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1 Integer linear programming

A number of problems belonging to the area of combinatorial optimisation can be modeled and
solved using Integer Linear Programming (ILP).

Definition 1.1 An Integer Linear Programming task is given by a matrix of constraints A ∈
Rm×n and vectors b ∈ Rm and c ∈ Rn. The goal is to find a vector x ∈ Zn such that Ax ≤ b and
a criterion cTx is minimal.

In comparison to Linear Programming (LP), ILP variables are limited to integers [1]. Generally,
one is not able to solve the ILP tasks using LP continuous variables rounded to the nearest integers
due to several reasons. Firstly, we have no guarantee of the optimality of the solution, i.e. the
optimal solution can be missed. Moreover, the feasibility of the solution cannot be warranted,
i.e. some of the constraints of the problem can violated after this rounding. Therefore, the tasks
having integer variables have to be solved by ILP, which is more expensive from the time complexity
point of view. The ILP (unlike LP) is a NP-hard problem, i.e. polynomial-time algorithms are not
known yet. The ILP tasks can be solved by enumerative methods, the Branch&Bound algorithm
or Cutting Planes methods (see more in [2]).

1.1 ILP and totally unimodular matrix

Even though the ILP is NP-hard it can be solved in polynomial time if some conditions are
satisfied, e.g. the matrix A has to be totally unimodular.

Definition 1.2 A matrix A is totally unimodular if each subdeterminant of A is equal to +1, 0
or −1.

Theorem 1.1 If the matrix of constraints A is totally unimodular and b ∈ Zm, the ILP task can
be solved by modified simplex method to obtain a solution x such that x ∈ Zn.

Theorem 1.2 The ILP task having a totally unimodular matrix of constraints A and b ∈ Zm is
solvable in polynomial time.

Theorem 1.3 Let A be an m× n matrix such that

1. each entry aij ∈ {0, 1,−1}, i = 1, . . . ,m, j = 1, . . . , n

2. each column of A contains either at most one nonzero entry or just two nonzero entries equal
to +1 and −1

Then the matrix A is totally unimodular.
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Pay attention to the structure and the content of the matrix A. When this matrix does not
satisfy Theorem 1.3, we are not able to claim that this matrix is not totally unimodular. However,
the equation Ax < b can be transformed by the Gauss Elimination Method (GEM) to an equation
A′x < b′. If b′ ∈ Zn is preserved by the GEM transormation and the matrix A′ fulfills Theorem 1.3,
then A′ is totally unimodular. Futhermore, in this case the original matrix A is totally unimodular,
i.e. one is able to solve this problem with respect to Theorems 1.2 and 1.3.

2 Call center scheduling problem

2.1 Problem Description

A call center needs to create a cyclic (i.e. numbers of the shifts at particular hours are same
on every day) daily schedule of the shifts for its employees [3]. Let b be a vector of a personnel
demand in each hour during the day, i.e. bi is defined ∀i = 1, 2, . . . , 24. The personnel demand bi
determines the minimal number of shifts (i.e. employees who will be assigned to these shifts) at
hour i, e.g. b10 expresses the minimal number of shifts running between 9 a.m. and 10 a.m. The
objective of this problem is to obtain the cyclic daily schedule of the shifts such that the total
number of the shifts used to cover the personnel demand in a day is minimized. The shift may
start at arbitrary full hour, its length is set to 8 hours.

The ILP model of this problem is based on a variable x such that xi represents a number of
the shifts starting at hour (i− 1). The constraints presented in the model (1) express that hour i
is covered by shifts starting from the hour (i− 7) to the hour i.

min

24∑
i=1

xi

subject to
xi+17 + · · ·+ x24 + x1 + · · ·+ xi ≥ bi, ∀i = 1 . . . 7

xi−7 + xi−6 + · · ·+ xi ≥ bi, ∀i = 8 . . . 24
xi ≥ 0 ∀i

(1)

2.2 ILP in TORSCHE – an example

The ILP task can be solved in TORSCHE by the function ilinprog (see more by typing help

ilinprog). How to use this function is illustrated in the following example.

>> sense=1; %sense of optimization: 1=minimization, -1=maximization

>> b = [ 2 1]’; %vector b

>> A = [ 1 -1; ... %matrix A

>> 0 1]

>> c = [ 1 1]’; %vector c

>> ctype = [’L’,’E’]’; %constraint type: ’E’="=", ’L’="<=", ’G’=">="

>> lb = [0,0]’; %lower bound of the variables

>> ub = [2,2]’; %upper bound of the variables

>> vartype = [’C’,’C’]’; %variable type: ’C’=continuous, ’I’=integer

%optimization parameters

>> schoptions=schoptionsset(’ilpSolver’,’glpk’,’solverVerbosity’,2);

%call command for ILP

>> [xmin,fmin,status,extra] = ilinprog(schoptions,sense,c,A,b,ctype,lb,ub,vartype);

%show the solution

>> if(status==1)

>> disp(’Solution: ’); disp(xmin)

>> disp(’Objective function: ’); disp(fmin)

>> else

>> disp(’No feasible solution found!’);

>> end;
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Figure 1: The coverage of the personnel demand b and the final daily schedule of the shifts

A seminar assignment: Create the ILP model for this problem. Namely, write the matrix
A and the vectors b and c on the paper. The personnel demand b is given as follows:

>> b = [6 6 6 6 6 8 9 12 18 22 25 21 21 20 18 21 21 24 24 18 18 18 12 8]’;

The cyclic daily schedule of the used shifts is illustrated at the bottom of Fig. 1. You can
notice the large surplus of the shifts in comparison to the personnel demand between 12 a.m. and
6 p.m. How to minimize this difference between the personnel demand and its coverage is handled
in Sec. 3.

3 A homework assignment

The problem described in Sec. 2.1 has to be modified when the lack of the employees occurs and
we are not able to find the feasible solution of this problem. One way is to accept the lack of
employees in particular intervals. However, our objective is to find a daily schedule of shifts such
that the difference of the personnel demand and its coverage is minimized, i.e. we try to cover the
personnel demand as precisely as possible. Therefore, the objective function in the model should
be modified as follows.

min

24∑
i=1

∣∣∣∣ i∑
j=i−7

x((j−1) mod 24)+1 − bi

∣∣∣∣ (2)

Unfortunately, the absolute value function (Eq. 2) cannot be used in the ILP model directly.
It is necessary to substitute it by an auxiliary variable z that will be bound by the constraints
representing the personnel demand coverage. A general transformation is defined by Eq. 3, where
v, z are vectors of variables and q is a vector of constants.

min
∑∣∣ v − q

∣∣ −→ min
∑

z −→ min
∑

z

subject to
...

...
...

−→

∣∣ v − q
∣∣ = z

z ≥ 0

−→
v − q ≤ z
q − v ≤ z

z ≥ 0

(3)
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Figure 2: The coverage of the personnel demand b and the final daily schedule of the shifts

A homework assignment: Consider the same vector of the personnel demand b as in
the seminar assignment. Use the function ilinprog (see the example in Sec. 2.2) from
the TORSCHE toolbox. The matrix A must be generated by the code. Firstly, solve the
problem described by the ILP model Eq. 1. Secondly, modify the ILP model of the problem
with respect to the Sec. 3. Show both solutions, i.e. display the number of shifts (yellow
colour) together with the personnel demand b (green colour) similarly like at the top of
Fig. 1 and 2, where one of the optimal solutions for each ILP model are depicted. A Matlab
standard function bar with the default colouring of the bars can be used to show these
figures.
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