Constructing A Suitable Image Similarity

- let $p_{i}=(l, r)$ and $\mathbf{L}(l), \mathbf{R}(r)$ be (left, right) image descriptors (vectors) constructed from local image neighborhood windows
in matching table T :

- a natural descriptor similarity is $\operatorname{sim}(l, r)=\frac{\|\mathbf{L}(l)-\mathbf{R}(r)\|^{2}}{\sigma_{I}^{2}(l, r)}$
- σ_{I}^{2} - the difference scale; a suitable (plug-in) estimate is $\frac{1}{2}\left[s^{2}(\mathbf{L}(l))+s^{2}(\mathbf{R}(r))\right]$, giving

$$
\begin{equation*}
\operatorname{sim}(l, r)=1-\underbrace{\frac{2 s(\mathbf{L}(l), \mathbf{R}(r))}{s^{2}(\mathbf{L}(l))+s^{2}(\mathbf{R}(r))}}_{\rho(\mathbf{L}(l), \mathbf{R}(r))} \quad s^{2}(\cdot) \text { is sample (co-)variance } \tag{30}
\end{equation*}
$$

- $\rho-\mathrm{MNCC}$ - Moravec's Normalized Cross-Correlation
[Moravec 1977]

$$
\rho^{2} \in[0,1], \quad \operatorname{sign} \rho \sim \text { 'phase' }
$$

cont'd

- we choose some probability distribution on $[0,1]$, e.g. Beta distribution
$p_{1}(\operatorname{sim}(l, r))=\frac{1}{B(\alpha, \beta)} \rho^{2(\alpha-1)}\left(1-\rho^{2}\right)^{\beta-1}$
- note that uniform distribution is obtained for $\alpha=\beta=1$

- the mode is at $\sqrt{\frac{\alpha-1}{\alpha+\beta-2}} \approx 0.9733$ for $\alpha=10, \beta=1.5$
- if we chose $\beta=1$ then the mode was at $\rho=1$
- perfect similarity is 'suspicious' (depends on expected camera noise level)
- from now on we will work with

$$
\begin{equation*}
V_{1}(\operatorname{sim}(l, r))=-\log p_{1}(\operatorname{sim}(l, r)) \tag{31}
\end{equation*}
$$

How A Scene Looks in The Filled-In Similarity Table

right image

5×5 window

3×3 window

a good tradeoff

occlusion artefacts

undiscrimiable

- MNCC ρ used $(\alpha=1.5, \beta=1)$
- high-correlation structures correspond to scene objects constant disparity
- a diagonal in correlation table
- zero disparity is the main diagonal
depth discontinuity
- horizontal or vertical jump in correlation table
large image window
- better correlation
- worse occlusion localization see next
repeated texture
- horizontal and vertical block repetition

Note: Errors at Occlusion Boundaries for Large Windows

NCC, Disparity Error

- this used really large window of $25 \times 25 \mathrm{px}$
- errors depend on the relative contrast across the occlusion boundary
- the direction of 'overlow' depends on the combination of texture contrast and edge contrast
- solutions:

1. small windows (5×5 typically suffices)
2. eg. 'guided filtering' methods for computing image similarity [Hosni 2011]

- Marroquin's Winner Take All (WTA) Matching Algorithm

1. per left-image pixel: find the most similar right-image pixel
$\operatorname{SAD}(l, r)=\|\mathbf{L}(l)-\mathbf{R}(r)\|_{1} \quad L_{1}$ norm instead of the L_{2} norm in (30); unnormalized
2. represent the dissimilarity table diagonals in a compact form

$$
\begin{aligned}
& d=0--\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-- \\
& d=1-----\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-- \\
& d=2--------\mathrm{O}-\mathrm{O}-\mathrm{O}--
\end{aligned}
$$

3. use the 'image sliding aggregation algorithm'

4. threshold results by maximal allowed dissimilarity

The Matlab Code for WTA

```
function dmap = marroquin(iml,imr,disparityRange)
% iml, imr - rectified gray-scale images
% disparityRange - non-negative disparity range
% (c) Radim Sara (sara@cmp.felk.cvut.cz) FEE CTU Prague, 10 Dec 12
    thr = 20; % bad match rejection threshold
r = 2;
winsize = 2*r+[1 1]; % 5x5 window (neighborhood)
% the size of each local patch; it is N=(2r+1)^2 except for boundary pixels
N = boxing(ones(size(iml)), winsize);
% computing dissimilarity per pixel (unscaled SAD)
for d = 0:disparityRange % cycle over all disparities
    slice = abs(imr(:,1:end-d) - iml(:,d+1:end)); % pixelwise dissimilarity
    V(:,d+1:end,d+1) = boxing(slice, winsize)./N; % window aggregation
end
% collect winners, threshold, and output disparity map
[cmap,dmap] = min(V,[],3);
dmap(cmap > thr) = NaN; % mask-out high dissimilarity pixels
end
function c = boxing(im, wsz)
    % if the mex is not found, run this slow version:
    c = conv2(ones(1,wsz(1)), ones(wsz(2),1), im, 'same');
end
```


WTA: Some Results

- results are bad
- false matches in textureless image regions and on repetitive structures (book shelf)
- a more restrictive threshold (thr=10) does not work as expected
- we searched the true disparity range, results get worse if the range is set wider
- chief failure reasons:
- unnormalized image dissimilarity does not work well
- no occlusion model

Negative Log-Likelihood of Observed Images

- given matching M what is the likelihood of observed data D ?
- we need the ability 'not to match'
- matches are pairs $p_{i}=\left(l_{i}, r_{i}\right), \quad i=1, \ldots, n$
- we will mask-out some matches by a binary label $\lambda \in\{e, m\}$
excluded, matched
- labeled matching is a set

$$
M=\left\{\left(p_{1}, \lambda\left(p_{1}\right)\right),\left(p_{2}, \lambda\left(p_{2}\right)\right), \ldots,\left(p_{n}, \lambda\left(p_{n}\right)\right)\right\}
$$

p_{i} are matching table pairs; there are no more than n in the table T

The negative log-likelihood is then the likelihood of data D given labeled matching M

$$
V(D \mid M)=\sum_{p_{i} \in M} V\left(D\left(p_{i}\right) \mid \lambda\left(p_{i}\right)\right)
$$

