
Combinatorial Optimization

Zdeněk Hanzálek
hanzalek@fel.cvut.cz

CTU FEE Department of Control Engineering

May 3, 2013

European Social Fund Prague & EU: We invests in your future.

Z. Hanzálek (CTU FEE) Combinatorial Optimization May 3, 2013 1 / 1

Shortest Paths

Zdeněk Hanzálek
hanzalek@fel.cvut.cz

CTU FEE Department of Control Engineering

April 15, 2013

Z. Hanzálek (CTU FEE) Shortest Paths April 15, 2013 1 / 40

Table of contents

1 Introduction
Problem Statement
Negative Weights YES and Negative Circuits NO

2 Algorithms and Examples of Problems Formulated as SPT
Dijkstra’s Algorithm
Bellman-Ford Algorithm
Floyd Algorithm
Shortest Paths in DAGs

3 Dynamic Programming Perspective

4 Conclusion

Z. Hanzálek (CTU FEE) Shortest Paths April 15, 2013 2 / 40

Problem Statement

a) Shortest Path

Instance: Digraph G , weights c : E (G) → R, nodes s, t ∈ V (G).

Goal: Find shortest s − t path P , i.e. one of minimum weight
c(E (P)), or decide that t is unreachable from s.

Another problems involving the shortest path:
b) from source node s to every node (Shortest Path Tree - SPT)
c) from every node to sink node t

d) between all pairs of nodes (All Pairs Shortest Path)

Problem a) is often solved by algorithms for b), c) or d). There is no
known algorithm with a better asymptotic time complexity. The algorithm
can be terminated when t is reached.
Problem c) can be easily transformed to b) by reversing the edges.

Z. Hanzálek (CTU FEE) Shortest Paths April 15, 2013 3 / 40

Similar Problems

1) The longest path can be transformed to the shortest path while
reversing the sign of weights. Thus, we search for the minimum instead of
the maximum.

2) When the nodes are weighted, or both nodes and edges are weighted,
the weight of the path is the sum of the edges and the nodes weights along
this path. This can be transformed to the weighted edges case as follows:

Replace every node v from the original graph by the pair of nodes
v1 and v2 and connect them by an edge with weight equal to the
weight of node v .

the edge entering node v now enters v1

the edge leaving node v now leaves v2

Z. Hanzálek (CTU FEE) Shortest Paths April 15, 2013 4 / 40

Different Problems

1) Minimum Spanning Tree - MST
In an undirected graph with the weights associated to arcs, find a spanning
tree of minimum weight or decide that the graph is not connected.

The spanning tree in the middle (SPT from central node) has weight 8
and radius 4 (the longest path between two nodes) while the spanning tree
on the right side (MST) has weight 5 and radius 5.
2) Steiner Tree
Given a connected undirected graph G , weights c : E (G) → R

+, and a set
T ⊆ V (G) of terminals, find a Steiner tree for T , i.e. a tree S with
T ⊆ V (S) and E (S) ⊆ E (G), such that c(E (S)) is minimum.

Z. Hanzálek (CTU FEE) Shortest Paths April 15, 2013 5 / 40

Negative Weights YES and Negative Circuits NO

We consider an oriented graphs:

negative weights are allowed

negative circuits are not allowed, since the shortest path problem
becomes NP-hard when the graph contains a negative circuit,

When we transform undirected graph to directed graph, then we consider
only instances with nonnegative weights:

every undirected edge connecting v and w is transformed to two
edges (v,w) and (w,v)

this transformation of the negative undirected edge results in a
negative circuit

Z. Hanzálek (CTU FEE) Shortest Paths April 15, 2013 6 / 40

Edge Progression and Path

Theorem - existence of the shortest path

If a path from s to t exists in the graph, then the shortest path from s to
t exists too.

Note: the theorem does not hold for edge progression - in a graph
with a negative circuit we can always find an even shorter edge progression
which repeatedly goes through this negative circuit.

