounded range queries

- Traverse all children, stop when $v_{x}>q_{x}$
- Example: Query ($-\infty$:10]

Priority search tree (PST)

- Heap in 2D can incorporate info about both x, y
- BST on y-coordinate (horizontal slabs) ~ range tree
- Heap on x-coordinate (minimum x from slab along x)
- If P is empty, PST is empty leaf
- else

$$
\begin{array}{ll}
- & p_{\text {min }} \quad=\text { point with smallest x-coordinate in } P \\
- & y_{\text {med }} \quad=y \text {-coord. median of points } P \backslash\left\{p_{\text {min }}\right\} \\
- & P_{\text {below }}:=\left\{p \in P \backslash\left\{p_{\text {min }}\right\}: p_{y} \leq y_{\text {med }}\right\} \\
- & P_{\text {above }}:=\left\{p \in P \backslash\left\{p_{\text {min }}\right\}: p_{y}>y_{\text {med }}\right\}
\end{array}
$$

- Point $p_{\text {min }}$ and scalar $y_{\text {med }}$ are stored in the root
- The left subtree is PST of $P_{\text {below }}$
- The right subtree is PST of $P_{\text {above }}$

Priority search tree definition

PrioritySearchTree(P)

Input: set P of points in plane
Output: priority search tree T

1. if $P=\phi$ then PST is an empty leaf
2. else
3. $\quad p_{\min }=$ point with smallest x-coordinate in P
4. $\quad y_{\text {med }}=y$-coord. median of points $P \backslash\left\{p_{\text {min }}\right\}$
5. Split points $P \backslash\left\{p_{\text {min }}\right\}$ into two subsets - according to $y_{\text {med }}$
6. $\quad P_{\text {below }}:=\left\{p \in P \backslash\left\{p_{\text {min }}\right\}: p_{y} \leq y_{\text {med }}\right\}$
7. $\quad P_{\text {above }}:=\left\{p \in P \backslash\left\{p_{\text {min }}\right\}: p_{y}>y_{\text {med }}\right\}$
8. $\quad T=$ newTreeNode()
9. \quad T. $p=p_{\text {min }} \quad / /$ point $[x, y]$

Notation in alg:
10. T. $y=y_{\text {mid }} \quad / /$ skalar
... $p(v)$
11. T.left $=$ PrioritySearchTree $\left(P_{\text {below }}\right)+\ldots+\ldots$ Ic(v)
12. \quad T.rigft $=$ PrioritySearchTree $\left(P_{\text {above }}\right) \quad+\ldots r(v)$
13. $\mathrm{O}(n \log n)$, but $\mathrm{O}(n)$ if presorted on y-coordinate and bottom up

Priority search tree construction example

Query Priority Search Tree

QueryPrioritySearchTree($\left.T,\left(-\infty: q_{x}\right] \times\left[q_{y} ; q_{y}^{\prime}\right]\right)$
Input: A priority search tree and a range, unbounded to the left Output: All points lying in the range

1. Search with q_{y} and q_{y}^{\prime} in $T \quad / /$ BST on y-coordinate - select y range Let $v_{\text {split }}$ be the node where the two search paths split (split node)
2. for each node v on the search path of q_{y} or $q_{y}^{\prime} / /$ points along the paths
3. if $p(v) \in\left(-\infty: q_{x}\right] \times\left[q_{y} ; q_{y}^{\prime}\right]$ then report $p(v) / /$ starting in tree root
4. for each node v on the path of q_{y} in the left subtree of $v_{\text {split }} / /$ inner trees
5. if the search path goes left at v
6. ReportInSubtree($\left.r c(v), q_{x}\right)$ // report right subtree
7. for each node v on the path of q_{y}^{\prime} in right subtree of $v_{\text {split }}$
8. if the search path goes right at v
9. ReportInSubtree($\left.\operatorname{lc}(v), q_{x}\right)$ // rep. left subtree

DCGI

Reporting of subtrees between the paths

ReportInSubtree(v, q_{x})

Input: The root v of a subtree of a priority search tree and a value q_{x}. Output: All points in the subtree with x-coordinate at most q_{x}.