Our choice:

$$
\begin{aligned}
V\left(D\left(p_{i}\right) \mid \lambda\left(p_{i}\right)=\mathrm{e}\right) & =V_{\mathrm{e}} \\
V\left(D\left(p_{i}\right) \mid \lambda\left(p_{i}\right)=\mathrm{m}\right) & =V_{1}(D(l, r))
\end{aligned}
$$

penalty for unexplained data, $V_{\mathrm{e}} \geq 0$ probability of match $p_{i}=(l, r)$ from (31)

- the $V\left(D\left(p_{i}\right) \mid \lambda\left(p_{i}\right)=\right.$ e) could also be a non-uniform distribution but the extra effort does not pay off

Maximum Likelihood (ML) Matching

Uniqueness constraint: Each point in the left image matches at most once and vice versa.

A node set of T that follows the uniqueness constraint is called matching in graph theory

A set of pairs $M=\left\{p_{i}\right\}_{i=1}^{n}, p_{i} \in T$ is a matching iff

$$
\forall p_{i}, p_{j} \in M, i \neq j: p_{j} \notin X\left(p_{i}\right)
$$

The $X(p)$ is called the X -zone of p and it defines dependencies

- ML matching will observe the uniqueness constraint only
- epipolar lines are independent wrt uniqueness constraint
- we can solve the problem per image lines i independently:
$\circledast \mathrm{H} 4 ; 2$ pt: How many are there: (1) binary partitionings of T, (2) maximal matchings in T; prove the results.

$$
M^{*}=\underset{M \in \mathcal{M}}{\arg \min } \sum_{p \in M} V(D(p) \mid \lambda(p))=\underset{M \in \mathcal{M}}{\arg \min }(\underbrace{|M|_{\mathrm{e}} \cdot V_{\mathrm{e}}}_{\text {unexplained pixels }}+\underbrace{\sum_{p \in M: \lambda(p)=\mathrm{m}} V(D(p) \mid \lambda(p)=\mathrm{m})}_{\text {matching likelihood proper }})
$$

\mathcal{M} - set of all perfect labeled matchings, $|M|_{\mathrm{e}}$ - number of pairs with $\lambda=\mathrm{e}$ in $M,|M|_{\mathrm{e}} \leq n$ perfect $=$ every table row (column) contains exactly 1 match

- the total number of individual terms in the sum is n (which is fixed)

-'Programming' The ML Matching Algorithm

- we restrict ourselves to a single (rectified) image line and reduce the problem to min-cost perfect matching
- extend every matching table pair $p \in T, p=(j, k)$ to 4 combinations $\left(\left(j, s_{j}\right),\left(k, s_{k}\right)\right)$, $s_{j} \in\{0,1\}$ and $s_{k} \in\{0,1\}$ selects/rejects pixels for matching

- binary label $m_{j k}=1$ then means that $\left(j, s_{j}\right)$ matches $\left(k, s_{k}\right)$
$(k, 0)$
$(j, 1)$

$\bigcirc V_{j k}=V\left(D(j, k) \mid \lambda_{j k}=\mathrm{m}\right)$
$-V_{j k}=0$
$V_{j k}=\frac{1}{2} V_{\mathrm{e}}$

$$
+V_{j k}=\infty
$$

- each $(j, 1)$ either matches some $(k, 1)$ or it 'matches' $(j, 0)$
- each $(k, 1)$ either matches some $(j, 1)$ or $(k, 0)$
- if M is maximal in the yellow quadrant then there will be n auxiliary 'matches' in the gray quadrant
- otherwise every empty line in the yellow quadrant induces an empty column in the quadrant, the cost is $2 \cdot \frac{1}{2} V_{\mathrm{e}}=V_{\mathrm{e}}$
- our problem becomes minimum-cost perfect matching in an $(m+n) \times(m+n)$ table

$$
M^{+}=\arg \min _{M} \sum_{j, k} V_{j k} \cdot m_{j k}, \quad \sum_{k} m_{j k}=1 \text { for every } j, \quad \sum_{j} m_{j k}=1 \text { for every } k
$$

- we collect our matches M^{*} in the yellow quadrant

Some Results for the ML Matching

- unlike the WTA we can efficiently control the density/accuracy tradeoff
- middle row: V_{e} set to error rate of 3% (and 61% density is achieved) holes are black
- bottom row: V_{e} set to density of 76% (and 4.3% error rate is achieved)

Some Notes on ML Matching

- an algorithm for maximum weighted bipartite matching can be used as well, with $V \mapsto-V$
- maximum weighted bipartite matching $=$ maximum weighted assignment problem
by eg. Hungarian Algorithm
Idea?: This looks simpler: Run matching with $V_{\mathrm{e}}=0$ and then threshold the result to remove bad matches.

Ex: $V_{\mathrm{e}}=8$

thresholding			our ML matching		
8	3	9	8	3	9
10	6	9	10	6	9
7	1	8	7	1	8
$V=9+2 \cdot 8=25$			$=9$		= 27

- our matching gives a better cost, also greater cardinality (density)
- the idea was not good!

thresholding

our ML

A Stronger Model Needed

- notice many small isolated errors in the ML matching
- we need a continuity model
- does human stereopsis teach us something?