Definitions

the Length of the path P is the sum of the weights of its edges
(will be denoted simply as c(E (P))).

l(s, t), a distance from s to t, is defined as a length of the shortest
path from s to t.

Z. Hanzálek (CTU FEE) Shortest Paths April 15, 2013 7 / 40

Edge Progression and Path

Theorem - shortest edge progression and path

If there is no negative weight or zero weight circuit in the graph,
then every shortest edge progression from s to t is the shortest path
from s to t.

If there is no negative weight circuit in the graph, then every
shortest edge progression from s to t contains the shortest path from
s to t and the length of this path is the same.

Z. Hanzálek (CTU FEE) Shortest Paths April 15, 2013 8 / 40

Triangle Inequality of Shortest Paths

Theorem - triangle inequality

If the graph does not contain a circuit of negative weight then distances
between all triplets of nodes i , j , k satisfy: l(i , j) ≤ l(i , k) + l(k , j).

Corollary: Let c(i , j) be the weight of edge from i to j .
Then if the graph does not contain a negative circuit:
l(i , j) ≤ c(i , j), l(i , j) ≤ l(i , k) + c(k , j) and l(i , j) ≤ c(i , k) + l(k , j)

Z. Hanzálek (CTU FEE) Shortest Paths April 15, 2013 9 / 40

Basic Facts - Negative Circuit

The algorithms listed below make use of the following

(1) Their computational speed is based on the fact that they do not
care about the repetition of nodes along the path (i.e. they do
not distinguish the path from edge progression).
(2) If the graph contains a negative circuit, (1) can not be used
because the shortest edge progression does not need to exist (then it
is NP-hard to find the shortest path).

Example: a graph with a negative circuit - consequently, the triangular
inequality does not hold - the negative circuit of the edge progression is
created while joining the two shortest paths.

l(i , j) ≤ l(i , k) + l(k , j)
6− 2 ≤ (5− 1) + (−2)

4 ≤ 2 ... contradiction

What the graph can not contain, when interested in the longest path?
Z. Hanzálek (CTU FEE) Shortest Paths April 15, 2013 10 / 40

Bellman’s Principle of Optimality

Theorem - Bellman’s Principle of Optimality

Suppose we have a graph without negative circuits. Let k ∈ N, and let s
and w be two vertices. Let P be a shortest one among all s-w -paths with
at most k edges, and let e = (v ,w) be its final edge. Then P [s, v] (i.e. P
without the edge e) is a shortest one among all s-v -paths with at most
k − 1 edges.

Proof by contradiction: Suppose Q is a shorter s-v -path than P [s, v],
i.e. c(E (Q)) < c(E (P [s, v])), and |E (Q)| ≤ k − 1.

If Q does not contain w , then s-w -path consisting of Q + e has
length c(E (Q)) + c(e) < c(E (P [s, v])) + c(e) = c(E (P)).

If Q does contain w , then Q[s,w] has length
c(E (Q[s,w])) = c(E (Q)) + c(e)− c(E (Q[w , v] + e)) < c(E (P)),
because Q[w , v] + e is a non-negative circuit.

In both cases we have a contradiction to the assumption that P is a
shortest s-w -path with at most k edges.

Z. Hanzálek (CTU FEE) Shortest Paths April 15, 2013 11 / 40

Generalization - Shortest Path Consists of Shortest Paths

Proposition - the shortest path consists of the shortest paths

Suppose we have a graph without negative circuits. If the shortest path
from s to w contains node v , the segment of the path from s to v is the
shortest s-v -path and similarly the segment of the path from v to w is the
shortest v -w -path and l(s,w) = l(s, v) + l(v ,w).

Corollary: (Bellman’s equation) l(s,w) = minv 6=w {l(s, v) + c(v ,w)}
holds if the graph does not contain a negative circuit

Z. Hanzálek (CTU FEE) Shortest Paths April 15, 2013 12 / 40

Dijkstra’s Algorithm [1959] - Nonnegative Weights

Input: digraph G , weights c : E (G) → R
+
0 and node s ∈ V (G).

