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» Constructing A Suitable Image Similarity

e let p; = (I,7) and L(l), R(r) be (left, right) image descriptors (vectors) constructed from
local image neighborhood windows

in matching table T

1
in the left image:

L) — R(r)|?

o7 (l,r)
e o2 — the difference scale; a suitable (plug-in) estimate is 1 [s2(L(1)) + s?(R(r))], giving
2 S(L(l)7 R(r))

® a natural descriptor similarity is sim(l,r) =

sim(l,7) =1 — s2() i le (co-)vari 30
sim(l, ) 2L0) + 2 (R() s~ (+) is sample (co-)variance (30)
p(LO).R(M)
e p — MNCC - Moravec's Normalized Cross-Correlation [Moravec 1977]
p’e [0,1], sign p ~ ‘phase’

3D Computer Vision: VII. Stereovision (p. 163/208) DA R. Sara, CMP; rev. 18-Dec-2012 *Mll



cont’d

=10, p=1.5
6 10
e we choose some probability distribution on 5 8
[0, 1], e.g. Beta distribution _
4 6 @
pr(sm(l, 1) = =t pFe (= 2 S .
B(a, B) kS @
8 g
e note that uniform distribution is obtained for 2 2 3
a=p=1
1 0
0 -2
0 0.2 04 p 06 0.8 1

e the mode is at ,/ﬁ ~ 0.9733 fora =10, B =1.5

e if we chose 8 = 1 then the mode was at p =1
e perfect similarity is ‘suspicious’ (depends on expected camera noise level)
e from now on we will work with

Vi (sim(l, 7)) = —log p1 (sim(l, 7)) (31)

3D Computer Vision: VII. Stereovision (p. 164/208) DA R. Sara, CMP; rev. 18-Dec-2012 *ill



How A Scene Looks in The Filled-In Similarity Table

scene left image right image

e MNCC p used
(=15, 8=1)

e high-correlation structures
correspond to scene objects

constant disparity

e a diagonal in correlation

table
5 X 5 window 11 x 11 window 3 X 3 window

® zero disparity is the main
diagonal

depth discontinuity

e horizontal or vertical jump
in correlation table

large image window
® better correlation

® worse occlusion localization
see next

repeated texture

® horizontal and vertical
block repetition

a good tradeoff  occlusion artefacts undiscrimiable
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Note: Errors at Occlusion Boundaries for Large Windows

NCC, Disparity Error

B

a sl 7o
} !
B! € n K v
b

X p c A K

o this used really large window of 25 x 25 px
e errors depend on the relative contrast across the occlusion boundary
e the direction of ‘overlow’ depends on the combination of texture contrast and edge
contrast
e solutions:
1. small windows (5 x 5 typically suffices)
2. eg. ‘guided filtering’ methods for computing image similarity [Hosni 2011]
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»Marroquin’s Winner Take All (WTA) Matching Algorithm
1. per left-image pixel: find the most similar right-image pixel
SAD(l,r) = ||IL() — R(r)||, L1 norm instead of the Lz norm in (30); unnormalized

2. represent the dissimilarity table diagonals in a compact form

d=0- ﬁ

d=0--0--0-0--0-0--0--
d=1----- 0-0--0-0--0--
d=2------- - -0-0--0--
3. use the ‘image sliding aggregation algorithm’
in LTI ITI]
im I TIITII] d

4. threshold results by maximal allowed dissimilarity
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The Matlab Code for WTA

function dmap = marroquin(iml,imr,disparityRange)
% iml, imr - rectified gray-scale images
% disparityRange - non-negative disparity range

% (c) Radim Sara (sara@cmp.felk.cvut.cz) FEE CTU Prague, 10 Dec 12

thr = 20;
r = 2;
winsize = 2*xr+[1 1];

% bad match rejection threshold
% 5x5 window (neighborhood)

% the size of each local patch; it is N=(2r+1)°2 except for boundary pixels
N = boxing(ones(size(iml)), winsize);

% computing dissimilarity per pixel (unscaled SAD)
for d = O:disparityRange % cycle over all disparities
slice = abs(imr(:,1:end-d) - iml(:,d+l:end)); % pixelwise dissimilarity
V(:,d+1:end,d+1) = boxing(slice, winsize)./N; % window aggregation

end

% collect winners, threshold, and output disparity map
[cmap,dmap] = min(V,[],3);
dmap(cmap > thr) = NaN;

% mask-out high dissimilarity pixels
end

function ¢ = boxing(im, wsz)