Potential models for M

1. Monotonicity (ie. ordering preserved):

$$
\begin{aligned}
& \text { For all }(i, j) \in M,(k, l) \in M, \quad k>i \Rightarrow l>j \\
& \text { Notation: }(i, j) \in M \text { or } j=M(i) \text { - left-image pixel } i \text { matches right-image pixel } j \text {. }
\end{aligned}
$$

2. Coherence [Prazdny 85]
"the world is made of objects each occupying a well defined 3D volume"

non-monotonic incoherent

non-monotonic coherent

monotonic coherent

model 'strength'

-An Auxiliary Construct: Cyclopean Camera

Cyclopean coordinate u

$$
\text { new: } u=f \frac{x}{z}, \quad \text { known: } d=f \frac{b}{z}, \quad x=\frac{b}{d} \frac{u_{1}+u_{2}}{2} \Rightarrow u=\frac{u_{1}+u_{2}}{2}
$$

Disparity gradient
[Pollard, Mayhew, Frisby 1985]

$$
\begin{aligned}
D G & =\frac{\left|d-d^{\prime}\right|}{\left|u-u^{\prime}\right|}=\frac{\left|b f\left(\frac{1}{z}-\frac{1}{z^{\prime}}\right)\right|}{\left|f\left(\frac{x}{z}-\frac{x^{\prime}}{z^{\prime}}\right)\right|}= \\
& =b \frac{\left|z^{\prime}-z\right|}{\left|x z^{\prime}-x^{\prime} z\right|}
\end{aligned}
$$

- human stereovision fails to perceive a continuous surface when disparity gradient exceeds a limit

-Forbidden Zone and The Ordering Constraint

Forbidden zone $F(X): \quad D G>k \quad$ with boundary $b\left(z^{\prime}-z\right)= \pm k\left(x z^{\prime}-x^{\prime} z\right)$

- boundary: a pair of lines in the $x-z$ plane
a degenerate conic
- point $x=x^{\prime}, z=z^{\prime}$ lies on the boundary
- coincides with optical rays for $k=2$
- small k means wide F

- disparity gradient limit is exceeded when $X^{\prime} \in F(X)$
- symmetry: $X^{\prime} \in F(X) \Leftrightarrow X \in F\left(X^{\prime}\right)$
- Obs: X^{\prime} and X swap their order in the other image when $X^{\prime} \in F(X) \quad k=2$
- real scenes often preserve ordering
- thin and close objects violate ordering

Ordering and Critical Distance κ

- object (thick):
- black - binocularly visible
- yellow - half-occluded
- red - ordering violated wrt foreground
- solid red zone of depth κ :
- spatial points visible in neither camera
- bounded by the foreground object

Ordering is violated iff both X_{i}, X_{j} s.t. $X_{i} \in F\left(X_{j}\right)$ are visible in both cameras.
eg. X_{2}, X_{4}

- ordering is preserved in scenes where critical distances κ are not exceeded, ie. when 'the red background hides in the solid red zone'

Thinner objects and/or wider baseline require flatter scenes to preserve ordering.

- The X-zone and the F-zone in Matching Table T

- these are necessary and sufficient conditions for uniqueness and monotonicity

$p_{j} \notin X\left(p_{i}\right), \quad p_{j} \notin F\left(p_{i}\right)$
- Uniqueness Constraint:

A set of pairs $M=\left\{p_{i}\right\}_{i=1}^{N}, p_{i} \in T$ is a matching iff

$$
\forall p_{i}, p_{j} \in M, i \neq j: p_{j} \notin X\left(p_{i}\right) .
$$

- Ordering Constraint:

Matching M is monotonic iff

$$
\forall p_{i}, p_{j} \in M: p_{j} \notin F\left(p_{i}\right) .
$$

- ordering constraint: matched points form a monotonic set in both images
- ordering is a powerful constraint: monotonic matchings $O\left(4^{N}\right) \ll O(N$!) all matchings in $N \times N$ table
$\circledast 2$: how many are there maximal monotonic matchings?
- uniqueness constraint is a basic occlusion model
- ordering constraint is a weak continuity model
and partly also an occlusion model

- Understanding Matching Table

- this is essentially the picture from Slide 178

Bayesian Decision Task for Matching

Idea: $L(d, M)$ - decision cost (loss) d - our decision (matching) $\quad M$ - true correspondences
Choice: $L(d, M):\left\{\begin{array}{ll}\text { if } d=M & \text { then } L(d, M)=0 \\ \text { if } d \neq M & \text { then } L(d, M)=1\end{array} \quad\right.$ i.e. $L(d, M)=[d \neq M]$
Bayesian Loss

$$
L(d \mid D)=\sum_{M \in \mathcal{M}} p(M \mid D) L(d, M)
$$

$$
\mathcal{M} \text { - the set of all matchings } \quad D=\left\{I_{L}, I_{R}\right\} \text { - data }
$$

Solution for the best decision d

$$
\begin{aligned}
d^{*} & =\arg \min _{d} \sum_{M \in \mathcal{M}} p(M \mid D)(1-[d=M])=\arg \min _{d}\left(1-\sum_{M \in \mathcal{M}} p(M \mid D)[d=M]\right)= \\
& =\arg \max _{d} \sum_{M \in \mathcal{M}} p(M \mid D)[d=M]=\arg \max _{M} p(M \mid D)= \\
& =\arg \min _{M}(-\log p(M \mid D)) \stackrel{\text { def }}{=} \arg \min _{M} V(M \mid D)=\arg \min _{M \in \mathcal{M}}(\underbrace{V(D \mid M)}_{\text {likelihood }}+\underbrace{V(M)}_{\text {prior }})
\end{aligned}
$$

- this is Maximum Aposteriori Probability (MAP) estimate
- other loss functions result in different solutions
- our choice of $L(d, M)$ looks oversimple but it results in algorithmically tractable problems

Constructing The Prior Model Term $V(M)$

- the prior $V(M)$ should capture

1. uniqueness

$$
M^{*}=\arg \min _{M \in \mathcal{M}}(V(D \mid M)+V(M))
$$

2. ordering
3. coherence

- we need a suitable representation to encode $V(M)$
- Every $p=(l, r)$ of the $|I| \times|J|$ matching table T (except for the last row and column) receives two succesors $(l+1, r)$ and $(l, r+1)$