Output: Vectors l and p. For v ∈ V (G), l(v) is the length of the shortest
path from s and p(v) is the previous node in the path. If v is
unreachable from s, l(v) = ∞ and p(v) is undefined.

l(s) := 0; l(v) := ∞ for v 6= s; R := ⊘ ;
while R 6= V (G) do

Find v ∈ V (G) \ R such that l(v) = minw∈V (G)\R l(w);

R := R ∪ {v} ;
// calculate l(w) for all nodes on border of R

for w ∈ V (G) \ R such that (v ,w) ∈ E (G) do
if l(w) > l(v) + c(v ,w) then

l(w) := l(v) + c(v ,w); p(w) := v ;
end

end

end

Z. Hanzálek (CTU FEE) Shortest Paths April 15, 2013 13 / 40

Correctness of Dijkstra’s Algorithm

Proof by induction: Inductive assumption - all nodes in R have optimal
value of the shortest path. For |R | = 1 it is trivial.
We prove inductive step, i.e. the l(v) value is permanent (optimal) when
we add the best candidate v to set R .
The value of l(v) can not be augmented by the path going through
y ∈ V (G) \ {R ∪ v} since:

l(x) + c(x , y) ≥ l(v) due to internal loop of Dijkstra’s algorithm

the weights of all edges from y to v are nonnegative.

Dijkstra is so-called label setting algorithm, since label l(v) becomes
permanent (optimal) at each iteration. In contrast, label-correcting
algorithms (e.g. Bellman-Ford’s or Floyd’s algorithm) consider all labels
as temporary until the final step, when they all become permanent.

Z. Hanzálek (CTU FEE) Shortest Paths April 15, 2013 14 / 40

Iteration of Dijkstra’s Algorithm

Homework: What are the differences between Dijkstra’s algorithm for SPT
and Prim’s algorithm for minimum spanning tree - MST?
Find the smallest example with a different SPT and MST.

Z. Hanzálek (CTU FEE) Shortest Paths April 15, 2013 15 / 40

Exploitation of Additional Information

If we are interested in finding the shortest path from s to just one node
t, Dijkstra’s algorithm can be terminated when we remove t from R .
To accelerate the computation time we can add a heuristic to Dijkstra’s
algorithm in order to estimate the length of the remaining path. This is
idea of A* algorithm which is generalization of Dijkstra’s algorithm that
cuts down on the size of the subgraph that must be explored.

At the algorithm start, we set h(v , t) for every v ∈ V (G) such that it
represents the lower bound on distance from v to t.

For arbitrary nodes v1, v2 ∈ V (G) inequality
c(v1, v2) ≥ h(v1, t)− h(v2, t) must be valid.

during Dijkstra’s algorithm we choose v ∈ V (G) \ R such that
l(v) = minw∈V (G)\R {l(w) + h(w , t)}

This algorithm is faster, since it is stopped, whenever the path to t is
found and since a high value of h in some vertex excludes this vertex from
the choice and arcs leaving this vertex are not explored. Unfortunately, in
the the extreme case this algorithm has to go through all vertices as well.

Z. Hanzálek (CTU FEE) Shortest Paths April 15, 2013 16 / 40

Exploitation of Additional Information - Example

Suppose the nodes are places in the two dimensional plane with
coordinates [xv , yv] and arc lengths equal to Euclidean distances
between the points. The Euclidean distance from v to t is equal to
[(xt − xv)

2 +(yt − yv)
2]1/2, and it can be used as lower bound h(v , t).

