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IConstructing A Suitable Image Similarity

• let pi = (l, r) and L(l), R(r) be (left, right) image descriptors (vectors) constructed from
local image neighborhood windows

in matching table T :

�2l
r

�1
in the left image: L(l)l

• a natural descriptor similarity is sim(l, r) =
‖L(l)−R(r)‖2

σ2
I (l, r)

• σ2
I – the difference scale; a suitable (plug-in) estimate is 1

2

[
s2
(
L(l)

)
+ s2

(
R(r)

)]
, giving

sim(l, r) = 1−
2 s
(
L(l),R(r)

)
s2
(
L(l)

)
+ s2

(
R(r)

)︸ ︷︷ ︸
ρ
(
L(l),R(r)

)
s
2
(·) is sample (co-)variance (30)

• ρ – MNCC – Moravec’s Normalized Cross-Correlation [Moravec 1977]

ρ2 ∈ [0, 1], sign ρ ∼ ‘phase’
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cont’d

• we choose some probability distribution on
[0, 1], e.g. Beta distribution

p1

(
sim(l, r)

)
=

1

B(α, β)
ρ2(α−1)(1− ρ2)β−1

• note that uniform distribution is obtained for
α = β = 1
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α=10, β=1.5

• the mode is at
√

α−1
α+β−2

≈ 0.9733 for α = 10, β = 1.5

• if we chose β = 1 then the mode was at ρ = 1

• perfect similarity is ‘suspicious’ (depends on expected camera noise level)

• from now on we will work with

V1

(
sim(l, r)

)
= − log p1

(
sim(l, r)

)
(31)
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How A Scene Looks in The Filled-In Similarity Table

scene left image right image

5× 5 window 11× 11 window 3× 3 window

a good tradeoff occlusion artefacts undiscrimiable

• MNCC ρ used
(α = 1.5, β = 1)

• high-correlation structures
correspond to scene objects

constant disparity

• a diagonal in correlation
table

• zero disparity is the main
diagonal

depth discontinuity

• horizontal or vertical jump
in correlation table

large image window

• better correlation

• worse occlusion localization
see next

repeated texture

• horizontal and vertical
block repetition
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Note: Errors at Occlusion Boundaries for Large Windows

NCC, Disparity Error

α

β

χ

δ

ε

ρ

γ

η

σ

ϕ

κ

λ

µ

ν

τ

• this used really large window of 25× 25 px
• errors depend on the relative contrast across the occlusion boundary
• the direction of ‘overlow’ depends on the combination of texture contrast and edge

contrast
• solutions:

1. small windows (5× 5 typically suffices)
2. eg. ‘guided filtering’ methods for computing image similarity [Hosni 2011]
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IMarroquin’s Winner Take All (WTA) Matching Algorithm

1. per left-image pixel: find the most similar right-image pixel

SAD(l, r) = ‖L(l)−R(r)‖1 L1 norm instead of the L2 norm in (30); unnormalized

2. represent the dissimilarity table diagonals in a compact form

d = 0

d = 1

d = 2

d = 0

d = 1

d = 2

3. use the ‘image sliding aggregation algorithm’

imr

×
∑ d
iml

win

4. threshold results by maximal allowed dissimilarity
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The Matlab Code for WTA

function dmap = marroquin(iml,imr,disparityRange)
% iml, imr - rectified gray-scale images
% disparityRange - non-negative disparity range

% (c) Radim Sara (sara@cmp.felk.cvut.cz) FEE CTU Prague, 10 Dec 12

thr = 20; % bad match rejection threshold
r = 2;
winsize = 2*r+[1 1]; % 5x5 window (neighborhood)

% the size of each local patch; it is N=(2r+1)^2 except for boundary pixels
N = boxing(ones(size(iml)), winsize);

% computing dissimilarity per pixel (unscaled SAD)
for d = 0:disparityRange % cycle over all disparities
slice = abs(imr(:,1:end-d) - iml(:,d+1:end)); % pixelwise dissimilarity
V(:,d+1:end,d+1) = boxing(slice, winsize)./N; % window aggregation

end

% collect winners, threshold, and output disparity map
[cmap,dmap] = min(V,[],3);
dmap(cmap > thr) = NaN; % mask-out high dissimilarity pixels

end

function c = boxing(im, wsz)
% if the mex is not found, run this slow version:
c = conv2(ones(1,wsz(1)), ones(wsz(2),1), im, ’same’);

end

3D Computer Vision: VII. Stereovision (p. 168/208) R. Šára, CMP; rev. 18–Dec–2012