- this gives an acyclic directed graph \mathcal{G}
optimal paths in acyclic graphs are an easier problem
- the set of s-t paths starting in s and ending in t will represent the set of matchings
- all such s-t paths have equal length $n=|I|+|J|-1$
all prospective matchings will have the same number of terms in $V(D \mid M)$ and in $V(M)$

Endowing s-t Paths with Useful Properties

- introduce node labels $\Lambda=\left\{\mathrm{m}, \mathrm{e}_{\mathrm{L}}, \mathrm{e}_{\mathrm{R}}\right\}$
matched, left-excluded, right-excluded
- s-t path neighbors are allowed only some label combinations:

m	e_{L}	e_{L}	e_{L}	m	e_{L}	e_{R}	e_{L}
				-	0	0	0
e_{R}	m	e_{R}		*	\downarrow	*	
				e_{R}	m	e_{R}	e_{R}

Observations

- no two neighbors have label m
- in each labeled s-t path there is at most one transition:

1. $\mathrm{m} \rightarrow \mathrm{e}_{\mathrm{L}}$ or $\mathrm{e}_{\mathrm{R}} \rightarrow \mathrm{m}$ per matching table row,
2. $\mathrm{m} \rightarrow \mathrm{e}_{\mathrm{R}}$ or $\mathrm{e}_{\mathrm{L}} \rightarrow \mathrm{m}$ per matching table column

- pairs labeled m on every s-t path satisfy uniqueness and ordering constraints
- transitions $\mathrm{e}_{\mathrm{L}} \rightarrow \mathrm{e}_{\mathrm{R}}$ or $\mathrm{e}_{\mathrm{R}} \rightarrow \mathrm{e}_{\mathrm{L}}$ along an s-t path allow skipping a contiguous segment in either or in both images
this models half occlusion and mutual occlusion
- disparity change is the number of edges

- a given monotonic matching can be traversed by one or more s-t paths

Labeled s-t paths

$$
P=\left(\left(p_{1}, \lambda_{1}\right),\left(p_{2}, \lambda_{2}\right), \ldots,\left(p_{n}, \lambda_{n}\right)\right)
$$

The Structure of The Prior Model $V(P)$ Gives a MC Recognition Problem

ideas:

- we choose energy of path P dependent on its labeling only
- we choose additive penalty per transition $\mathrm{e}_{\mathrm{L}} \rightarrow \mathrm{e}_{\mathrm{L}}, \mathrm{e}_{\mathrm{R}} \rightarrow \mathrm{e}_{\mathrm{R}}$, and $\mathrm{e}_{\mathrm{L}} \rightarrow \mathrm{e}_{\mathrm{R}}, \mathrm{e}_{\mathrm{R}} \rightarrow \mathrm{e}_{\mathrm{L}}$
- no penalty for $m \rightarrow e_{L}, m \rightarrow e_{R}$

Employing Markovianity

$$
\begin{aligned}
V(P) & =V\left(\lambda_{n}, \lambda_{n-1}, \ldots, \lambda_{1}\right)=V\left(\lambda_{n} \mid \lambda_{n-1}, \ldots, \lambda_{1}\right)+V\left(\lambda_{n-1}, \ldots, \lambda_{1}\right)= \\
& =V\left(\lambda_{n} \mid \lambda_{n-1}\right)+V\left(\lambda_{n-1}, \ldots, \lambda_{1}\right)=V\left(\lambda_{1}\right)+\sum_{i=2}^{n} V\left(\lambda_{i} \mid \lambda_{i-1}\right)
\end{aligned}
$$

The matching problem is then a decision over labeled s-t paths $P \in \mathcal{P}$:

$$
\begin{equation*}
P^{*}=\arg \min _{P \in \mathcal{P}}\left\{V_{p_{1}}\left(D \mid \lambda_{1}\right)+V\left(\lambda_{1}\right)+\sum_{i=2}^{n}\left[V_{p_{i}}\left(D \mid \lambda_{i}\right)+V\left(\lambda_{i} \mid \lambda_{i-1}\right)\right]\right\} \tag{32}
\end{equation*}
$$

- the data likelihood term $V_{p_{i}}\left(D \mid \lambda_{i}\right)$ is the same as in (31) on Slide 164
- note that one can add/subtract a fixed term from any of the functions V_{p}, V in (32)

A Choice of $V\left(\lambda_{i} \mid \lambda_{i-1}\right)$

- A natural requirement: symmetry of probability $p\left(\lambda_{i}, \lambda_{i-1}\right)=e^{-V\left(\lambda_{i}, \lambda_{i-1}\right)}$

$p\left(\lambda_{i}, \lambda_{i-1}\right)$		λ_{i}		
		m	e_{L}	
λ_{i-1}	m	0	$p(\mathrm{~m}, \mathrm{e})$	
	e_{L}	$p(\mathrm{~m}, \mathrm{e})$	$p(\mathrm{e}, \mathrm{e})$	
	e_{R}	$p(\mathrm{~m}, \mathrm{e})$	$p\left(\mathrm{e}_{\mathrm{L}}, \mathrm{e}_{\mathrm{R}}\right)$	

3 DOF, 1 constraint $\Rightarrow 2$ parameters

$$
\begin{array}{lr}
\alpha_{1}=\frac{p\left(\mathrm{e}_{\mathrm{L}}, \mathrm{e}_{\mathrm{R}}\right)}{p(\mathrm{e}, \mathrm{e})} & 0 \leq \alpha_{1} \leq 1 \\
\alpha_{2}=\frac{p(\mathrm{~m}, \mathrm{e})}{p(\mathrm{e}, \mathrm{e})} & 0<\alpha_{2} \leq 1+\alpha_{1}
\end{array}
$$

- Result for $V\left(\lambda_{i} \mid \lambda_{i-1}\right)$ (after subtracting common terms):