Euclidean distances satisfy triangular inequality, i.e.
h(v1, v2) + h(v2, t) ≥ h(v1, t). Therefore
c(v1, v2) ≥ h(v1, v2) ≥ h(v1, t)− h(v2, t)

v

t

v
2

1

Z. Hanzálek (CTU FEE) Shortest Paths April 15, 2013 17 / 40

Time Complexity of Dijkstra’s Algorithm

Fastest known algorithm for SPT without negative edges

Time complexity is O(n2), or O(m + nlogn) using priority queue

Algorithms with linear time complexity for specific problems:

Planar Graphs - Henzinger [1997]

Undirected graphs with integer nonnegatice weights - Thorup [1999]

Z. Hanzálek (CTU FEE) Shortest Paths April 15, 2013 18 / 40

Example SPT.automaton.water: Measurement of Water

Level [2]

You are on the bank of the lake and you have one 3-liters bottle and one
5-liters bottle. Both bottles are empty and your task is to have exactly 4
liters in the bigger bottle. You have no other equipment to measure the
water level.
a) Represent the problem by the graph.
b) Set-up suitable weights and formulate the shortest path problem to find

solution with a minimum number of manipulations,
solution with a minimum amount of manipulated water,
solution with a minimum amount of water poured back in the lake.

Homework c) During some manipulations you have to be very careful - for
example when one bottle is filled completely but the other one does not get
empty. Find the solution which minimizes a number of such manipulations.
Homework d) Is it possible to have 5 liters while using 4-liters and 6-liters
bottles?

Z. Hanzálek (CTU FEE) Shortest Paths April 15, 2013 19 / 40

Example SPT.automaton.bridge: Bridge and Torch

Problem

Homework - Formulate a shortest path problem:
Four people come to a river in the night. There is a narrow bridge, but it
can only hold two people at a time. They have one torch and, because it’s
night, the torch has to be used when crossing the bridge. First person can
cross the bridge in 1 minute, second person in 2 minutes, third person in 5
minutes, and last person in 9 minutes. When two people cross the bridge
together, they must move at the slower person’s pace. The question is,
can they all get across the bridge in 16 minutes or less?

Z. Hanzálek (CTU FEE) Shortest Paths April 15, 2013 20 / 40

Example SPT.dioid.reliability: Maximum Reliability Path

Problem [1]

In the communication network we associate a reliability p(i , j) with every
arc from i to j . We assume the failures of links to be unrelated. The
reliability of a directed path Q from s to t is the product of the reliability
of the arcs in the path. Find the most reliable connection from s to t.

a) Show that we can reduce the maximum reliability path problem to
a shortest path problem.

b) Suppose you ate not allowed to make reduction. Specify O(n2)
algorithm for solving the maximum reliability path problem.

c) Will your algorithms in parts a) and b) work if some of the p(i , j)
coefficients are strictly greater than 1?

Z. Hanzálek (CTU FEE) Shortest Paths April 15, 2013 21 / 40

Bellman-Ford Algorithm [1958] (Moore [1959])

Input: directed graph G without a negative circuit
weights c : E (G) → R and node s ∈ V (G).
Output: vectors l and p. For all v ∈ V (G), l(v) is the length of the

shortest path from s and p(v) is the last but one node. If v is
not reachable from s, then l(v) = ∞ and p(v) is undefined.

l(s) := 0; l(v) := ∞ for v 6= s;
for i := 1 to n − 1 do

for for every edge of graph (v ,w) ∈ E (G) do
if l(w) > l(v) + c(v ,w) then

l(w) := l(v) + c(v ,w); p(w) := v ;
end

end

end

Z. Hanzálek (CTU FEE) Shortest Paths April 15, 2013 22 / 40

Bellman-Ford Algorithm - Example

This example illustrates iterations of the Bellman-Ford algorithm finding
shortest paths tree from node 1.

