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IGeometric Interpretation of Linear Rectification

What pair of physical cameras is compatible with F∗?

• we know that F = (Q1Q
−1
2 )>[e1]× Slide 77

• we choose Q∗1 = K∗1, Q∗2 = K∗2R
∗; then

(Q∗1Q
∗
2
−1

)>[e∗1]× = (K∗1R
∗>K∗2

−1)>F∗

• we look for R∗, K∗1, K∗2 compatible with

(K∗1R
∗>K∗2

−1)>F∗ = λF∗, R∗R∗> = I, K∗1,K
∗
2 upper triangular

• we also want b∗ from e∗1 ' P∗1C
∗
2 = K∗1b

∗ b∗ in cam. 1 frame

• result:

R∗ = I, b∗ =

b0
0

, K∗1 =

k11 k12 k13

0 f v0

0 0 1

, K∗2 =

k21 k22 k23

0 f v0

0 0 1

 (29)

• rectified cameras are in canonical position with respect to each other
not rotated, canonical baseline

• rectified calibration matrices can differ in the first row only

• when K∗1 = K∗2 then the rectified pair is called the standard stereo pair and the
homographies standard rectification homographies
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Icont’d

• rectification is a homography (per image)
⇒ rectified camera centers are equal to the original ones

• standard rectified cameras are in canonical orientation
⇒ rectified image projection planes are coplanar

• standard rectification guarantees equal rectified calibration matrices
⇒ rectified image projection planes are equal

standard rectification homographies reproject
onto a common image plane parallel to the base-
line

X

C1 C2

f

Corollary

• the standard rectified stereo pair has vanishing disparity for 3D points at infinity

• but known F alone does not give any constraints to obtain standard rectification homographies
• for that we need either of these:

1. projection matrices, or
2. calibrated cameras, or
3. a few points at infinity calibrating k1i, k2i, i = 1, 2, 3 in (29)
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IPrimitive Rectification

Goal: Given fundamental matrix F, derive some simple rectification homographies H1, H2

1. Let the SVD of F be UDV> = F, where D = diag(1, d2, 0), 1 ≥ d2 > 0

2. decompose D = A>F∗B, where (F∗ is given → Slide 151)

A =

0 0 1
0 d 0
1 0 0

, B =

0 0 1
1 0 0
0 −d 0


3. then

F = UDV> = UA>︸ ︷︷ ︸
Ĥ>2

F∗ BV>︸ ︷︷ ︸
Ĥ1

and the primitive rectification homographies are

Ĥ2 = AU>, Ĥ1 = BV>

~ P1; 1pt: derive some A, B from the admissible class

• rectification homographies do exist

• there are other primitive rectification homographies, these suggested are just simple to obtain
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IPrimitive Rectification Suffices for Calibrated Cameras

Obs: calibrated cameras: d = 1 ⇒ Ĥ1, Ĥ2 are orthogonal

1. determine primitive rectification homographies (Ĥ1, Ĥ2) from the essential matrix
2. choose a suitable common calibration matrix K, e.g.

K =

f 0 u0

0 f v0

0 0 1

, f =
1

2
(f1 + f2), u0 =

1

2
(u1

0 + u2
0), etc.

3. the final rectification homographies are

H1 = KĤ1, H2 = KĤ2

• we got a standard camera pair and non-negative disparity

P+
i

def
= K−1

i Pi = Ri

[
I −Ci

]
, i = 1, 2 note we started from E, not F

H1P
+
1 = KĤ1P

+
1 = KBV>R1︸ ︷︷ ︸

R∗

[
I −C1

]
= KR∗

[
I −C1

]
H2P

+
2 = KĤ2P

+
2 = KAU>R2︸ ︷︷ ︸

R∗

[
I −C2

]
= KR∗

[
I −C2

]

• one can prove that BV>R1 = AU>R2 with the help of (11)

• points at infinity project to KR∗ in both images ⇒ they have zero disparity Slide 159
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IThe Degrees of Freedom in Epipolar Rectification

Proposition 1 Homographies A1 and A2 are rectification-preserving if the images stay
rectified, i.e. if A2

−> F∗A1
−1 ' F∗, which gives

A1 =

l1 l2 l3
0 sv tv
0 q 1

 , A2 =

r1 r2 r3

0 sv tv
0 q 1

 ,
uv

where s 6= 0, u0, l1, l2 6= 0, l3, r1, r2 6= 0, r3, q are 9 free parameters.