$V\left(\lambda_{i} \mid \lambda_{i-1}\right)$		λ_{i}		
		m	e_{L}	e_{R}
λ_{i-1}	m	∞	0	0
	e_{L}	$\ln \frac{1+\alpha_{1}+\alpha_{2}}{2 \alpha_{2}}$	$\ln \frac{1+\alpha_{1}+\alpha_{2}}{2}$	$\ln \frac{1+\alpha_{1}+\alpha_{2}}{2 \alpha_{1}}$
	e_{R}	$\ln \frac{1+\alpha_{1}+\alpha_{2}}{2 \alpha_{2}}$	$\ln \frac{1+\alpha_{1}+\alpha_{2}}{2 \alpha_{1}}$	$\ln \frac{1+\alpha_{1}+\alpha_{2}}{2}$

by marginalization:

$$
\begin{aligned}
V(\mathrm{~m}) & =\ln \frac{1+\alpha_{1}+\alpha_{2}}{2 \alpha_{2}} \\
V\left(\mathrm{e}_{\mathrm{L}}\right) & =V\left(\mathrm{e}_{\mathrm{R}}\right)=0
\end{aligned}
$$

parameters

- α_{1} - likelihood of mutual occlusion ($\alpha_{1}=0$ forbids mutual occlusion)
- α_{2} - likelihood of irregularity ($\alpha_{2} \rightarrow 0$ helps suppress small objects and holes)
- α, β - similarity model parameters (see $V_{1}(D(l, r))$ on Slide 164)
- V_{e} - penalty for disregarded data (see $V\left(D\left(p_{i}\right) \mid \lambda\left(p_{i}\right)=\mathrm{e}\right.$) on Slide 170)

'Programming' the Matching Algorithm: 3LDP

- given \mathcal{G}, construct directed graph \mathcal{G}^{+}
- triple of vertices per node of s-t path representing three hypotheses $\lambda(p)$ for $\lambda \in \Lambda$
- arcs have costs $V\left(\lambda_{i} \mid \lambda_{i-1}\right)$, nodes have costs $V\left(D \mid \lambda_{i}\right)$
- orientation of \mathcal{G}^{+}is inherited from the orientation of s-t paths
- we converted the shortest labeled-path problem to ordinary shortest path problem

neighborhood of p; strong blue edges are of zero penalty

cont'd: Dynamic Programming on \mathcal{G}^{+}

- \mathcal{G}^{+}is a topologically ordered directed graph
- we can use dynamic programming on \mathcal{G}^{+}

$$
\begin{aligned}
V_{s: q}^{*}\left(\lambda_{q}\right)=\min _{z \in\left\{p_{1}, p_{2}\right\}, \lambda_{z} \in \Lambda} & \left\{V_{s: z}^{*}\left(\lambda_{z}\right)+V_{z}\left(D \mid \lambda_{z}\right)+V\left(\lambda_{q} \mid \lambda_{z}\right)\right\} \\
& V_{s: q}^{*}\left(\lambda_{q}\right)-\text { cost of min-path from } s \text { to label } \lambda_{q} \text { at node } q
\end{aligned}
$$

- complexity is $O(|I| \cdot|J|)$, ie. stereo matching on $N \times N$ images needs $O\left(N^{3}\right)$ time
- speedup by limiting the range in which the disparities $d=l-r$ are allowed to vary

Implementation of 3LDP in a few lines of code. . .

```
#define clamp(x, mi, ma) ((x) < (mi) ? (mi) : ((x) > (ma) ? (ma) : (x)))
#define MAXi(tab,j) clamp((j)+(tab).drange[1], (tab).beg[0], (tab).end[0])
#define MINi(tab,j) clamp((j)+(tab).drange[0], (tab).beg[0], (tab).end[0])
#define ARG_MIN2(Ca, La, C0, LO, C1, L1) if ((C0) < (C1)) { Ca = C0; La = L0; } else { Ca = C1; La = L1; }
#define ARG_MIN3(Ca, La, C0, L0, C1, L1, C2, L2) \
    if ( (C0) <= MIN(C1, C2) ) { Ca = C0; La = LO; } else if ( (C1) < MIN(CO, C2) ) { Ca = C1; La = L1; } else { Ca = C2; La = L2; }
int i = tab.beg[0]; int j = tab.beg[1];
C_m[j][i-1] = C_m[j-1][i] = MAXDOUBLE;
C_oL[j][i-1] = C_oR[j-1][i] = 0.0;
C_oL[j-1][i] = C_oR[j][i-1] = -penalty[0];
for(j = tab.beg[1]; j <= tab.end[1]; j++)
    for(i = MINi(tab,j); i <= MAXi(tab,j); i++) {
        ARG_MIN2(C_m[j][i], P_m[j][i],
                    C_oR[j-1][i] + penalty[2], lbl_oR,
                    C_oL[j][i-1] + penalty[2], lbl_oL);
        C_m[j][i] += 1.0 - tab.MNCC[j][i];
        ARG_MIN3(C_oL[j][i], P_oL[j][i], C_m[j-1][i], lbl_m,
            C_oL[j-1][i] + penalty[0], lbl_oL,
            C_oR[j-1][i] + penalty[1], lbl_oR);
        C_oL[j][i] += penalty[3];
        ARG_MIN3(C_oR[j][i], P_oR[j][i], C_m[j][i-1], lbl_m,
                C_oR[j][i-1] + penalty[0], lbl_oR,
                    C_oL[j][i-1] + penalty[1], lbl_oL);
        C_oR[j][i] += penalty[3];
    }
}
```

```
void DP3LForward(MatchingTableT tab) {
```

```
void DP3LForward(MatchingTableT tab) {
```


Some Results: AppleTree

left image

3LDP (slide 186)

right image

naïve DP [Cox et al. 1992]

ML (slide 172)

stable segmented 3LDP (see [SP])

- 3LDP parameters $\alpha_{i}, V_{\mathrm{e}}$ learned on Middlebury stereo data

Some Results：Larch

left image

3LDP（slide 186）

right image

naïve $D P$

ML（slide 172）

stable segmented 3LDP
－naïve DP does not model mutual occlusion
－but even 3LDP has errors in mutually occluded region
－stable segmented 3LDP has few errors in mutually occluded region since it uses a weak form of＇image understanding＇