1. if v is not a leaf and $x(p(v)) \leq q_{x} \quad / / x \in\left(-\infty: q_{x}\right]$
2. Report $p(v)$.
3. ReportInSubtree(Ic(v), q_{x})
4. ReportInSubtree($\left.r c(v), q_{x}\right)$

Priority search tree query

Priority search tree complexity

For set of n points in the plane

- Build $O(n \log n)$
- Storage O(n)
- Query $O(k+\log n)$
- points in query range $\left.\left(-\infty: q_{x}\right] \times\left[q_{y} ; q_{y}^{\prime}\right]\right)$
$-k$ is number of reported points
- Use PST as associated data structure for interval trees for storage of M

Windowing of arbitrary oriented line segments

- Two cases of intersection
a,b) Endpoint inside the query window $\quad=>$ range tree
c) Segment intersects side of query window $=>$???
- Intersection with BBOX?
- Intersection with $4 n$ sides
- But segments may not intersect the window

Segment tree

- Exploits locus approach
- Partition parameter space into regions of same answer
- Localization of such region = knowing the answer
- For given set S of n intervals (segments) on real line
- Finds m elementary intervals (induced by interval end-points)
- Partitions 1D parameter space into these elementary intervals

$$
\left(-\infty: p_{1}\right),\left[p_{1}: p_{1}\right],\left(p_{1}: p_{2}\right),\left[p_{2}: p_{2}\right], \ldots
$$

$$
\left(p_{m-1}: p_{m}\right),\left[p_{m}: p_{m}\right],\left(p_{m}:+\infty\right)
$$

- Stores intervals s_{i} with the elementary intervals
- Reports the intervals s_{i} containing query point q_{x}.

Segment tree example

Intervals

$$
\begin{aligned}
& \left(-\infty: p_{1}\right) \quad\left(p_{1}: p_{2}\right) \\
& \rightarrow \pm \neq\left[\mathrm{p}_{1}: \mathrm{p}_{1}\right] \\
& \text { DCGI } \\
& {\left[p_{2}: p_{2}\right]\left[p_{2}: p_{3}\right]}
\end{aligned}
$$

Segment tree definition

Segment tree

- Skeleton is a balanced binary tree T
- Leaves ~ elementary intervals $\operatorname{Int}(\mathrm{v})$
- Internal nodes v
~ union of elementary intervals of its children
- Store: 1. interval $\operatorname{Int}(\mathrm{v})=$ union of elementary intervals of its children segments s_{i}

2. canonical set $S(v)$ of intervals $[x: x] \in S$

- Holds $\operatorname{Int}(v) \subseteq[x: x]$ and $\operatorname{Int}($ parent $(v)] \nsubseteq[x: x]$ (node interval is not larger than a segment)
- Intervals $[x: x]$ are stored as high as possible, such that $\operatorname{Int}(v)$ is completely contained in the segment

Segments span the slab

Segments span the slab of the node, but not of its parent
(stored as up as possible)

$$
S\left(v_{2}\right)=\left\{s_{1}, s_{2}\right\}
$$

$\operatorname{lnt}\left(v_{j}\right) \subseteq s_{i}$ and
$\operatorname{lnt}\left(\right.$ parent $\left.\left(v_{j}\right)\right] \nsubseteq s_{i}$

Query segment tree

QuerySegmentTree(v, q_{x})
Input: The root of a (subtree of a) segment tree and a query point q_{x} Output: All intervals in the tree containing q_{x}.

1. Report all the intervals s_{i} in $S(v)$.
2. if v is not a leaf
3. if $q_{x} \in \operatorname{lnt}(I c(v))$
4. \quad QuerySegmentTree(Ic $\left.(v), q_{x}\right)$
5. else
6. QuerySegmentTree($\left.r c(v), q_{x}\right)$

Query time $O(\log n+k)$, where k is the number of reported intervals Height $\mathrm{O}(\log n), \mathrm{O}\left(1+k_{v}\right)$ for node
Storage $\mathrm{O}(n \log n)$

Segment tree construction

ConstructSegmentTree(S)
Input: Set of intervals S - segments
Output: segment tree

1. Sort endpoints of segments in S-> get elemetary intervals ... $O(n \log n)$
2. Construct a binary search tree T on elementary intervals $\ldots \mathrm{O}(n)$ (bottom up) and determine the interval $\operatorname{lnt}(v)$ it represents
3. Compute the canonical subsets for the nodes (lists of their segments):
4. $\quad v=\operatorname{root}(T)$
5. for all segments $s_{i}=[x: x] \in S$
6. InsertSegmentTree($v,[x: x])$

Segment tree construction - interval insertion

InsertSegmentTree($v,\left[x: x^{\prime}\right]$)
Input: The root of a (subtree of a) segment tree and an interval.
Output: The interval will be stored in the subtree.