% if the mex is not found, run this slow version:

c = conv2(ones(1,wsz(1)), ones(wsz(2),1), im,

’same’) ;
end
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WTA: Some Results
thr = 20 thr = 10

e results are bad

e false matches in textureless image regions and on repetitive structures (book shelf)
® a more restrictive threshold (thr=10) does not work as expected

e we searched the true disparity range, results get worse if the range is set wider

e chief failure reasons:

e unnormalized image dissimilarity does not work well
e no occlusion model
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»Negative Log-Likelihood of Observed Images

e given matching M what is the likelihood of observed data D?

e we need the ability ‘not to match’

e matches are pairs p; = (l;,7r:), i=1,...,n

o we will mask-out some matches by a binary label A € {e, m} excluded, matched
[ ]

labeled matching is a set

M = {(ph )‘(pl))7 (p27 A(pQ))a R} (pn7 A(pn))}

p; are matching table pairs; there are no more than n in the table T'

The negative log-likelihood is then the likelihood of data D given labeled matching M
V(D|M)= Y V(D) | Ap:))
pi€EM
Our choice:
V( (p) | AM(ps) = ) =Ve penalty for unexplained data, Vo > 0

V(D(ps) | Mpi) =m) = Vi (D(l,r)) probability of match p; = (I,7) from (31)

® the V(D(p;) | A(pi) = e) could also be a non-uniform distribution but the extra effort does not pay off
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»Maximum Likelihood (ML) Matching

Uniqueness constraint: Each point in the left image matches
at most once and vice versa.

A node set of T that follows the uniqueness constraint is called
matching in graph theory
—X(p)

A set of pairs M = {p;} ;, p; € T is a matching iff
Vpi,p; € M,i#j: p; & X(ps).

" The X (p) is called the X-zone of p and it defines dependencies

® H4; 2pt: How many are

e ML matching will observe the uniqueness constraint only
e epipolar lines are independent wrt uniqueness constraint
® we can solve the problem per image lines ¢ independently:

M* = arg min V(D A = arg min M| -V
A}geM pgj%f (D@) 1 2@) A;%GM < | o Ve
——

unexplained pixels

there: (1) binary partitionings
of T, (2) maximal matchings
in T'; prove the results.

> VIDE) | AR) = m))

pEM : X(p)=m

matching likelihood proper

M — set of all perfect labeled matchings, |M]|, — number of pairs with A = e in M, |[M|, <n
perfect = every table row (column) contains exactly 1 match

® the total number of individual terms in the sum is n (which is fixed)
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»‘Programming’ The ML Matching Algorithm

® we restrict ourselves to a single (rectified) image line and reduce the problem to min-cost

perfect matching

extend every matching table pair p € T, p = (j, k) to 4 combinations ((j, s5), (k, sk)),

°
s; € {0,1} and s € {0, 1} selects/rejects pixels for matching unlike X selecting matches
e binary label mj; = 1 then means that (j, s;) matches (k, si)
OV =V(D(, k) | Aje =m) O Vjr =0
1
(k,0) O\/}k:EVe + Vi =
i ® cach (g, 1) either matches some (k, 1) or it ‘matches’ (j,0)
G,1) ® cach (k, 1) either matches some (j,1) or (k,0)
i ® if M is maximal in the yellow quadrant then there will be n
auxiliary ‘matches’ in the gray quadrant
® otherwise every empty line in the yellow quadrant induces an
(k,1) (5,0) empty column in the quadrant, the cost is 2 - éVe =Ve
e our problem becomes minimum-cost perfect matching in an (m + n) x (m + n) table

+ _ ; — : e —
MT = argr%}[nz Vik - mjp, ijk =1 for every j, Zm]k =1 for every k

Jk k J

e we collect our matches M* in the yellow quadrant
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Some Results for the ML Matching

o unlike the WTA we can efficiently control the density/accuracy tradeoff
e middle row: V. set to error rate of 3% (and 61% density is achieved)  holes are black
e bottom row: V. set to density of 76% (and 4.3% error rate is achieved)
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Some Notes on ML Matching

e an algorithm for maximum weighted bipartite matching can be used as well, with V — —V
o maximum weighted bipartite matching = maximum weighted assignment problem

by eg. Hungarian Algorithm

Idea?: This looks simpler: Run matching with Ve = 0 and then threshold the result to
remove bad matches.