Algorithm Comparison

Winner－Take－All（WTA）

－the ur－algorithm［Marroquin 83］ no model
－dense disparity map
－$O\left(N^{3}\right)$ algorithm，simple but it rarely works

Maximum Likelihood（ML）

－semi－dense disparity map
－many small isolated errors
－models basic occlusion
－$O\left(N^{3} \log (N V)\right)$ algorithm max－flow by cost scaling MAP with Min－Cost Labeled Path（3LDP）
－semi－dense disparity map
－models occlusion in flat，piecewise continuos scenes
－has＇illusions＇if ordering does not hold
－$O\left(N^{3}\right)$ algorithm

Stable Segmented 3LDP

－better（fewer errors at any given density）
－$O\left(N^{3} \log N\right)$ algorithm
－requires image segmentation itself a difficult task

ROC curves and their average error rate bounds

－ROC－like curve captures the density／accuracy tradeoff
－GCS is the one used in the exercises
－more algorithms at http：／／vision．middlebury．edu／ stereo／（good luck！）

Part VIII

Shape from Reflectance

8 Reflectance Models (Microscopic Phenomena)
(9) Photometric Stereo

10 Image Events Linked to Shape (Macroscopic Phenomena) mostly covered by

Forsyth, David A. and Ponce, Jean. Computer Vision: A Modern Approach. Prentice Hall 2003. Chap. 5
additional referencesR. T. Frankot and R. Chellappa. A method for enforcing integrability in shape from shading algorithms.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 10(4):439-451, July 1988.
P. N. Belhumeur, D. J. Kriegman, and A. L. Yuille. The bas-relief ambiguity. In Proc Conf Computer Vision and Pattern Recognition, pp. 1060-1066, 1997.

Basic Surface Reflectance Mechanisms

- reflection on (rough) optical boundary
- masking and shadowing
- interreflection
- refraction into the body
- subsurface scattering
- refraction into the air

-Parametric Reflectance Models

Image intensity (measurement) at pixel m
given by surface reflectance function R

$$
J(m)=\eta f_{i, r}\left(\theta_{i}, \phi_{i} ; \theta_{r}, \phi_{r}\right) \cdot \underbrace{\frac{\Phi_{e}}{4 \pi\|\mathbf{L}-\mathbf{x}\|^{2}}}_{\sigma} \mathbf{n}^{\top} \mathbf{l}=R(\mathbf{n}), \quad \mathbf{l}=\frac{\mathbf{L}-\mathbf{x}}{\|\mathbf{L}-\mathbf{x}\|}
$$

η - sensor sensitivity
for simplicity, we select $\eta=2 \pi$
$f_{i, r}()$ - bidirectional reflectance distribution function (BRDF) $\left[f_{i, r}()\right]=\mathrm{sr}^{-1}$ how much of irradiance in Wm^{-2} is redistributed per solid angle element
L - point light source position
Φ_{e} - radiant power of the light source, $\left[\Phi_{e}\right]=\mathrm{W}$
n - surface normal
σ - irradiance of a surfel orthogonal to incident light direction

Isotropic (Lambertian) reflection
[Lambert 1760] no optical boundary

$$
\begin{gathered}
f_{i, r}\left(\theta_{i}, \phi_{i} ; \theta_{r}, \phi_{r}\right)=\frac{\rho}{2 \pi}, \quad \rho-\text { albedo } \\
J(m)=\sigma \rho \cos \theta_{i}=\sigma \rho \mathbf{n}^{\top} \mathbf{l}
\end{gathered}
$$

Photometric Stereo

Lambertian model (light $j \in\{1,2,3\}$, pixel $i \in\{1, \ldots, n\}$)

$$
J_{j i}=\left(\sigma_{j} \mathbf{l}_{j}\right)^{\top}\left(\rho_{i} \mathbf{n}_{i}\right)=\mathbf{s}_{j}^{\top} \mathbf{b}_{i}
$$

$\mathbf{b}_{i}-$ scaled normals, \mathbf{s}_{j} - scaled lights
3 independent scaled lights and n scaled normals, one per pixel (in n pixels); can be stacked in matrices:

$$
\left[\begin{array}{ll}
J_{11} & J_{12} \\
J_{21} & J_{22} \\
J_{31} & J_{32}
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{s}_{1}^{\top} \mathbf{b}_{1} & \mathbf{s}_{1}^{\top} \mathbf{b}_{2} \\
\mathbf{s}_{2}^{\top} \mathbf{b}_{1} & \mathbf{s}_{2}^{\top} \mathbf{b}_{2} \\
\mathbf{s}_{3}^{\top} \mathbf{b}_{1} & \mathbf{s}_{3}^{\top} \mathbf{b}_{2}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{s}_{1}^{\top} \\
\mathbf{s}_{2}^{\top} \\
\mathbf{s}_{3}^{\top}
\end{array}\right]\left[\begin{array}{ll}
\mathbf{b}_{1} & \mathbf{b}_{2}
\end{array}\right]
$$

$$
n=2 \text { pixels, } 3 \text { lights }
$$

pixel indexing i :

1	2	3	4
5	6	7	8
9	10	11	12

in general, stacked per columns:

$$
\mathbf{S}=\left[\mathbf{s}_{1}, \mathbf{s}_{2}, \mathbf{s}_{3}\right] \in \mathbb{R}^{3,3} \quad \mathbf{B}=\left[\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right] \in \mathbb{R}^{3, n}
$$

Solution to Photometric Stereo

$$
\begin{gathered}
\mathbf{J}=\mathbf{S}^{\top} \mathbf{B} \quad \Rightarrow \quad \mathbf{B}=\mathbf{S}^{-\top} \mathbf{J} \\
\rho_{i}=\left\|\mathbf{b}_{i}\right\| \quad \text { albedo map }, \quad \mathbf{n}_{i}=\frac{1}{\rho_{i}} \mathbf{b}_{i} \quad \\
\underline{\text { needle map }} \\
\hline
\end{gathered}
$$