1. if $\operatorname{lnt}(v) \subseteq\left[x: x^{\prime}\right] \quad / / \operatorname{lnt}(v)$ contains $s_{i}=\left[x: x^{\prime}\right]$
2. store $\left[x: x^{\prime}\right]$ at v
3. else if $\operatorname{lnt}(I c(v)) \cap\left[x: x^{\prime}\right] \neq \varnothing$
4. InsertSegmentTree(Ic(v), $\left.\left[x: x^{\prime}\right]\right)$
5. if $\operatorname{lnt}(r c(v)) \cap\left[x: x^{\prime}\right] \neq \varnothing$
6. InsertSegmentTree(rc(v), $\left.\left[x: x^{\prime}\right]\right)$

One interval is stored at most twice in one level =>
Single interval insert O($\log n$) Construction total $\mathrm{O}(n \log n)$

Segment tree complexity

A segment tree for set S of n intervals in the plane,

- Build $O(n \log n)$
- Storage $O(n \log n)$
- Query $O(k+\log n)$
- Report all intervals that contain a query point
- k is number of reported intervals

Segment tree versus Interval tree

- Segment tree
$-\mathrm{O}(n \log n)$ storage $\times \mathrm{O}(n)$ of Interval tree
- But returns exactly the intersected segments s_{i}, interval tree must search the lists ML and/or MR
- Good for

1. extensions (allows different structuring of intervals)
2. stabbing counting queries

- store number of intersected intervals in nodes
$-\mathrm{O}(\mathrm{n})$ storage and $\mathrm{O}(\log n)$ query time = optimal

3. higher dimensions - multilevel segment trees
(Interval and priority search trees do not exist in ^dims)

Windowing of arbitrary oriented line segments

- Let S be a set of arbitrarily oriented line segments in the plane.
- Report the segments intersecting a vertical query segment $q:=q_{x} \times\left[q_{y}: q_{y}^{\prime}\right]$
- Segment tree T on x intervals of segments in S
- node v of T corresponds to vertical $\operatorname{slab} \operatorname{lnt}(v) \times(-\infty: \infty)$
- segments span the slab of the node, but not of its parent
- segments do not intersect
=> segments can be vertically ordered in the slab - BST

Segments between vertical segment endpoints

- Segments (in the slab) do not mutually intersect
=> segments can be vertically ordered and stored in BST
- Each node v of the segment tree has an associated BST
- BST $T(v)$ of node v stores the canonical subset $S(v)$ according to the vertical order
- Intersected segments can be found by searching $T(v)$ in $\mathrm{O}\left(k_{v}+\log n\right), k_{v}$ is the number of intersected segments
- Segment s is intersected by vert.query segment q iff
- The lower endpoint of q is below s and
- The upper endpoint of q is above s

Windowing complexity

Structure associated to node (BST) uses storage linear in the size of $S(v)$

- Build $O(n \log n)$
- Storage $O(n \log n)$
- Query $O\left(k+\log ^{2} n\right)$
- Report all segments that contain a query point
$-k$ is number of reported segments

References

[Berg] Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars: Computational Geometry: Algorithms and Applications, SpringerVerlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-77973-5, Chapters 3 and 9, http://wwww.cs.uu.nl/geobook/
[Mount] David Mount, - CMSC 754: Computational Geometry, Lecture Notes for Spring 2007, University of Maryland, Lectures 7,22, 13,14, and 30.
http://www.cs.umd.edu/class/spring2007/cmsc754/lectures.shtml
[Rourke] Joseph O'Rourke: .: Computational Geometry in C, Cambridge University Press, 1993, ISBN 0-521- 44592-2 http://maven.smith.edul~orourke/books/compgeom.html
[Vigneron] Segment trees and interval trees, presentation, INRA, France, http://w3.jouy.inra.fr/unites/miaj/public/vigneron/cs4235/slides.htm|
[Schirra] Stefan Schirra. Geometrische Datenstrukturen. Sommersemester 2009 http://wwwwisg.cs.uni-
magdeburg.de/ag/lehre/SS2009/GDS/slides/S10.pdf