Ex: V. =8
thresholding our ML matching
8 3 9 8 3 J ® our matching gives a better cost,
10 6 9 10 6 9 also greater cardinality (density)
7 1 8 ’ 1 8 ® the idea was not good!
V=94+2-8=2

5 V=94+10+8=27

thresholding our ML
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A Stronger Model Needed

® notice many small isolated errors in the ML matching
® we need a continuity model
® does human stereopsis teach us something?

Potential models for M
1. Monotonicity (ie. ordering preserved):

For all (¢,j) € M, (k,l) e M, k>i=1>j
Notation: (i,j) € M or j = M (i) — left-image pixel ¢ matches right-image pixel j.

2. Coherence [Prazdny 85]

“the world is made of objects each occupying a well defined 3D volume”

monotonic

non-monotonic non-monotonic monotonic
incoherent coherent coherent model ‘strength’
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»An Auxiliary Construct: Cyclopean Camera
from the psychophysiology of vision [Julesz 1971]

b
_buitu N u:ul-;-UQ

Cyclopean coordinate u
T4 2

Disparity gradient
[Pollard, Mayhew, Frisby 1985]

1_ 1
lu =l f (2 - %)
B |2" — 2|
T xe — 22

e human stereovision fails to perceive
a continuous surface when disparity

gradient exceeds a limit

R. S4ra, CMP; rev. 18-Dec—2012
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»Forbidden Zone and The Ordering Constraint

Forbidden zone F(X): DG >k with boundary b (2" — 2) = £k (z2' — 2'2)
® boundary: a pair of lines in the z — z plane
a degenerate conic
e point z = 2/, z = 2/ lies on the boundary
e coincides with optical rays for k = 2

e small £ means wide F’

o disparity gradient limit is exceeded when X’ € F(X)

e symmetry: X' € F(X) & X € F(X')

e Obs: X’ and X swap their order in the other image when X’ € F(X) k=2
o real scenes often preserve ordering

e thin and close objects violate ordering see next
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Ordering and Critical Distance x

e object (thick):

e black — binocularly visible
o yellow — half-occluded
e red — ordering violated wrt foreground

e solid red zone of depth k:

e spatial points visible in neither camera
e bounded by the foreground object

Ordering is violated iff both X;, X; s.t.
X; € F(Xj) are visible in both cameras.

eg. Xz, X4

e ordering is preserved in scenes where critical
distances ~ are not exceeded, ie. when ‘the
red background hides in the solid red zone’

‘ Thinner objects and/or wider baseline
2 require flatter scenes to preserve ordering.
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»The X-zone and the F'-zone in Matching Table T’

e these are necessary and sufficient conditions for uniqueness and monotonicity

e Uniqueness Constraint:

A set of pairs M = {pi}f.vzl, p; € T is a matching iff
m Vpi,pj € M,i#j: pj & X(pi)-

e Ordering Constraint:

Matching M is monotonic iff
Vpi,pj € M : p; & F(pi).

e ordering constraint: matched points form a
monotonic set in both images
e ordering is a powerful constraint:
monotonic matchings O(4") < O(N!) all matchings
in N X N table
® 2: how many are there maximal monotonic matchings?

p; & X(pi), pj & F(p:)

® uniqueness constraint is a basic occlusion model

e ordering constraint is a weak continuity model
and partly also an occlusion model
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» Understanding Matching Table

e this is essentially the picture from Slide 178

left image pixel index =——
\ \<

— right image pixel index
reJ

@ binocularly visible foreground points
e binocularly visible background pts violating ordering
@ monocularly visible points

dj, critical disparity

° depth discontinuity in left image
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Bayesian Decision Task for Matching

Idea: L(d, M) — decision cost (loss) d — our decision (matching) M — true correspondences

if d=M then L(d,M)=10

if d M then L(d,M) =1 ie. L(d, M) =[d+# M]

Choice: L(d, M) : {

Bayesian Loss

L(d| D)= > p(M| D) L(d, M)
MeM
M — the set of all matchings D ={Ip, Ir} — data

Solution for the best decision d

d = argmdin Z p(M | D)(1—[d= M]) :argmdin (1 — Z p(M | D)[d = M]) =

MeM MeM /\
= argmax Z (M| D)ld=M] = argn}\z}xp(M | D) =

MeM d? M
= argmin(—log p(M | D)) = argmln V(M | D) = arg mm (V(D | M) —I—V(M))
M EM MM —— ——
likelihood prior

e this is Maximum Aposteriori Probability (MAP) estimate
e other loss functions result in different solutions
e our choice of L(d, M) looks oversimple but it results in algorithmically tractable
problems
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»Constructing The Prior Model Term V(M)

e the prior V(M) should capture M* = arg 1\?161/134 (V(D | M) + V(M))