general transformation canonical type

l1, r1 horizontal scales l1 = r1 algebraic

l2, r2 horizontal skews l2 = r2 algebraic

l3, r3 horizontal shifts l3 = r3 algebraic

q common special projective geometric

sv common vertical scale geometric

tv common vertical shift algebraic

9DoF 9− 3 = 6DoF

• q is rotation about the baseline proof: find a rotation G that brings K to upper triangular form

via RQ decomposition: A1K
∗
1 = K̂1G and A2K

∗
2 = K̂2G

• sv changes the focal length
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The Rectification Group

Corollary for Proposition 1 Let H̄1 and H̄2 be (primitive or other) rectification
homographies. Then H1 = A1H̄1, H2 = A2H̄2 are also rectification homographies.

Proposition 2 Pairs of rectification-preserving homographies (A1, A2) form a group with
group operation (A′1, A

′
2) ◦ (A1, A2) = (A′1 A1, A

′
2 A2).

Proof:

• closure by Proposition 1

• associativity by matrix multiplication

• identity belongs to the set

• inverse element belongs to the set by A>2 F∗A1 ' F∗ ⇔ F∗ ' A−>2 F∗A−1
1
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Optimal and Non-linear Rectification

Optimal choice for the free parameters
• by minimization of residual image distortion, eg.

[Gluckman & Nayar 2001]

A∗1 = arg min
A1

∫∫
Ω

(
det J(A1Ĥ1x)− 1

)2
dx

• by minimization of image information loss
[Matoušek, ICIG 2004]

• non-linear rectification suitable for forward motion

[Pollefeys et al. 1999], [Geyer & Daniilidis 2003]

forward egomotion
rectified images, Pollefeys’ method
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IBinocular Disparity in Standard Stereo Pair

top view

m2
X z 
ot�2m1

x
u2 z
�2�1 C2C1 fb zu1

b2z 
ot�1
x

side view

yC1;2 yXm1;2 vf z

• Assumptions: single image line, standard camera pair

b = z cotα1 − z cotα2

u1 = f cotα1 u2 = f cotα2

b =
b

2
+ x− z cotα2

X = (x, z) from disparity d = u1 − u2:

z =
b f

d
, x =

b

d

u1 + u2

2
, y =

b v

d

f , d, u, v in pixels, b, x, y, z in meters

Observations
• constant disparity surface is a frontoparallel plane

• distant points have small disparity

• relative error in z is large for small disparity

1

z

dz

dd
= −

1

d

• increasing baseline increases disparity and reduces
the error
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IUnderstanding Basic Occlusion Types

surface pt.

r3occluded

transparent

r1

r2

l

X2 X1 X
half occlusion mutual occlusion

• surface point at the intersection of rays l and r1 occludes a world point at the intersection
(l, r3) and implies the world point (l, r2) is transparent, therefore

(l, r3) and (l, r2) are excluded by (l, r1)

• in half-occlusion, every world point such as X1 or X2 is excluded by a binocularly visible
surface point ⇒ decisions on correspondences are not independent

• in mutual occlusion this is no longer the case: any X in the yellow zone is not excluded
⇒ decisions in the zone are independent on the rest
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IMatching Table

Based on the observation on mutual exclusion we expect each pixel to match at most once.

C1 C2�1 �24321 1 2 43

�1
�2

1

1 2 3 4 5

5

4

3

2

rays in epipolar plane matching table T

matching table
• rows and columns represent optical rays
• nodes: possible correspondence pairs
• full nodes: correspondences
• numerical values associated with nodes: descriptor similarities see next
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Image Point Descriptors And Their Similarity

Descriptors: Tag image points by their (viewpoint-invariant) physical properties:
• texture window [Moravec 77]
• reflectance profile under a moving illuminant
• photometric ratios [Wolff & Angelopoulou 93-94]
• dual photometric stereo [Ikeuchi 87]
• polarization signature
• . . .

• similar points are more likely to match
• we will compute image similarity for all ‘match candidates’ and get the matching table

video
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Thank You



3D Computer Vision: enlarged figures R. Šára, CMP; rev. 11–Dec–2012
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