WTA: Some Results

thr = 20 thr = 10

• results are bad
• false matches in textureless image regions and on repetitive structures (book shelf)
• a more restrictive threshold (thr=10) does not work as expected
• we searched the true disparity range, results get worse if the range is set wider
• chief failure reasons:

• unnormalized image dissimilarity does not work well
• no occlusion model
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INegative Log-Likelihood of Observed Images

• given matching M what is the likelihood of observed data D?
• we need the ability ‘not to match’
• matches are pairs pi = (li, ri), i = 1, . . . , n
• we will mask-out some matches by a binary label λ ∈ {e, m} excluded, matched

• labeled matching is a set

M =
{(
p1, λ(p1)

)
,
(
p2, λ(p2)

)
, . . . ,

(
pn, λ(pn)

)}
pi are matching table pairs; there are no more than n in the table T

The negative log-likelihood is then the likelihood of data D given labeled matching M

V (D |M) =
∑
pi∈M

V
(
D(pi) | λ(pi)

)
Our choice:

V
(
D(pi) | λ(pi) = e

)
= Ve penalty for unexplained data, Ve ≥ 0

V
(
D(pi) | λ(pi) = m

)
= V1

(
D(l, r)

)
probability of match pi = (l, r) from (31)

• the V
(
D(pi) | λ(pi) = e

)
could also be a non-uniform distribution but the extra effort does not pay off
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IMaximum Likelihood (ML) Matching�1
�2pjpi X(p)

Uniqueness constraint: Each point in the left image matches
at most once and vice versa.

A node set of T that follows the uniqueness constraint is called

matching in graph theory

A set of pairs M = {pi}ni=1, pi ∈ T is a matching iff

∀pi, pj ∈M, i 6= j : pj /∈ X(pi).

The X(p) is called the X-zone of p and it defines dependencies

• ML matching will observe the uniqueness constraint only

• epipolar lines are independent wrt uniqueness constraint

• we can solve the problem per image lines i independently:

M∗ = arg min
M∈M

∑
p∈M

V
(
D(p) | λ(p)

)
= arg min

M∈M

( ∣∣M |
e
·Ve

︸ ︷︷ ︸
unexplained pixels

+
∑

p∈M : λ(p)=m

V (D(p) | λ(p) = m)

︸ ︷︷ ︸
matching likelihood proper

)

M – set of all perfect labeled matchings, |M |e – number of pairs with λ = e in M , |M |e ≤ n
perfect = every table row (column) contains exactly 1 match

• the total number of individual terms in the sum is n (which is fixed)
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I‘Programming’ The ML Matching Algorithm

• we restrict ourselves to a single (rectified) image line and reduce the problem to min-cost
perfect matching

• extend every matching table pair p ∈ T , p = (j, k) to 4 combinations
(
(j, sj), (k, sk)

)
,

sj ∈ {0, 1} and sk ∈ {0, 1} selects/rejects pixels for matching unlike λ selecting matches

• binary label mjk = 1 then means that (j, sj) matches (k, sk)

(j, 1)

(k, 1) (j, 0)

(k, 0)

Vjk = V (D(j, k) | λjk = m) Vjk = 0

Vjk =
1

2
Ve Vjk =∞

• each (j, 1) either matches some (k, 1) or it ‘matches’ (j, 0)

• each (k, 1) either matches some (j, 1) or (k, 0)

• if M is maximal in the yellow quadrant then there will be n
auxiliary ‘matches’ in the gray quadrant

• otherwise every empty line in the yellow quadrant induces an
empty column in the quadrant, the cost is 2 · 1

2Ve = Ve

• our problem becomes minimum-cost perfect matching in an (m+ n)× (m+ n) table

M+ = arg min
M

∑
j,k

Vjk ·mjk,
∑
k

mjk = 1 for every j,
∑
j

mjk = 1 for every k

• we collect our matches M∗ in the yellow quadrant
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Some Results for the ML Matching

• unlike the WTA we can efficiently control the density/accuracy tradeoff
• middle row: Ve set to error rate of 3% (and 61% density is achieved) holes are black

• bottom row: Ve set to density of 76% (and 4.3% error rate is achieved)
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Some Notes on ML Matching

• an algorithm for maximum weighted bipartite matching can be used as well, with V 7→ −V
• maximum weighted bipartite matching = maximum weighted assignment problem

by eg. Hungarian Algorithm

Idea?: This looks simpler: Run matching with Ve = 0 and then threshold the result to
remove bad matches.