1. uniqueness
2. ordering
3. coherence

e we need a suitable representation to encode V(M)
e Every p = (I,r) of the |I| x |J| matching table T" (except for the last row and column)

receives two succesors (I + 1,7) and (I,7 + 1)

T —
S

e

! Iﬂ( LI_K

L]
t t

e this gives an acyclic directed graph G optimal paths in acyclic graphs are an easier problem
o the set of s-t paths starting in s and ending in ¢ will represent the set of matchings

e all such s-t paths have equal length n = |I| 4 |J| — 1
all prospective matchings will have the same number of terms in V(D | M) and in V(M)

R. Séra, CMP; rev. 18-Dec—2012 *Hll
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Endowing s-t Paths with Useful Properties

e introduce node labels A = {m,er,,er} matched, left-excluded, right-excluded
® s-t path neighbors are allowed only some label combinations:
s numbers are disparities
m er, er, er, m er, eRr er, 0@
e m  er  eL s é s & -2 %
O ® O O €RrR m €RrR eR o I
o
o $
Observations 1 1—»»—3
® no two neighbors have label m
® in each labeled s-t path there is at most one transition: %"T"ﬁ;
1. m — er, or eg — m per matching table row, 0 ; © ¢
2. m — eR or e, — m per matching table column 0 oo 22-l 0
® pairs labeled m on every s-t path satisfy uniqueness and ordering constraints
® transitions e, — e or eg — ey, along an s-t path allow skipping a contiguous segment in
either or in both images this models half occlusion and mutual occlusion
. . . °L €L R CR
e disparity change is the number of edges 0——0 or O0——0O
® a given monotonic matching can be traversed by one or more s-t paths

Labeled s-t paths

A1 An
P = ((p17A1)7 (p27)\2)7"'7(p77«7A77«)) &—0—0—0—0
P D2 P3 Pn
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The Structure of The Prior Model V' (P) Gives a MC Recognition Problem

ideas:
e we choose energy of path P dependent on its labeling only
e we choose additive penalty per transition er, — er,, er — er, and er, — er, er — eL
e no penalty for m — e, m — er
A1 An

Employing Markovianity
P1 D2 D3 Dn

V(P)=V(An, A=ty s A1) =V(An | Adnc1y oo, A1) + V( A1, ..o, A1) =
=V A1) FV(An1,.0, M) = V() + ZV()\z‘ [ Ai—1)
i=2
The matching problem is then a decision over labeled s-t paths P € P:

P = arg}rjnei% {Vpl(D | A1) + V(A1) + Z[Vpi(D | Ai) + V(A | )\il)]} (32)

=2

e the data likelihood term V},, (D | A;) is the same as in (31) on Slide 164

® note that one can add/subtract a fixed term from any of the functions V,,, V in (32)
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A Choice of V(X\; | Ai—1)

e A natural requirement: symmetry of probability p(A;, Aj—1) = e~V (X Ai1)

A 3 DOF, 1 constraint = 2 parameters
p(Ais Aio1)
m er, er ,
| = plenser) 0<ar <1
m 0 p(m, e) p(m, e) p(e, €)
>\i—1 er, p(m7 e) p(e7 e) p(eL7 eR) p(l’[l7 e) 0 <1
er || p(m,e) | pleL,er) | plee) 27 hee) sozs it
e Result for V/(A\; | A\;—1) (after subtracting common terms):
Ai S
V(Xi | Xi-1) by marginalization:
m €L °R
m 00 0 0 V(m):ln1+al+a2
2o
A e In 1+oagtas In 1+ tas In 1+ tas
R 20 2 21 V(er) = V(er) =0
er In 1+g(11'§a2 In 1+;"};1’a2 In 1+a§+a2
parameters
e «j — likelihood of mutual occlusion (a1 = 0 forbids mutual occlusion)
® a9 — likelihood of irregularity (a2 — 0 helps suppress small objects and holes)

e «, B — similarity model parameters (see Vi (D(l, 7)) on Slide 164)
e V. — penalty for disregarded data (see V(D(p;) | A(p;) = e) on Slide 170)
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‘Programming’ the Matching Algorithm: 3LDP

given G, construct directed graph gt

triple of vertices per node of s-t path representing three hypotheses A(p) for A € A
arcs have costs V(A\; | Aj—1), nodes have costs V(D | \;)

orientation of Gt is inherited from the orientation of s-t paths

we converted the shortest labeled-path problem to ordinary shortest path problem

(1-1,7)

neighborhood of p; strong blue edges are of zero penalty
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cont'd: Dynamic Programming on G*

e GT is a topologically ordered directed graph
e we can use dynamic programming on G+

SO = min VIO VDA + VO )]

2€{p1,p2},Az €A

Viig(Aq) — cost of min-path from s to label A4 at node ¢

e complexity is O(|I| - |J|), ie. stereo matching on N x N images needs O(N?3) time

e speedup by limiting the range in which the disparities d = [ — r are allowed to vary
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Implementation of 3LDP in a few lines of code. ..

