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Review: Classical Representation

® Function-free first-order language L

® Statement of a classical planning problem: P = (s, g, O)
® s, Initial state - a set of ground atoms of L

® g: goal formula - a set of literals

® Operator: (name, preconditions, effects)

take(cranel,locl,c3,cl,pl)
.; crane cranel at location locl takes c3 off cl in pile pl
precond: belong(cranel,locl), attached(pl,locl),
empty(cranel), top(c3,pl), on(c3,cl)
effects:  holding(cranel,c3), —empty(cranel), —in(c3,pl),
—top(c3,pl), —on(c3,cl), top(cl,pl)

® Classical planning problem: P = (Z, s, S,)
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Review: Set-Theoretic Representation

® Like classical representation, but restricted to propositional logic
@ State: a set of propositions - these correspond to ground atoms

¢ {on-c1-pallet, on-c1-r1, on-c1-c2, ..., at-r1-I11, at-r1-12, ...}
® No operators, just actions

take-crane1-loc1-c3-c1-p1

precond: belong-crane1-loc1, attached-p1-loc1,

empty-crane1, top-c3-p1, on-c3-c1
delete: empty-crane1, in-c3-p1, top-c3-p1, on-c3-p1
add: holding-crane1-c3, top-c1-p1

® Weaker representational power than classical representation

¢ Problem statement can be exponentially larger
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Review: State-Variable Representation

® A state variable is like a record structure in a computer program
¢ Instead of on(c1,c2) we might write cpos(c1)=c2

° Loladgnd load(c, r, 1)
untod - robot r loads container ¢ at location [
operators:

precond: rloc(r) = [, cpos(c) = L. rload(r) = nil
effects: rload(r) < ¢,cpos(c) « r

unload(c, r, ()
.; robot r unloads container ¢ at location [
precond: rloc(r) = [, rload(r) = ¢
effects: rload(r) < nil, cpos(c) « [
® Equivalent power to classical representation
¢ Each representation requires a similar amount of space
¢ Each can be translated into the other in low-order polynomial time
® C(lassical representation 1s more popular, mainly for historical reasons

¢ In many cases, state-variable representation is more convenient

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/



Motivation

® Recall that in classical planning, even simple problems can have
huge search spaces

S0

¢ Example:

» DWR with five locations, three
piles, three robots, 100 containers @_ -'U

location 1 location 2
» 10277 states

» About 10'°Y times as many states as there are particles in
universe

® How difficult 1s 1t to solve classical planning problems?
® The answer depends on which representation scheme we use
¢ (Classical, set-theoretic, state-variable
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Outline

® Background on complexity analysis
® Restrictions (and a few generalizations) of classical planning
® Deccidability and undecidability
® Tables of complexity results
¢ Classical representation
¢ Sct-theoretic representation

¢ State-variable representation
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Complexity Analysis

® Complexity analyses are done on decision problems or
language-recognition problems

¢ A language 1s a set L of strings over some alphabet 4
¢ Recognition procedure for L
» A procedure R(x) that returns “yes” iff the string x 1s in L

» If x 1s not in L, then R(x) may return “no” or may fail to
terminate

® Translate classical planning into a language-recognition
problem

® Examine the language-recognition problem’s complexity
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Planning as a Language-Recognition
Problem

® Consider the following two languages:

PLAN-EXISTENCE = {P : P is the statement of a planning
problem that has a solution}

PLAN-LENGTH = {(P,n) : P is the statement of a planning
problem that has a solution of length < n}

® Look at complexity of recognizing PLAN-EXISTENCE and
PLAN-LENGTH under different conditions

¢ Classical, set-theoretic, and state-variable representations

¢ Various restrictions and extensions on the kinds of operators
we allow
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Complexity of Language-Recognition
Problems

® Suppose R is a recognition procedure for a language L
® Complexity of R
¢ T,(n) = worst-case runtime for R on strings in L of length n

¢ S,(n) = worst-case space requirement for R on strings in L of
length n

® Complexity of recognizing L
¢ 7, = best asymptotic time complexity
of any recognition procedure for L

¢ §, = best asymptotic space complexity
of any recognition procedure for L

[
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Complexity Classes

® Complexity classes:

¢ NLOGSPACE (nondeterministic procedure, logarithmic space)
CP (deterministic procedure, polynomial time)
C NP (nondeterministic procedure, polynomial time)
C PSPACE (deterministic procedure, polynomial space)
C EXPTIME  (deterministic procedure, exponential time)
C NEXPTIME (nondeterministic procedure, exponential time)
C EXPSPACE (deterministic procedure, exponential space)

® Lect C be a complexity class and L be a language

¢ Recognizing L 1s C-hard if for every language L'in C, L' can be
reduced to L in a polynomial amount of time

» NP-hard, PSPACE-hard, etc.
¢ Recognizing L 1s C-complete 1f L 1s C-hard and L 1s also in C
» NP-complete, PSPACE-complete, etc.
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Possible Conditions

® Do we give the operators as input to the planning algorithm,
or fix them 1n advance?