Ex: Ve = 8

thresholding

8 3 9

10 6 9

7 1 8

V = 9 + 2 · 8 = 25

our ML matching

8 3 9

10 6 9

7 1 8

V = 9 + 10 + 8 = 27

• our matching gives a better cost,
also greater cardinality (density)

• the idea was not good!

thresholding our ML
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A Stronger Model Needed

• notice many small isolated errors in the ML matching
• we need a continuity model
• does human stereopsis teach us something?

Potential models for M
1. Monotonicity (ie. ordering preserved):

For all (i, j) ∈M, (k, l) ∈M, k > i⇒ l > j

Notation: (i, j) ∈M or j = M(i) – left-image pixel i matches right-image pixel j.

2. Coherence [Prazdny 85]

“the world is made of objects each occupying a well defined 3D volume”

i

k

j l

continuous

monotonic

coherent

non-monotonic non-monotonic monotonic
incoherent coherent coherent model ‘strength’
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IAn Auxiliary Construct: Cyclopean Camera

Cyclopean coordinate u from the psychophysiology of vision [Julesz 1971]

new: u = f
x

z
, known: d = f

b

z
, x =

b

d

u1 + u2

2
⇒ u =

u1 + u2

2

m0 m2 fC1 C2

X
z C

x0
zx z0m1 xmu

b2 b2

X 0
Disparity gradient

[Pollard, Mayhew, Frisby 1985]

DG =
|d− d′|
|u− u′| =

∣∣bf ( 1
z
− 1

z′

)∣∣∣∣f (x
z
− x′

z′

)∣∣ =

= b
|z′ − z|
|xz′ − x′z|

• human stereovision fails to perceive
a continuous surface when disparity
gradient exceeds a limit
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IForbidden Zone and The Ordering Constraint

Forbidden zone F (X): DG > k with boundary b (z′ − z) = ±k (xz′ − x′z)

C2
X = (x; z) X 0 = (x0; z0)m02m01C1 m2m1

F (X) • boundary: a pair of lines in the x− z plane
a degenerate conic

• point x = x′, z = z′ lies on the boundary

• coincides with optical rays for k = 2

• small k means wide F

• disparity gradient limit is exceeded when X ′ ∈ F (X)

• symmetry: X ′ ∈ F (X)⇔ X ∈ F (X ′)

• Obs: X ′ and X swap their order in the other image when X ′ ∈ F (X) k = 2

• real scenes often preserve ordering

• thin and close objects violate ordering see next
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Ordering and Critical Distance κ

C1
X4

C21−2−4−3 1−4−2−3

�
F (X4)X2X1 X3 • object (thick):

• black – binocularly visible
• yellow – half-occluded
• red – ordering violated wrt foreground

• solid red zone of depth κ:

• spatial points visible in neither camera
• bounded by the foreground object

Ordering is violated iff both Xi, Xj s.t.
Xi ∈ F (Xj) are visible in both cameras.

eg. X2, X4

• ordering is preserved in scenes where critical
distances κ are not exceeded, ie. when ‘the
red background hides in the solid red zone’

Thinner objects and/or wider baseline
require flatter scenes to preserve ordering.
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IThe X-zone and the F -zone in Matching Table T

• these are necessary and sufficient conditions for uniqueness and monotonicity

�2
�1X(p)

F (p)pi pj
pj /∈ X(pi), pj /∈ F (pi)

• Uniqueness Constraint:

A set of pairs M = {pi}Ni=1, pi ∈ T is a matching iff

∀pi, pj ∈M, i 6= j : pj /∈ X(pi).

• Ordering Constraint:

Matching M is monotonic iff

∀pi, pj ∈M : pj /∈ F (pi).

• ordering constraint: matched points form a
monotonic set in both images

• ordering is a powerful constraint:
monotonic matchings O(4N )� O(N !) all matchings

in N ×N table

~ 2: how many are there maximal monotonic matchings?

• uniqueness constraint is a basic occlusion model

• ordering constraint is a weak continuity model
and partly also an occlusion model
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IUnderstanding Matching Table

• this is essentially the picture from Slide 178

right image pixel index

le
ft

 i
m

a
g

e
 p

ix
e

l 
in

d
e

x

depth discontinuity in left image

depth discontinuity in right image

invisible

dk critical disparity

monocularly visible points

binocularly visible background pts violating ordering

binocularly visible foreground points

l ∈ I

r ∈ J

d
k

dk
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Bayesian Decision Task for Matching

Idea: L(d,M) – decision cost (loss) d – our decision (matching) M – true correspondences

Choice: L(d,M) :

{
if d = M then L(d,M) = 0

if d 6= M then L(d,M) = 1
i.e. L(d,M) = [d 6= M ]

Bayesian Loss

L(d | D) =
∑
M∈M

p(M | D)L(d,M)