#define clamp(x, mi, ma) ((x) < (mi) 7 (mi) : ((x) > (ma) 7 (ma) : (x)))
#define MAXi(tab,j) clamp((j)+(tab).drange[1], (tab).beg[0], (tab).end[0])
#define MINi(tab,j) clamp((j)+(tab).drange[0], (tab).beg[0], (tab).end[0])

#define ARG_MIN2(Ca, La, CO, LO, C1, L1) if ((CO) < (C1)) { Ca = CO; La = LO; } else { Ca = C1; La = L1; }

#define ARG_MIN3(Ca, La, CO, LO, C1, L1, C2, L2) \
if ( (CO) <= MIN(C1, C2) ) { Ca = CO; La = LO; } else if ( (C1) < MIN(CO, C2) ) { Ca = C1; La = L1; } else { Ca = C2; La = L2; }

void DP3LForward(MatchingTableT tab) { void DP3LReverse(double *D, MatchingTableT tab) {
int i = tab.beg[0]; int j = tab.beg[1]; int i,j; labelT La; double Ca;
C_m[j][i-1] = C_m[j-1]1[i] = MAXDOUBLE; for(i=0; i<ml; i++) D[i] = nan; /* not-a-number */
C_oL[j1[i-1] = C_oR[j-11[i] = 0.0;
C_oL[j-11[i] = C_oR[j]1[i-1] = -penalty[0]; i = tab.end[0]; j = tab.end[1];

ARG_MIN3(Ca, La, C_m[j]1[il, 1bl_m,
for(j = tab.begl[1l; j <= tab.end[1]; j++) C_oL[j1[il, 1bl_oL, C_oR[j1[il, 1bl_oR);

for(i = MINi(tab,j); i <= MAXi(tab,j); i++) {
while (i >= tab.beg[0] && j >= tab.beg[i] && La > 0)

ARG_MIN2(C_m[j1[i], P_m[j][i], switch (La) {
C_oR[j-1]1[i] + penalty[2], 1bl_oR, case 1bl_m: D[i] = i-j;
C_oL[j1[i-1] + penalty[2], 1bl_oL); switch (La = P_m[j]1[i]) {
C_m[j1[i] += 1.0 - tab.MNCC[j][il; case 1bl_oL: i--; break;
case 1bl_oR: j--; break;
ARG_MIN3(C_oL[j1[i], P_oL[j1[i], C_m[j-1][il, 1bl_m, default: Error(...);
C_oL[j-11[i] + penalty[0], 1bl_oL, } break;
C_oR[j-11[i] + penalty[1], 1bl_oR);
C_oL[j]1[i] += penalty[3]; case 1bl_oL: La = P_oL[j1[il; j--; break;
case 1bl_oR: La = P_oR[j]1[i]; i--; break;
ARG_MIN3(C_oR[j1[il, P_oR[j1[i], C_m[j][i-1], 1bl_m, default: Error(...);
C_oR[j1[i-1] + penalty[0], 1bl_oR, }
C_oL[j1[i-1] + penalty[1], 1bl_oL); ¥
C_oR[j1[i] += penalty[3];
}
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Some Results: AppleTree

left image right image

3LDP (slide 186) naive DP [Cox et al. 1992]  stable segmented 3LDP (see [SP])

e 3LDP parameters «;, Ve learned on Middlebury stereo data http://vision.middlebury.edu/stereo/
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http://vision.middlebury.edu/stereo/

Some Results: Larch

left image right image

3LDP (slide 186) naive DP stable segmented 3LDP

® naive DP does not model mutual occlusion

® but even 3LDP has errors in mutually occluded region

e stable segmented 3LDP has few errors in mutually occluded region since it uses a weak form
of ‘image understanding’
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Algorithm Comparison