1
-2

2
1

∞

3
2

4

0 ∞∞

1
-2

2
1

3
2

4

0 ∞∞

1
-2

2
1

3
2

4

0 ∞

1
-2

2
1

3
2

4

0

-2

-2 -1

-2 -1 1

init

a)

b)

c)

Assuming the edges to be processed in the
internal loop

in the worst order, from right to left
when only step a) is executed in the
first iteration of the external loop, it
requires 3 iterations of the external loop
to obtain SPT

in the best order, from left to right
when steps a)b)c) are executed in the
first iteration of the external loop, it
requires only 1 iteration of the external
loop to obtain SPT

Z. Hanzálek (CTU FEE) Shortest Paths April 15, 2013 23 / 40

Correctness of Bellman-Ford algorithm

We will base our reasoning on the following theorem:

Theorem

Let

lk(w) is the l(w) label after k iterations of the external loop

P is the shortest s-w -path with at most k edges and let (v ,w) be the
last edge of this path

c(E (P)) is the length of path P

Then lk(w) ≤ c(E (P)).

Note: the lk(w) ≤ c(E (P)) is inequality, since the lk(w) is the length of
the path which might go over more that k edges (see example with four
nodes in the chain).

Z. Hanzálek (CTU FEE) Shortest Paths April 15, 2013 24 / 40

Correctness of Bellman-Ford algorithm - Proof

Prove of the theorem by induction:

By the induction hypothesis IH we have lk−1(v) ≤ c(E (P [s, v])) after
k − 1 iterations of external loop.
By Bellman’s Principle of Optimality BPO path segment P [s, v] must
be a shortest s-v -path with at most k − 1 edges.
In the k-th iteration of the algorithm ALG edge (v ,w) is examined as
well.

Finally:

lk(w)
ALG

≤ lk−1(v) + c((v ,w))
IH

≤ c(E (P [s, v])) + c((v ,w)) BPO= c(E (P)).

Since no path has more than n − 1 edges, the above theorem implies the
correctness of the algorithm.

Z. Hanzálek (CTU FEE) Shortest Paths April 15, 2013 25 / 40

Time Complexity of Bellman-Ford Algorithm and

Detection of Negative Circuits

Best known algorithm for SPT without negative circuits.
Time complexity is O(nm).
Note that every path consists at most of n − 1 edges and there exists
an edge incident to every reachable node t.
The Bellman-Ford algorithm can detect negative circuit that is
reachable from vertex s while checking triangular inequality for
resulting l . There may be negative cycles not reachable from s, in
such case add node s ′ and connect it to all nodes v with c(s, v) = 0.

for for every edge of graph (v , t) ∈ E (G) do
if l(t) > l(v) + c(v , t) then

error ”Graph contains a negative-weight circuit”
end

end

However there are better methods for negative circuit detection
[Cherkassky&Goldberg 1999].

Z. Hanzálek (CTU FEE) Shortest Paths April 15, 2013 26 / 40

Example SPT.negative: Truck Journey [2]

Let us assume a truck and n European cities with trailers.

For each couple of cities (i , j), we know c(i , j), the cost of the truck
transport form city i to city j .

For some couple of cities (i , j) there are (infinitely many) trailers to
be transported form city i to city j and the revenue for one trailer is
d(i , j).

Our task is to find the track journey from city s to city t and to maximize
the profit regardless of the time.

Z. Hanzálek (CTU FEE) Shortest Paths April 15, 2013 27 / 40

Example SPT.dioid.negative: Investment Opportunities [1]

Mr. Dow Jones, 50 years old, wishes to place his Individual Retirement
Account funds in various investment opportunities so that at the age of 65
years, when he withdraws the funds, he has accrued maximum possible
amount of money. Assume that Mr. Jones knows the investment
alternatives for the next 15 years: their maturity (in years) and
appreciation they offer. How would you formulate this investment problem
as a shortest path problem, assuming that at any point in time, Mr. Jones
invests all his funds in a single investment alternative.