M – the set of all matchings D = {IL, IR} – data

Solution for the best decision d

d∗ = arg min
d

∑
M∈M

p(M | D) (1− [d = M ]) = arg min
d

(
1−

∑
M∈M

p(M | D)[d = M ]

)
=

= arg max
d

∑
M∈M

p(M | D) [d = M ] = arg max
M

p(M | D) =

= arg min
M

(− log p(M | D))
def
= arg min

M
V (M | D) = arg min

M∈M

(
V (D |M)︸ ︷︷ ︸

likelihood

+V (M)︸ ︷︷ ︸
prior

)

• this is Maximum Aposteriori Probability (MAP) estimate
• other loss functions result in different solutions
• our choice of L(d,M) looks oversimple but it results in algorithmically tractable

problems
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IConstructing The Prior Model Term V (M)

• the prior V (M) should capture
1. uniqueness
2. ordering
3. coherence

M∗ = arg min
M∈M

(
V (D |M) + V (M)

)

• we need a suitable representation to encode V (M)
• Every p = (l, r) of the |I| × |J | matching table T (except for the last row and column)

receives two succesors (l + 1, r) and (l, r + 1)rl p
t

s s
t

• this gives an acyclic directed graph G optimal paths in acyclic graphs are an easier problem
• the set of s-t paths starting in s and ending in t will represent the set of matchings
• all such s-t paths have equal length n = |I|+ |J | − 1

all prospective matchings will have the same number of terms in V (D |M) and in V (M)
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Endowing s-t Paths with Useful Properties

• introduce node labels Λ = {m, eL, eR} matched, left-excluded, right-excluded

• s-t path neighbors are allowed only some label combinations:

eLm eL eL

eL

m

eR m

eL

eR

meR
eR

eR

eLeR

Observations
• no two neighbors have label m

• in each labeled s-t path there is at most one transition:
1. m→ eL or eR → m per matching table row,
2. m→ eR or eL → m per matching table column

• pairs labeled m on every s-t path satisfy uniqueness and ordering constraints

• transitions eL → eR or eR → eL along an s-t path allow skipping a contiguous segment in
either or in both images this models half occlusion and mutual occlusion

• disparity change is the number of edges
eL eL

or
eR eR

• a given monotonic matching can be traversed by one or more s-t paths

Labeled s-t paths

P =
(
(p1, λ1), (p2, λ2), . . . , (pn, λn)

) �1 p2 p3p1 pn�n
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The Structure of The Prior Model V (P ) Gives a MC Recognition Problem

ideas:

• we choose energy of path P dependent on its labeling only

• we choose additive penalty per transition eL → eL, eR → eR, and eL → eR, eR → eL

• no penalty for m→ eL, m→ eR

Employing Markovianity
�1 p2 p3p1 pn�n

V (P ) = V (λn, λn−1, . . . , λ1) = V (λn | λn−1, . . . , λ1) + V (λn−1, . . . , λ1) =

= V (λn | λn−1) + V (λn−1, . . . , λ1) = V (λ1) +

n∑
i=2

V (λi | λi−1)

The matching problem is then a decision over labeled s-t paths P ∈ P:

P ∗ = arg min
P∈P

{
Vp1(D | λ1) + V (λ1) +

n∑
i=2

[
Vpi(D | λi) + V (λi | λi−1)

]}
(32)

• the data likelihood term Vpi (D | λi) is the same as in (31) on Slide 164

• note that one can add/subtract a fixed term from any of the functions Vp, V in (32)
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A Choice of V (λi | λi−1)

• A natural requirement: symmetry of probability p(λi, λi−1) = e−V (λi, λi−1)

λi
p(λi, λi−1)

m eL eR

m 0 p(m, e) p(m, e)

λi−1 eL p(m, e) p(e, e) p(eL, eR)

eR p(m, e) p(eL, eR) p(e, e)

3 DOF, 1 constraint ⇒ 2 parameters

α1 =
p(eL, eR)

p(e, e)
0 ≤ α1 ≤ 1

α2 =
p(m, e)

p(e, e)
0 < α2 ≤ 1 + α1

• Result for V (λi | λi−1) (after subtracting common terms):

λi
V (λi | λi−1)

m eL eR

m ∞ 0 0

λi−1 eL ln 1+α1+α2
2α2

ln 1+α1+α2
2

ln 1+α1+α2
2α1

eR ln 1+α1+α2
2α2

ln 1+α1+α2
2α1

ln 1+α1+α2
2

by marginalization:

V (m) = ln
1 + α1 + α2

2α2

V (eL) = V (eR) = 0

parameters
• α1 – likelihood of mutual occlusion (α1 = 0 forbids mutual occlusion)

• α2 – likelihood of irregularity (α2 → 0 helps suppress small objects and holes)

• α, β – similarity model parameters (see V1

(
D(l, r)

)
on Slide 164)

• Ve – penalty for disregarded data (see V (D(pi) | λ(pi) = e) on Slide 170)
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‘Programming’ the Matching Algorithm: 3LDP

• given G, construct directed graph G+

• triple of vertices per node of s-t path representing three hypotheses λ(p) for λ ∈ Λ
• arcs have costs V (λi | λi−1), nodes have costs V (D | λi)
• orientation of G+ is inherited from the orientation of s-t paths
• we converted the shortest labeled-path problem to ordinary shortest path problem

p

s

t

l

r

G

(l − 1, r)

(l, r − 1)

(l + 1, r)

p = (l, r) (l, r + 1)

G+

eLeLeL

eL

eR

eR

eR

eL

m mm

m

m

eReR

neighborhood of p; strong blue edges are of zero penalty
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cont’d: Dynamic Programming on G+

• G+ is a topologically ordered directed graph

• we can use dynamic programming on G+

t

p2

s

p1

q

V ∗s:q(λq) = min
z∈{p1,p2},λz∈Λ

{
V ∗s:z(λz) + Vz(D | λz) + V (λq | λz)

}
V ∗s:q(λq) – cost of min-path from s to label λq at node q

• complexity is O(|I| · |J |), ie. stereo matching on N ×N images needs O(N3) time

• speedup by limiting the range in which the disparities d = l − r are allowed to vary

3D Computer Vision: VII. Stereovision (p. 187/208) R. Šára, CMP; rev. 18–Dec–2012



Implementation of 3LDP in a few lines of code. . .

#define clamp(x, mi, ma) ((x) < (mi) ? (mi) : ((x) > (ma) ? (ma) : (x)))

#define MAXi(tab,j) clamp((j)+(tab).drange[1], (tab).beg[0], (tab).end[0])

#define MINi(tab,j) clamp((j)+(tab).drange[0], (tab).beg[0], (tab).end[0])

#define ARG_MIN2(Ca, La, C0, L0, C1, L1) if ((C0) < (C1)) { Ca = C0; La = L0; } else { Ca = C1; La = L1; }

#define ARG_MIN3(Ca, La, C0, L0, C1, L1, C2, L2) \

if ( (C0) <= MIN(C1, C2) ) { Ca = C0; La = L0; } else if ( (C1) < MIN(C0, C2) ) { Ca = C1; La = L1; } else { Ca = C2; La = L2; }

void DP3LForward(MatchingTableT tab) {

int i = tab.beg[0]; int j = tab.beg[1];

C_m[j][i-1] = C_m[j-1][i] = MAXDOUBLE;

C_oL[j][i-1] = C_oR[j-1][i] = 0.0;

C_oL[j-1][i] = C_oR[j][i-1] = -penalty[0];

for(j = tab.beg[1]; j <= tab.end[1]; j++)

for(i = MINi(tab,j); i <= MAXi(tab,j); i++) {

ARG_MIN2(C_m[j][i], P_m[j][i],

C_oR[j-1][i] + penalty[2], lbl_oR,

C_oL[j][i-1] + penalty[2], lbl_oL);

C_m[j][i] += 1.0 - tab.MNCC[j][i];

ARG_MIN3(C_oL[j][i], P_oL[j][i], C_m[j-1][i], lbl_m,

C_oL[j-1][i] + penalty[0], lbl_oL,

C_oR[j-1][i] + penalty[1], lbl_oR);

C_oL[j][i] += penalty[3];

ARG_MIN3(C_oR[j][i], P_oR[j][i], C_m[j][i-1], lbl_m,

C_oR[j][i-1] + penalty[0], lbl_oR,

C_oL[j][i-1] + penalty[1], lbl_oL);

C_oR[j][i] += penalty[3];

}

}

void DP3LReverse(double *D, MatchingTableT tab) {

int i,j; labelT La; double Ca;

for(i=0; i<nl; i++) D[i] = nan; /* not-a-number */

i = tab.end[0]; j = tab.end[1];

ARG_MIN3(Ca, La, C_m[j][i], lbl_m,

C_oL[j][i], lbl_oL, C_oR[j][i], lbl_oR);

while (i >= tab.beg[0] && j >= tab.beg[1] && La > 0)

switch (La) {

case lbl_m: D[i] = i-j;

switch (La = P_m[j][i]) {

case lbl_oL: i--; break;

case lbl_oR: j--; break;

default: Error(...);