Winner-Take-All (WTA)
e the ur-algorithm [Marroquin 83] no model
e dense disparity map
e O(N3) algorithm, simple but it rarely works
Maximum Likelihood (ML)

semi-dense disparity map

many small isolated errors

models basic occlusion

O(N?31og(NV)) algorithm max-flow by cost scaling

MAP with Min-Cost Labeled Path (3LDP)

e semi-dense disparity map

e models occlusion in flat, piecewise continuos
scenes

® has ‘illusions’ if ordering does not hold
e O(N3) algorithm
Stable Segmented 3LDP
o better (fewer errors at any given density)
e O(N3log N) algorithm
® requires image segmentation itself a difficult task

density (%]

98
95
920

80
70

50

30
20

10

ROC curves and their average error rate bounds

Y/
7
7/ L
3LDP (3.65 + 0.26)
WTA (4.71+£0.17) | [
ML (4.60 + 0.65)
GCS (4.29+1.47) ||
05 1 2 3 5 10 20

inaccuracy [%]

ROC-like curve captures the
density/accuracy tradeoff

GCS is the one used in the exercises

more algorithms at
http://vision.middlebury.edu/
stereo/ (good luck!)
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Part VIII

Shape from Reflectance

@ Reflectance Models (Microscopic Phenomena)
© Photometric Stereo
@ Image Events Linked to Shape (Macroscopic Phenomena)

mostly covered by

Forsyth, David A. and Ponce, Jean. Computer Vision: A Modern Approach. Prentice
Hall 2003. Chap. 5

additional references
@ R. T. Frankot and R. Chellappa. A method for enforcing integrability in shape from shading algorithms.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 10(4):439-451, July 1988.

@ P. N. Belhumeur, D. J. Kriegman, and A. L. Yuille. The bas-relief ambiguity. In Proc Conf Computer Vision
and Pattern Recognition, pp. 1060-1066, 1997.
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»Basic Surface Reflectance Mechanisms

i Y
TN
1 n

v
‘

refraction index n = 1

macroscopic scale

air

optical boundary

n=15...23 particles in medium
/\ ° o O
microscopic scale
e reflection on (rough) optical boundary e refraction into the body
masking and shadowing e subsurface scattering
o interreflection e refraction into the air
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»Parametric Reflectance Models

Image intensity (measurement) at pixel m given by surface reflectance function R
<I)e T L — X
J(m) =1 fir(0i, ¢i; 0 c————n l=R(n 1=
( ) nflﬂ‘( 7«7¢17 T7¢7‘) 47T||L—XH2 ( )7 H _XH
o
7 — sensor sensitivity for simplicity, we select n = 27

fi,r() — bidirectional reflectance distribution function (BRDF)
[fi,r()] = st~! how much of irradiance in Wm~=2 is
redistributed per solid angle element
L - point light source position
®. — radiant power of the light source, [P.] = W
n — surface normal

o —irradiance of a surfel orthogonal to incident light
direction

Isotropic (Lambertian) reflection [Lambert 1760]
no optical boundary

fir(8i, 05305, ) = %, p — albedo

pixel projected onto surface

J(m) = opcosh; = opn'l
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»Photometric Stereo
Lambertian model (light j € {1,2,3}, pixel i € {1,...,n})
Jji = (05 1) " (pimi) = s bi

. Vi
b; — scaled normals, s; — scaled lights lj

3 independent scaled lights and n scaled normals, one per pixel V>
(in n pixels); can be stacked in matrices:

pixel indexing 1i:
Jii Ji2 s{b1 s{by s7 12134
Jo1 Joz| = |sab1 siby| = |sg [bl bg}
Jz1 Ja2 sib1  s3 by s 5|67
n = 2 pixels, 3 lights 9|w0j1j2

in general, stacked per columns:
S =[s1,s2,83] €R*®  B=[by, by, ..., b, e R

Solution to Photometric Stereo

J=STB = B=S""J J e R3™

1
pi = |[bi||  albedo map, n; = —b; needle map

i
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Photometric Stereo: Plaster Cast Example

input images  (known lights) needle & albedo maps

We have: 1. shape (surface normals), 2. intrinsic texture (albedo)

The shape can be represented as unit normal vectors n or as a gradient field (p, q):

n(u,v) = (n1(u,v), na(u,v), ns(u,v)),

0z(u,v) def _ - n1(u,v)
“ou zu(u,v) = plu,v) = :I:W,
0z(u,v) def _ _ na(u,v)

v - ZU(U, U) - q(uv ’U) - i2n3(u7 1})2 -1
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»The Integration Algorithm of Frankot and Chellappa (FC)

Task: Given gradient fields p(u,v), g(u,v), find height function z(u,v) such that z, is
close to p and z, is close to ¢ in the sense of a functional norm.