Z. Hanzálek (CTU FEE) Shortest Paths April 15, 2013 28 / 40

Floyd Algorithm [1962] (Warshall [1962])

Input: a digraph G free of negative circuits and weights c : E (G) → R.
Output: matrices l and p, where lij is the length of the shortest path from

i to j , pij is the last but one node on such a path (if it exists).
lij := c((i , j)) for all (i , j) ∈ E (G);
lij := ∞ for all (i , j) /∈ E (G) where i 6= j ;
lii := 0 for all i ;
pij := i for all (i , j);
for k := 1 to n do // for all k check if lij improves

for i := 1 to n do
for j := 1 to n do

if lij > lik + lkj then
lij := lik + lkj ; pij := pkj ;

end

end

end

end

Z. Hanzálek (CTU FEE) Shortest Paths April 15, 2013 29 / 40

Floyd Algorithm

initialize matrix l0 by the weights of the edges

computes the sequence of matrices l0, l1, l2, · · · , lk , · · · , ln where:

lkij is the length of the shortest path from i to j such
that with the exception of i , j it goes only through
nodes from the set {1, 2, · · · k}

one can easily compute matrix lk from matrix lk−1:

lkij = min{lk−1
ij , lk−1

ik + lk−1
kj }

Z. Hanzálek (CTU FEE) Shortest Paths April 15, 2013 30 / 40

Floyd Algorithm - Complexity and Properties

The best known algorithm for All Pairs Shortest Path problem without
negative circuits.

Time complexity O(n3).

A graph contains a negative circuit iff (i.e. if and only if) there
exists i such that lii < 0.

By a small modification of the algorithm, where l0ii is set to ∞, one
can find the nonnegative minimal weight circle - see the diagonal in
the next example.

Johnson’s Algorithm is better suited for the sparse graphs

uses Dijkstra and Bellman-Ford

complexity: O(|V | · |E | · log |V |) (in the simplest case)

Z. Hanzálek (CTU FEE) Shortest Paths April 15, 2013 31 / 40

Floyd Algorithm - Example

l0 =













∞ 3 ∞ ∞ 4
∞ ∞ ∞ 2 2
∞ −5 ∞ ∞ ∞
∞ ∞ 4 ∞ ∞
6 −2 6 0 ∞













l =













10 2 8 4 4
8 0 6 2 2
3 −5 1 −3 −3
7 −1 4 1 1
6 −2 4 0 0













p =













5 5 4 5 1
5 5 4 2 2
5 3 4 2 2
5 3 4 2 2
5 5 4 5 2













Z. Hanzálek (CTU FEE) Shortest Paths April 15, 2013 32 / 40

Example SPT.matrix.fire: Location of Fire Station [2]

Formulate a shortest path problem:
Consider a road system in the city.
a) We are looking for the best location of the fire station while minimizing
its distance form the most distant place.
Homework b) How the problem changes (gets more difficult) when we are
looking for the best location of two fire stations?
Homework c) How the problem changes (gets more difficult) when the
maximum allowed distance is given and we are looking for the minimum
number of stations.

Z. Hanzálek (CTU FEE) Shortest Paths April 15, 2013 33 / 40

Example SPT.matrix.warehouse: Warehouse Location

Formulate a shortest path problem:
Consider a road system in the region. We are looking for the best location
of the warehouse which supplies n customers consuming q1, . . . , qn units of
goods per week. There is a suitable place for warehouse nearby each of the
customers. Each customer is served by a separate car and the transport
cost is a product (i.e. multiplication) of the distance and transported
volume. Objective is to minimize the weekly transport costs.

Z. Hanzálek (CTU FEE) Shortest Paths April 15, 2013 34 / 40

Shortest Paths in Directed Acyclic Graphs (DAGs)

Definition: A topological order of G is an order of the vertices
V (G) = v1, . . . , vn such that for each edge (vi , vj) ∈ E (G) we have i < j .
Proposition: A directed graph has a topological order if and only if it is
acyclic (see the proof in [3]).
Consequence: DAG vertices can be arranged on a line so that all edges
go from left to right.

Observation: shortest path from s to vi cannot use any node from
vi+1, . . . , vn, therefore we can find the shortest paths in topological order

Z. Hanzálek (CTU FEE) Shortest Paths April 15, 2013 35 / 40

Algorithm for DAGs

May be seen as simplified version of Bellman-Ford algorithm.