} break;

case lbl_oL: La = P_oL[j][i]; j--; break;

case lbl_oR: La = P_oR[j][i]; i--; break;

default: Error(...);

}

}
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Some Results: AppleTree

left image right image ML (slide 172)

3LDP (slide 186) näıve DP [Cox et al. 1992] stable segmented 3LDP (see [SP])

• 3LDP parameters αi, Ve learned on Middlebury stereo data http://vision.middlebury.edu/stereo/
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Some Results: Larch

left image right image ML (slide 172)

3LDP (slide 186) näıve DP stable segmented 3LDP

• näıve DP does not model mutual occlusion

• but even 3LDP has errors in mutually occluded region

• stable segmented 3LDP has few errors in mutually occluded region since it uses a weak form
of ‘image understanding’
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Algorithm Comparison

Winner-Take-All (WTA)
• the ur-algorithm [Marroquin 83] no model

• dense disparity map

• O(N3) algorithm, simple but it rarely works

Maximum Likelihood (ML)

• semi-dense disparity map

• many small isolated errors

• models basic occlusion

• O(N3 log(NV )) algorithm max-flow by cost scaling

MAP with Min-Cost Labeled Path (3LDP)

• semi-dense disparity map

• models occlusion in flat, piecewise continuos
scenes

• has ‘illusions’ if ordering does not hold

• O(N3) algorithm

Stable Segmented 3LDP

• better (fewer errors at any given density)

• O(N3 logN) algorithm

• requires image segmentation itself a difficult task
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3LDP (3.65 ± 0.26)

WTA (4.71 ± 0.17)

ML (4.60 ± 0.65)

GCS (4.29 ± 1.47)

• ROC-like curve captures the
density/accuracy tradeoff

• GCS is the one used in the exercises

• more algorithms at
http://vision.middlebury.edu/
stereo/ (good luck!)
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Part VIII

Shape from Reflectance

8 Reflectance Models (Microscopic Phenomena)

9 Photometric Stereo

10 Image Events Linked to Shape (Macroscopic Phenomena)

mostly covered by

Forsyth, David A. and Ponce, Jean. Computer Vision: A Modern Approach. Prentice
Hall 2003. Chap. 5

additional references

R. T. Frankot and R. Chellappa. A method for enforcing integrability in shape from shading algorithms.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 10(4):439–451, July 1988.

P. N. Belhumeur, D. J. Kriegman, and A. L. Yuille. The bas-relief ambiguity. In Proc Conf Computer Vision

and Pattern Recognition, pp. 1060–1066, 1997.
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IBasic Surface Reflectance Mechanismsl n vL
macroscopic scale

n = 1:5 : : :2:3
refra
tion index n = 1opti
al boundary

air
parti
les in medium

microscopic scale

• reflection on (rough) optical boundary
• masking and shadowing
• interreflection

• refraction into the body
• subsurface scattering
• refraction into the air
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IParametric Reflectance Models

Image intensity (measurement) at pixel m given by surface reflectance function R

J(m) = η fi,r(θi, φi; θr, φr) ·
Φe

4π‖L− x‖2︸ ︷︷ ︸
σ

n>l = R(n), l =
L− x

‖L− x‖

η – sensor sensitivity for simplicity, we select η = 2π

fi,r() – bidirectional reflectance distribution function (BRDF)

[fi,r()] = sr−1 how much of irradiance in Wm−2 is
redistributed per solid angle element

L – point light source position

Φe – radiant power of the light source, [Φe] = W

n – surface normal

σ – irradiance of a surfel orthogonal to incident light
direction

Isotropic (Lambertian) reflection [Lambert 1760]

no optical boundary

fi,r(θi, φi; θr, φr) =
ρ

2π
, ρ – albedo

J(m) = σρ cos θi = σρn>l

l n l+ v
x�i �r

�i �r�
L

vV
pixel projected onto surface
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IPhotometric Stereo

Lambertian model (light j ∈ {1, 2, 3}, pixel i ∈ {1, . . . , n})

Jji = (σj lj)
>(ρi ni) = s>j bi

bi – scaled normals, sj – scaled lights

3 independent scaled lights and n scaled normals, one per pixel
(in n pixels); can be stacked in matrices:J11 J12

J21 J22

J31 J32

 =

s>1 b1 s>1 b2

s>2 b1 s>2 b2

s>3 b1 s>3 b2

 =

s>1s>2
s>3

 [b1 b2

]
n = 2 pixels, 3 lights

in general, stacked per columns:

S = [ s1, s2, s3 ] ∈ R3,3 B = [b1, b2, . . . , bn] ∈ R3,n

nilj vi�i
pixel indexing i:

1 2 3 4

8765

9 10 11 12

Solution to Photometric Stereo

J = S>B ⇒ B = S−>J J ∈ R3,n

ρi = ‖bi‖ albedo map, ni =
1

ρi
bi needle map
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Photometric Stereo: Plaster Cast Example

input images (known lights) needle & albedo maps

We have: 1. shape (surface normals), 2. intrinsic texture (albedo)

The shape can be represented as unit normal vectors n or as a gradient field (p, q):

n(u, v) =
(
n1(u, v), n2(u, v), n3(u, v)

)
,

∂z(u, v)

∂u

def
= zu(u, v) = p(u, v) = ± n1(u, v)

2n3(u, v)2 − 1
,

∂z(u, v)

∂v

def
= zv(u, v) = q(u, v) = ± n2(u, v)

2n3(u, v)2 − 1
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IThe Integration Algorithm of Frankot and Chellappa (FC)

Task: Given gradient fields p(u, v), q(u, v), find height function z(u, v) such that zu is
close to p and zv is close to q in the sense of a functional norm.

z∗ = arg min
z
Q(z), Q(z) =

∫∫
|zu(u, v)− p(u, v)|2 + |zv(u, v)− q(u, v)|2 du dv

In the Fourier domain this can be written as F(z;ω) = 1
2π

∫∫
z(u, v)e−j(uωu+vωv) du dv

Q(z) =

∫∫
|jωu F(z;ω)−F(p;ω)|2 + |jωv F(z;ω)−F(q;ω)|2︸ ︷︷ ︸

A(F(z;ω))

dω, ω = (ωu, ωv)

and its minimiser is from vanishing formal derivative of A(F(z;ω)) wrt F(z;ω)

[Frankot & Chellappa 1988]

F(z;ω) = − jωu|ω|2 F(p;ω)− jωv
|ω|2 F(q;ω)

[m,n] = size(p);
Wu = fft2(fftshift([-1,0,1]/2),m,n); % discrete differential operator
Wv = fft2(fftshift([-1;0;1]/2),m,n);
Z = -(Wu.*fft2(p) + Wv.*fft2(q))./(abs(Wu).^2 + abs(Wv).^2 + eps);
z = real(ifft2(Z));
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Photometric Stereo: Examples

3 input images surface

3 input images surface

• integrated by the FC algorithm from Slide 197

• bias due to interreflections can be removed [Drew & Funt, JOSA-A 1992]
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IIntegrability of a Vector Field

• not every vector field p(u, v), q(u, v) is integrable (born by a surface z(u, v))
• integrability constraint

pv(u, v) = qu(u, v)

• this is because a regular surface has rot∇z(u, v) = 0 irrotational gradient field

zuv(u, v) = zvu(u, v)

• noise causes non-integrability
• the FC algorithm finds the closest integrable surface

integrable non-integrable non-integrable (noisy)
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Optimal Light Configurations

For n lights S the error ∆b = S−>∆J in normal b due to error ∆J in image is

ε(S) = E
[
∆b>∆b

]
= E

[
∆J>(S>S)−1∆J

]
= σ2 tr

[
(SS>)−1] ≥ 9σ2

n
.

assuming pixel-independent normal camera noise ∆Ji ∼ N(0, σ)

The error ε is minimum if [Drbohlav & Chantler 2005]

SS> =
n

3
I, where S = [s1, s2, . . . , sn]

• either n ≥ 3 equidistant and equiradiant lights on a circle of uniform slant of
arctan

√
2 ≈ 54.74◦

• n− 1 lights in this configuration plus a light parallel to the sum
∑n−1
i=1 si

• or light matrix S is a concatenation of optimal solutions (each of ≥ 3 lights)
eg. 3 optimally placed (s1, s2, s3) + 3 lights (s4, s5, s6) = (s1, s2, s3) + α rotated by angle α around nn 54:74Æ
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Uncalibrated Photometric Stereo

Factorization J = S>B [Hayakawa94]

LS solution by SVD decomposition of J = UDV>

S = D1:3U
> scaled pseudo-lights

B = (V1:3)> scaled pseudo-normals V1:3 are columns 1–3

Ambiguity J = S>B = S>A−1︸ ︷︷ ︸
S̄>

AB︸ ︷︷ ︸
B̄

, A ∈ GL(3) [Koenderink94]

information ambiguity

3+ normals B̄ known λI (identity 3× 3 mtx) B̄ = AB ⇒ A B is measured

uniform albedo λR (orthogonal 3× 3 mtx) 6 points: [Drew92]