S magminQ(), Q) = [ [ )~ pluo) o+ 2 ,0) — gl o) dudo

In the Fourier domain this can be written as Flzyw) = 5= [[ 2(u, v)e I (wwutven) gy dy

2) :/ jwu F(ziw) = F(p;w)[* + ljwo F(ziw) = Flgw)® dw,  w = (wu,w0)

A(F(z3w))
and its minimiser is from vanishing formal derivative of A(F(z;w)) wrt F(z;w)
[Frankot & Chellappa 1988]
Jw

[m,n] = size(p);
Wu = fft2(£fftshift([-1,0,1]1/2),m,n); % discrete differential operator

Wv = £ft2(fftshift([-1;0;11/2),m,n);
Z = -(Wu.*f£ft2(p) + Wv.*f£ft2(q))./(abs(Wu). 2 + abs(Wv)."2 + eps);

z = real (ifft2(2));
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Photometric Stereo: Examples

3 input images

3 input images

e integrated by the FC algorithm from Slide 197
® bias due to interreflections can be removed

surface

surface

[Drew & Funt, JOSA-A 1992]
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» Integrability of a Vector Field

e not every vector field p(u,v), ¢(u,v) is integrable (born by a surface z(u,v))

e integrability constraint

= qu(u,v)

Po(u,v)

e this is because a regular surface has rot Vz(u, v)

irrotational gradient field

0

Zvu (U, V)

Zuw (U, V)

® noise causes non-integrability

o the FC algorithm finds the closest integrable surface

CosNANAN YL
SR
S A

RSN NN
BRSNS

non-integrable non-integrable (noisy)

integrable

, CMP; rev. 18-Dec-2012 *ll
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Optimal Light Configurations

For n lights S the error Ab = S~ AJ in normal b due to error AJ in image is

2
(S) = B[AbTAb] — B[ATT(8T8) 3] = o* r[(88T) ) > 2.
n
assuming pixel-independent normal camera noise AJ; ~ N (0, 0)

The error € is minimum if [Drbohlav & Chantler 2005]
n

SSngL where S = [s1,s2,...,Ss]

e either n > 3 equidistant and equiradiant lights on a circle of uniform slant of
arctan V2 & 54.74°

e n — 1 lights in this configuration plus a light parallel to the sum Z:.L:_ll S;
e or light matrix S is a concatenation of optimal solutions (each of > 3 lights)

eg. 3 optimally placed (s, s2,s3) + 3 lights (s4,s5,s6) = (s1,S2,s83) + « rotated by angle o around n
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Uncalibrated Photometric Stereo

Factorization J=S'B [Hayakawa94]
LS solution by SVD decomposition of J = UDV T
S = D1;3U—r scaled pseudo-lights
B= (V1:3)T scaled pseudo-normals V1.3 are columns 1-3
Ambiguity J=STB=STA™! AB, AecGL@3) [Koenderink94]
—_— =
ST B
information ambiguity
3+ normals B known Al (identity 3 x 3 mtx) B= AB = A B is measured
uniform albedo AR (orthogonal 3 x 3 mtx) 6 points: [Drew92]
|Ab;|=1=b/ATAb;, =1= ATA = A up to rot.
(Choleski)
equal light intensity AR ls; A=Y =1 = A up to rot. [Hayakawa94]
. _ A0 . . i
integrable normals p, = g, 0 A v generalized bas-relief ambiguity
forn ~ (p,q,1) 0 0 = [Yuille99, Fan97, Belhumeur99]

uniform albedo AT
and integrability

integrability and AL

24 specular pts [Drbohlav & Chantler, ICCV 2005]
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»Generalized Bas Relief Ambiguity (GBR)
GBR maps surface 2’ (u,v) = Az(u,v) + pu+ v v, i.e. it maps normals to n’ = Gn, where
A0 —pu

G=|0 A —v

0 O 1
G~ T 1 then Lambertian shading does not

Obs: If normals change n’ = Gn and lights change I’

change:
nV=m"eaTy G )=

0.6f(t) + 0.5t

Reproduced from [Belhumeur et al. 1997]
Obs: Shadow boundaries of surface S illuminated by light 1 are identical to those of surface S’
transformed by GBR G and illuminated by light ' = G~ "1
weak assumptions [Belhumeur et al. 1997]