Photometric Stereo: Plaster Cast Example

input images (known lights)
We have: 1. shape (surface normals), 2. intrinsic texture (albedo)
The shape can be represented as unit normal vectors \mathbf{n} or as a gradient field (p, q) :

$$
\begin{gathered}
\mathbf{n}(u, v)=\left(n_{1}(u, v), n_{2}(u, v), n_{3}(u, v)\right) \\
\frac{\partial z(u, v)}{\partial u} \stackrel{\text { def }}{=} z_{u}(u, v)=p(u, v)= \pm \frac{n_{1}(u, v)}{2 n_{3}(u, v)^{2}-1} \\
\frac{\partial z(u, v)}{\partial v} \stackrel{\text { def }}{=} z_{v}(u, v)=q(u, v)= \pm \frac{n_{2}(u, v)}{2 n_{3}(u, v)^{2}-1}
\end{gathered}
$$

- The Integration Algorithm of Frankot and Chellappa (FC)

Task: Given gradient fields $p(u, v), q(u, v)$, find height function $z(u, v)$ such that z_{u} is close to p and z_{v} is close to q in the sense of a functional norm.

$$
z^{*}=\arg \min _{z} Q(z), \quad Q(z)=\iint\left|z_{u}(u, v)-p(u, v)\right|^{2}+\left|z_{v}(u, v)-q(u, v)\right|^{2} d u d v
$$

In the Fourier domain this can be written as $\quad \mathcal{F}(z ; \boldsymbol{\omega})=\frac{1}{2 \pi} \iint z(u, v) e^{-j\left(u \omega_{u}+v \omega_{v}\right)} d u d v$

$$
Q(z)=\iint \underbrace{\left|j \omega_{u} \mathcal{F}(z ; \boldsymbol{\omega})-\mathcal{F}(p ; \boldsymbol{\omega})\right|^{2}+\left|j \omega_{v} \mathcal{F}(z ; \boldsymbol{\omega})-\mathcal{F}(q ; \boldsymbol{\omega})\right|^{2}}_{A(\mathcal{F}(z ; \boldsymbol{\omega}))} d \boldsymbol{\omega}, \quad \boldsymbol{\omega}=\left(\omega_{u}, \omega_{v}\right)
$$

and its minimiser is from vanishing formal derivative of $A(\mathcal{F}(z ; \boldsymbol{\omega}))$ wrt $\mathcal{F}(z ; \boldsymbol{\omega})$ [Frankot \& Chellappa 1988]

$$
\mathcal{F}(z ; \boldsymbol{\omega})=-\frac{j \omega_{u}}{|\boldsymbol{\omega}|^{2}} \mathcal{F}(p ; \boldsymbol{\omega})-\frac{j \omega_{v}}{|\boldsymbol{\omega}|^{2}} \mathcal{F}(q ; \boldsymbol{\omega})
$$

```
[m,n] = size(p);
Wu = fft2(fftshift([-1,0,1]/2),m,n); % discrete differential operator
Wv = fft2(fftshift([-1;0;1]/2),m,n);
Z = -(Wu.*fft2(p) + Wv.*fft2(q))./(abs(Wu).^2 + abs(Wv).^2 + eps);
z = real(ifft2(Z));
```


Photometric Stereo: Examples

- integrated by the FC algorithm from Slide 197
- bias due to interreflections can be removed
[Drew \& Funt, JOSA-A 1992]

－Integrability of a Vector Field

－not every vector field $p(u, v), q(u, v)$ is integrable（born by a surface $z(u, v)$ ）
－integrability constraint

$$
p_{v}(u, v)=q_{u}(u, v)
$$

－this is because a regular surface has $\operatorname{rot} \nabla z(u, v)=0$

$$
z_{u v}(u, v)=z_{v u}(u, v)
$$

－noise causes non－integrability
－the FC algorithm finds the closest integrable surface

Optimal Light Configurations

For n lights \mathbf{S} the error $\Delta \mathbf{b}=\mathbf{S}^{-\top} \Delta \mathbf{J}$ in normal \mathbf{b} due to error $\Delta \mathbf{J}$ in image is

$$
\epsilon(\mathbf{S})=E\left[\Delta \mathbf{b}^{\top} \Delta \mathbf{b}\right]=E\left[\Delta \mathbf{J}^{\top}\left(\mathbf{S}^{\top} \mathbf{S}\right)^{-1} \Delta \mathbf{J}\right]=\sigma^{2} \operatorname{tr}\left[\left(\mathbf{S S}^{\top}\right)^{-1}\right] \geq \frac{9 \sigma^{2}}{n}
$$

assuming pixel-independent normal camera noise $\Delta J_{i} \sim N(0, \sigma)$
The error ϵ is minimum if
[Drbohlav \& Chantler 2005]

$$
\mathbf{S S}^{\top}=\frac{n}{3} \mathbf{I}, \quad \text { where } \quad \mathbf{S}=\left[\mathbf{s}_{1}, \mathbf{s}_{2}, \ldots, \mathbf{s}_{n}\right]
$$

- either $n \geq 3$ equidistant and equiradiant lights on a circle of uniform slant of $\arctan \sqrt{2} \approx 54.74^{\circ}$
- $n-1$ lights in this configuration plus a light parallel to the sum $\sum_{i=1}^{n-1} \mathbf{s}_{i}$
- or light matrix \mathbf{S} is a concatenation of optimal solutions (each of $\geq \overline{3}$ lights)
eg. 3 optimally placed $\left(\mathbf{s}_{1}, \mathbf{s}_{2}, \mathbf{s}_{3}\right)+3$ lights $\left(\mathbf{s}_{4}, \mathbf{s}_{5}, \mathbf{s}_{6}\right)=\left(\mathbf{s}_{1}, \mathbf{s}_{2}, \mathbf{s}_{3}\right)+\alpha$ rotated by angle α around \mathbf{n}