‖Abi‖ = 1 ⇒ b>i A>Abi = 1 ⇒ A>A ⇒ A up to rot.
(Choleski)

equal light intensity λR ‖sjA−1‖ = 1 ⇒ A up to rot. [Hayakawa94]

integrable normals pv = qu
for n ∼ (p, q, 1)

 λ 0 µ
0 λ ν
0 0 τ

 generalized bas-relief ambiguity
[Yuille99, Fan97, Belhumeur99]

uniform albedo
and integrability

λI

integrability and
2+ specular pts

λI [Drbohlav & Chantler, ICCV 2005]

3D Computer Vision: VIII. Shape from Reflectance (p. 201/208) R. Šára, CMP; rev. 18–Dec–2012



IGeneralized Bas Relief Ambiguity (GBR)

GBR maps surface z′(u, v) = λz(u, v) + µu+ ν v, i.e. it maps normals to n′ = Gn, where

G =

λ 0 −µ
0 λ −ν
0 0 1


Obs: If normals change n′ = Gn and lights change l′ = G−> l then Lambertian shading does not
change:

n′
>
l′ = (n>G>)(G−>l) = n>l

nl l0
f(t) 0:6f(t) + 0:5t

t n0
Reproduced from [Belhumeur et al. 1997]

Obs: Shadow boundaries of surface S illuminated by light l are identical to those of surface S′
transformed by GBR G and illuminated by light l′ = G−>l

weak assumptions [Belhumeur et al. 1997]
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IA Quick Glance at the Classical Differential Geometry of Surfaces

Darboux frame

n
n+ dn

ds s

tθ
κθ = t>θ

dn

ds
normal curvature, direction θ

κ1, κ2 principal curvatures

K = κ1 · κ2 Gaussian curvature

H = κ1 + κ2 mean curvature

κθ = κ1 cos2 θ + κ2 sin2 θ

umbilical elliptical parabolic hyperbolic
convex κ1 = κ2 > 0 κ1 > 0, κ2 > 0 κ1 > 0, κ2 = 0 κ1 > 0, κ2 < 0

concave κ1 < 0, κ2 < 0

the transition elliptic → parabolic → hyperbolic occurs at parabolic lines

non-umbilical surface like a torus
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IOccluding Contour Structure

smooth self-occlusion contour (back)
not smooth contour (mane)

• surface curves are tangent to smooth
self-occlusion contour

• isophotes are surface curves ⇒ their
density approaches infinity on smooth
self-occlusion contour

vn t�rI
n = Q>t optical plane normal

K = κs κt → sign(K) = sign(κt)

κs > 0 – curvature in the direction of sight
κt – occluding contour curvature

xst = 0 since xs ' v [Koenderink 84]

• this is a basis for
shape from occluding contour
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Self-Shadow Contour Structurel
• loci where occluding and self-shadow

meet: the projection of light direction
vector to image plane is tangent to the
contour there
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Isophotes on Simple Lambertian Surfaces

n

l

l

n n

l

Surface is parameterized by: σ – slant, τ – tilt, where n>l = cosσ
• isophotes – green

• apex – where n ' l

• isophotes parallel to rulings on developable surfaces

• illuminant on cylinder axis: constant reflectance cylindrical part illumination w/o shading

• in general: isophotes are parallel to zero-curvature principal direction
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Isophotes on a Complex Surface

shaded Lambertian surface isophotes w/ approximate parabolic curves

singular image points
• Lambertian apex: move with light, n = l (T1)

• extrema and saddles on parabolic lines: move along parabolic lines (T2)

• planar points: do not move (not shown)

• specular points: move with light and/or viewer but slower (not shown)

[Koenderink & van Doorn 1980]
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The Crater Illusion
Ambiguity in Local Shading and The Human Vision Preference

Apollo 17 landing site (Taurus-Littrow); courtesy of NASA

Shading at Lambertian apex:

K2 = det
(
HG−1

)
2H2 −K = −

1

2
tr
(
HG−1

)
H =

[
Iuu Iuv
Iuv Ivv

]
image Hessian

G =

[
1 + l21 l1l2
l1l2 1 + l22

]
from light dir. l = (l1, l2, l3)

bottom: crater-like surface
top: surface illuminated from lower-left

and top-right

Apex: Up to 4 solutions for surface
principal curvatures:

convex/concave × elliptic/hyperbolic
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Thank You
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3LDP (3.65 ± 0.26)

WTA (4.71 ± 0.17)

ML (4.60 ± 0.65)

GCS (4.29 ± 1.47)
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