DA R. Sara, CMP; rev. 18-Dec-2012 *&ll
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»A Quick Glance at the Classical Differential Geometry of Surfaces

n+ dn
Ko = t;)r d—n normal curvature, direction 0
ds
K1, K2 principal curvatures
K =K1 - Kk2 Gaussian curvature
H = k1 + k2 mean curvature

Ko = K1 cos? 0 + ko sin? 0

Darboux frame

umbilical elliptical parabolic hyperbolic
convex k1 =Kz >0 k1 >0, 62>0 K1 >0,k2=0 £k1>0,k2<0
concave K1 <0, k2 <0

N
‘:\\\\ ‘\‘

I/’ i T \\\
”:%/l/ﬁ,',"\\3\\\\\\\\\\\\\\ “\\\“\“
i \\\\\\ \\\\\\ i

\\\\\\\{‘}‘}\\\\\\\\\}\‘{“\\\\\\
i

\\\\\ “\l\\“
\\\\\

"

0
NN

il

the transition elliptic — parabolic — hyperbolic occurs at parabolic lines

non-umbilical surface like a torus
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» Occluding Contour Structure

1T

t
| n/]
smooth self-occlusion contour (back) 7
not smooth contour (mane) -V
e surface curves are tangent to smooth
self-occlusion contour
T .
n=Q t optical plane normal

K

kske —  sign(K) = sign(ke)

ks > 0 — curvature in the direction of sight
k¢ — occluding contour curvature
x5t = 0 since x; ~ v [Koenderink 84]

® isophotes are surface curves = their e this is a basis for
density approaches infinity on smooth shape from occluding contour
self-occlusion contour
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Self-Shadow Contour Structure

e loci where occluding and self-shadow
meet: the projection of light direction
vector to image plane is tangent to the
contour there
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Isophotes on Simple Lambertian Surfaces

Surface is parameterized by: o — slant, 7 — tilt, where n'1 = cos o
e isophotes — green

e apex — where n ~ 1
e isophotes parallel to rulings on developable surfaces
e illuminant on cylinder axis: constant reflectance cylindrical part illumination w/o shading

e in general: isophotes are parallel to zero-curvature principal direction
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Isophotes on a Complex Surface
shaded Lambertian surface isophotes w/ approximate parabolic curves

singular image points
Lambertian apex: move with light, n =1 (T1)

e extrema and saddles on parabolic lines: move along parabolic lines (T2)

e planar points: do not move (not shown)
e specular points: move with light and/or viewer but slower (not shown)

[Koenderink & van Doorn 1980]
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The Crater lllusion
Ambiguity in Local Shading and The Human Vision Preference
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Apollo 17 landing site (Taurus-Littrow); courtesy of NASA
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Shading at Lambertian apex:

K? =det (HG™)
2H? — K = _1 tr (Hg—l) bottom: crater-like surface

2 top: surface illuminated from lower-left
H— |:[uu Iu'u:| image Hessian and top-right
I’U’U

1402 Il Apex: Up to 4 solutions for surface
G = |: L1 ! 1 ij?} from light dir. 1 = (l1,12,13) principal curvatures:
172 2 convex/concave X elliptic/hyperbolic

Iuv
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ROC curves and their average error rate bounds
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density [%)]
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o

3LDP (3.65 + 0.26)
WTA (4.71+0.17)
51 : ‘ R ML (4.60£0.65) |r
GCS (4.29 +1.47)

0.5 1 2 3 5 10 20
inaccuracy [%]

3D Computer Vision: enlarged figures R. Sara, CMP; rev. 18-Dec-2012 *Mll



3D Computer Vision: enlarged figures R. Sara, CMP; rev. 18-Dec-2012



3D Computer Vision: enlarged figures R. Sara, CMP; rev. 18-Dec-2012 *Mll



3D Computer Vision: enlarged figures R. Sara, CMP; rev. 18-Dec-2012 *Mll



3D Computer Vision: enlarged figures R. Sara, CMP; rev. 18-Dec-2012 *Mll



3D Computer Vision: enlarged figures R. Sara, CMP; rev. 18-Dec-2012 *Mll






3D Computer Vision: enlarged figures R. Sara, CMP; rev. 18-Dec-2012 *Mll



3D Computer Vision: enlarged figures R. Sara, CMP; rev. 18-Dec-2012 *Mll



PRA|HA * X %
PRA[GA i 1
A PRA|G r

EVROPSKA UNIE

OPPA European Social Fund
Prague & EU: We invest in your future.