® Do we allow infinite initial states? <« These take us

outside classical

® Do we allow function symbols? « planning

® Do we allow negative effects?

® Do we allow negative preconditions?

® Do we allow more than one precondition?

® Do we allow operators to have conditional effects?*

¢ 1.¢., effects that only occur when additional preconditions
are true
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Decidability of Planning

Can cut off the
search at every

Halting problem path of length n

/

Allow function | Decidability of /Decidal‘)ility of
symbols? PLAI\'-EXISTEI\'CE/ PLAN-LENGT/
no“ decidable T decidable / I
yes semidecidable”” | decidable ¥

“This is ordinary classical planning.

PTrue even if we make several restrictions (see text).

Next: analyze complexity for the decidable cases
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Y PSPACE-complete or
NP-complete for some
sets of operators

Complexity of Planning

/

Kind of | How the | Allow Allow Complexity | Coniplexity
represen- | operators | negative | negative | of PLAN- of FLAN-
tation are given | effects? | precon- || EXISTENCE | LENGTH
ditions?
yes yes/no EXPSPACE- EXPTIME-
classical complete Z}domplete
rep. in the ves NEXPTIME- | NEXPTIME-
input complete complete
no no EXPTIME- NEXPTIME-
complete / complete
% no operator has >1 precondition 10" PSPACE- PSPACE-
\ complete complete
yes \ yes/no PSPACE 7 PSPACE 7
in yes NP 7 NP 7
advance no 1o P NP 7
' no® NLOGSPACE




® Caveat: these are worst-case results
¢ Individual planning domains can be much easier
® Example: both DWR and Blocks World fit here®, but neither is that hard
¢ For them, PLAN-EXISTENCE is in P and P

-LENGTH is NP-complete

Kind of | How the
represen- | operators
tation are given
classical
rep. in the
input
in
advance

Allow
negative
effects?

o

no

Allow Jomplexity | Complexity
' f PLAN- of PLAN-
CXISTENCE LENGTH
itions?
yes / no EXPSPACE- NEXPTIME-
/ complete complete
yes NEXPTIME- NEXPTIME-
complete complete
no % EXPTIME- NEXPTIME-
complete complete
no® j PSPACE- PSPACE-
complete complete

yes/no

/\"

PSPACE

PSPACE

yes NP 7 NP 7
no P NP 7
no“ NLOGSPACE | NP




® Butit's easier here:
¢ We can cut off e

® Often PLAN-LENGTH is harder than PLAN-EXISTENCE

\Mh path at depth n

Kind of | How the | Allow Allox? “N_Complexity | Complexity
represen- | operators | negative | negative of PLAN-
tation are given | effects? | precon- LENGTH
ditions? .
yes yes/no EXPSPACE- | NEXPTIME-
classical complete
rep. in the yes NEXPTIME- | NEXPTIME-
input complete complete
no no EXPTIME- NEXPTIME-
complete complete
no“ PSPACE- PSPACE-
complete complete
yes yes/no PSPACE 7 PSPACE 7
in yes NP 7 NP 7
advance no no P NP 7
no” NLOGSPACE | NP




Equivalences

® Sct-theoretic representation and ground classical representation are
basically identical

¢ For both, exponential blowup in the size of the input
¢ Thus complexity looks smaller as a function of the input size

® C(lassical and state-variable representations are equivalent, except that
some of the restrictions aren’t possible in state-variable representations

¢ Hence, fewer lines in the table

P(X4,...,X,)
- becomes
P — trivial fo(Xqy..,X,)=1
Set-theoretic or Classical State-variable
ground classical representation representation
representation
& s
ite al f(xy,....X,)=Y
the ground becomes
instances Pi(X1,- - Xn,Y)
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Kind of | How the | Allow Allow Complexity | Complexity

represen- | operators | negative | negative | of PLAN- of PLAN-

tation are given | effects? | precon- | EXISTENCE | LENGTH

ditions?
yes yes/no PSPACE- PSPACE-

set- complete complete

theoretic | in the yes NP-complete | NP-complete

or input no no p NP-complete

ground no® /no” || NLOGSPACE- | NP-

classical / T complete complete

rep. in yes/no /| yes/no constant constant

advance / \ time time

state- in the yes‘s l yes/ nol EXPSPACE- NEXPTIME-
Like variable | input / \ complete complete
classical| | rep- in v’ yes/no PSPACE 7 PSPACE
rep, but advance / \
f.ewer. < ground in the / yes® yes/no | [[ PsPACE- PSPACE-
linesin || sgate- input / \ complete complete
the table| | | .riable [in yes® yes/no constant constant

rep. adval}é \ time time

/

% no operator has >1 precondition

B every operator with >1 precondition
is the composition of other operators 17
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