Uncalibrated Photometric Stereo

Factorization $\quad \mathbf{J}=\mathbf{S}^{\top} \mathbf{B}$
LS solution by SVD decomposition of $\mathbf{J}=\mathbf{U D V}^{\top}$

$$
\begin{array}{lrl}
\mathbf{S} & =\mathbf{D}_{1: 3} \mathbf{U}^{\top} & \text { scaled pseudo-lights } \\
\mathbf{B} & =\left(\mathbf{V}_{1: 3}\right)^{\top} & \text { scaled pseudo-normals }
\end{array} \quad \mathbf{V}_{1: 3} \text { are columns 1-3 }
$$

```
Ambiguity \(\quad \mathbf{J}=\mathbf{S}^{\top} \mathbf{B}=\underbrace{\mathbf{S}^{\top} \mathbf{A}^{-1}}_{\overline{\mathbf{S}}^{\top}} \underbrace{\mathbf{A B}}_{\overline{\mathbf{B}}}, \quad \mathbf{A} \in G L(3)\)
[Koenderink94]
information ambiguity
```


-Generalized Bas Relief Ambiguity (GBR)

GBR maps surface $z^{\prime}(u, v)=\lambda z(u, v)+\mu u+\nu v$, i.e. it maps normals to $\mathbf{n}^{\prime}=\mathbf{G n}$, where

$$
\mathbf{G}=\left[\begin{array}{ccc}
\lambda & 0 & -\mu \\
0 & \lambda & -\nu \\
0 & 0 & 1
\end{array}\right]
$$

Obs: If normals change $\mathbf{n}^{\prime}=\mathbf{G} \mathbf{n}$ and lights change $\mathbf{1}^{\prime}=\mathbf{G}^{-\top} \mathbf{l}$ then Lambertian shading does not change:

$$
\mathbf{n}^{\prime \top} \mathbf{l}^{\prime}=\left(\mathbf{n}^{\top} \mathbf{G}^{\top}\right)\left(\mathbf{G}^{-\top} \mathbf{l}\right)=\mathbf{n}^{\top} \mathbf{l}
$$

Reproduced from [Belhumeur et al. 1997]
Obs: Shadow boundaries of surface \mathcal{S} illuminated by light 1 are identical to those of surface \mathcal{S}^{\prime} transformed by GBR \mathbf{G} and illuminated by light $\mathbf{1}^{\prime}=\mathbf{G}^{-\top} \mathbf{l}$
weak assumptions [Belhumeur et al. 1997]

A Quick Glance at the Classical Differential Geometry of Surfaces

Darboux frame

> umbilical
convex $\quad \kappa_{1}=\kappa_{2}>0$
concave

$$
\kappa_{1}=\kappa_{2}>0
$$

$$
\begin{gathered}
\text { elliptical } \\
\kappa_{1}>0, \kappa_{2}>0 \\
\kappa_{1}<0, \kappa_{2}<0
\end{gathered}
$$

the transition elliptic \rightarrow parabolic \rightarrow hyperbolic occurs at parabolic lines
non－umbilical surface like a torus

－Occluding Contour Structure

smooth self－occlusion contour（back） not smooth contour（mane）
－surface curves are tangent to smooth self－occlusion contour

－isophotes are surface curves \Rightarrow their density approaches infinity on smooth self－occlusion contour
$\mathbf{n}=\mathbf{Q}^{\top} \underline{\mathbf{t}} \quad$ optical plane normal
$K=\kappa_{s} \kappa_{t} \quad \rightarrow \quad \operatorname{sign}(K)=\operatorname{sign}\left(\kappa_{t}\right)$
$\kappa_{s}>0$－curvature in the direction of sight κ_{t}－occluding contour curvature

$$
\mathbf{x}_{s t}=0 \text { since } \mathbf{x}_{s} \simeq \mathbf{v}[\text { Koenderink 84] }
$$

－this is a basis for shape from occluding contour

Self-Shadow Contour Structure

- loci where occluding and self-shadow meet: the projection of light direction vector to image plane is tangent to the contour there

Isophotes on Simple Lambertian Surfaces

Surface is parameterized by: σ - slant, τ - tilt, where $\mathbf{n}^{\top} \mathbf{l}=\cos \sigma$

- isophotes - green
- apex - where $\mathbf{n} \simeq 1$
- isophotes parallel to rulings on developable surfaces
- illuminant on cylinder axis: constant reflectance cylindrical part illumination w/o shading
- in general: isophotes are parallel to zero-curvature principal direction

Isophotes on a Complex Surface

shaded Lambertian surface

isophotes w／approximate parabolic curves
singular image points
－Lambertian apex：move with light， $\mathbf{n}=\mathbf{l}$（T1）
－extrema and saddles on parabolic lines：move along parabolic lines（T2）
－planar points：do not move（not shown）
－specular points：move with light and／or viewer but slower（not shown）
［Koenderink \＆van Doorn 1980］

The Crater Illusion

Ambiguity in Local Shading and The Human Vision Preference

Apollo 17 landing site (Taurus-Littrow); courtesy of NASA

Shading at Lambertian apex:

$$
\begin{gathered}
K^{2}=\operatorname{det}\left(\mathbf{H G}^{-1}\right) \\
2 H^{2}-K=-\frac{1}{2} \operatorname{tr}\left(\mathbf{H G}^{-1}\right) \\
\mathbf{H}=\left[\begin{array}{cc}
I_{u u} & I_{u v} \\
I_{u v} & I_{v v}
\end{array}\right] \quad \text { image Hessian } \\
\mathbf{G}=\left[\begin{array}{cc}
1+l_{1}^{2} & l_{1} l_{2} \\
l_{1} l_{2} & 1+l_{2}^{2}
\end{array}\right] \quad \text { from light dir. } \mathbf{l}=\left(l_{1}, l_{2}, l_{3}\right)
\end{gathered}
$$

bottom: crater-like surface top: surface illuminated from lower-left and top-right

Apex: Up to 4 solutions for surface principal curvatures:
convex/concave \times elliptic/hyperbolic

Thank You

ROC curves and their average error rate bounds