Input: directed acyclic graph G with topologically ordered vertices
v1, . . . , vn, weights c : E (G) → R.

Output: vectors l and p. For all i = 1 . . . n, l(vi) is the length of the
shortest path from v1 and p(vi) is the last but one node. If vi is
not reachable from v1, then l(vi) = ∞ and p(vi) is undefined.

l(v1) := 0; l(vi) := ∞ for i = 2 . . . n;
for i := 2 to n do

for for every edge of graph (vj , vi) ∈ E (G) do
if l(vi) > l(vj) + c(vj ,w) then

l(vi) := l(vj) + c(vj , vi); p(vi) := vj ;
end

end

end

Correctness: induction on i and observation on previous slide.
Time complexity O(|V |+ |E |)

Z. Hanzálek (CTU FEE) Shortest Paths April 15, 2013 36 / 40

Dynamic Programming Perspective

Observation on SPT algorithm for DAGs which:

solves a collection of subproblems, e.g. l(d) = min{l(a)− 2, l(b) + 1}

starts with simplest one, i.e. l(s) = 0

proceeds with larger subproblems along the topological order

This is a general technique called Dynamic Programming, which requires
two key attributes: optimal substructure and overlapping subproblems.

In the case of the SPT algorithm for DAG the solution space (showing
dependencies between subproblems) may be represented by the same DAG.

Graphical representation of the solution space in the case of Bellman-Ford
algorithm or Floyd algorithm is different from the input graph G , but it
has optimal substructure and overlapping subproblems as well.

Z. Hanzálek (CTU FEE) Shortest Paths April 15, 2013 37 / 40

Dynamic Programming Perspective

State space is represented by a graph. It is obvious in the case of SPT,
but in other optimization problems it requires integer valued variables (e.g.
weights or costs of items in the Knapsack problem).
Optimal substructure - the solution to a given optimization problem can
be obtained by the combination of optimal solutions to its
subproblems. Such optimal substructures are usually described by means
of recursion (examples are Bellman equation in Bellman-Ford algorithm
and “shortest path consists of shortest paths” in Floyd algorithm).

Overlapping subproblems - computed solutions to subproblems are
stored so that these don’t have to recomputed. So Dynamic
Programming is not useful when there are no common (overlapping)
subproblems because there is no point storing the solutions if they are not
needed again. One can observe so called diamonds in the in the solution
space, in contrast to the solution space of Branch and Bound algorithm,
which can be represented by the tree.

Z. Hanzálek (CTU FEE) Shortest Paths April 15, 2013 38 / 40

Shortest Path - Conclusion

An easy optimization problem with a lot of practical applications

OSPF (Open Shortest Path First) is a widely used protocol for Internet
routing that uses Dijkstra’s algorithm.
RIP (Routing Information Protocol) is another routing protocol based
on the Bellman-Ford algorithm.
looking for shortest/cheapest/fastest route in the map

Basic routine for many optimization problems

scheduling with dependencies
...

Z. Hanzálek (CTU FEE) Shortest Paths April 15, 2013 39 / 40

References

Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin.
Network Flows: Theory, Algorithms, and Applications.
Prentice Hall, 1993.

Jǐŕı Demel.
Grafy a jejich aplikace.
Academia, 2002.

B. H. Korte and Jens Vygen.
Combinatorial Optimization: Theory and Algorithms.
Springer, fourth edition, 2008.

Z. Hanzálek (CTU FEE) Shortest Paths April 15, 2013 40 / 40

	prvni
	SPT_e
	Introduction
	Problem Statement
	Negative Weights YES and Negative Circuits NO

	Algorithms and Examples of Problems Formulated as SPT
	Dijkstra's Algorithm
	Bellman-Ford Algorithm
	Floyd Algorithm
	Shortest Paths in DAGs

	Dynamic Programming Perspective
	Conclusion

