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Part VI

3D Structure and Camera Motion

@ Introduction
@ Reconstructing Camera Systems
© Bundle Adjustment

covered by

[1] [H&Z] Secs: 9.5.3, 10.1, 10.2, 10.3, 12.1, 12.2, 12.4, 12.5, 18.1

[2] Triggs, B. et al. Bundle Adjustment—A Modern Synthesis. In Proc ICCV Workshop
on Vision Algorithms. Springer-Verlag. pp. 298-372, 1999.
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» Constructing Cameras from the Fundamental Matrix

Given F, construct some cameras P, P5 such that F is their fundamental matrix.

Solution See [H&Z, p. 256
P =1 0 [ p. 256]

P; = [[e2]  F + e v’ Ae2]

where
e v is any 3-vector, e.g. v = e; to make the camera finite
e \#0is a scalar,

e ex=null(F") ie. e F=0

Proof
1. S is antisymmetric iff x ' Sx = 0 for all x look-up the proof!
2. we have x ~ PX
3. anon-zero F is a f.m. iff P;FPl is antisymmetric
4. if P = [I 0} and Py = [SF gz} then F corresponds to (P1,P2) by Step 3
5. we can write S = [s],,
6. a suitable choice is s = e [Luong96]
7. for the full the class including v, see [H&Z, Sec. 9.5]
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» The Projective Reconstruction Theorem

Observation: Unless P; are constrained, then for any number of cameras i = 1,...,k

m; =P;X=P,H ' HX=P;X
SN——
P X’

e when P; and X are both determined from correspondences (including calibrations
K), they are given up to a common 3D homography H
(translation, rotation, scale, shear, pure perspectivity)

mi mo X X,

e when cameras are internally calibrated (K; known) then H is restricted to a similarity
since it must preserve the calibrations K; [H&Z, Secs. 10.2, 10.3], [Longuet & Higgins 81]
(translation, rotation, scale)
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» Reconstructing Camera Systems

Problem: Given a set of p decomposed pairwise essential matrices Ei]’ = [fij]XRi]- and
calibration matrices K; reconstruct the camera system P;, i =1,...,k
— Slides 78 and 138 on representing E

We construct camera pairs 151-]' € RS — Slide 123

B, = {P] [Ef o) ene

P; K; [Rij i)
® singletons i, j correspond to vertices V' k vertices
® pairs ij correspond to graph edges E p edges

Pl EIZ P2 PS P4

P.; are in different coordinate systems but these are related by similarities P;;H;; = P,

I 0 Rjj t/,'j L RZ tz'
{Rn ‘Eu} [OT 521} B {R.i t_,] (24)
N——
R6,4 H”E]R4v4 R6,4

e K; removed on both sides of eq. (24)
® (24) is a linear system of 24p eqs. in 7p + 6k unknowns Tp ~ (t;;,Rij, sij), 6k ~ (Rq, t;)
e each P; appears on the right side as many times as is the degree of vertex P; eg. Ps 3-times
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»cont’d

R;; R; tii ti
Ea. (24) i i R ij _ i R ij R _ i
9. (24) implies [Rin,-_,] {Ra] |:Rijtij + s,-,_,-tl-j} L:j]

e R;; and t;; can be eliminated:

Rini = Rj, Rijti —+ Sijtij = tj, Sij > 0 (25)
e note transformations that do not change these equations assuming no error in Ry
1. Rz — RZR, 2. t;—ot; and Sij —r 0Sij, 3. t;—t; + Rit

o the global frame is fixed by e.g. selecting

k
R1 = I7 Zt7 =V, 1 Zsi]‘ =1 (26)
i=1 p i,

e rotation equations are decoupled from translation equations
® in principle, s;; could correct the sign of Eij from essential matrix decomposition Slide 78

but R; cannot correct the a sign in R;;
— therefore make sure all points are in front of cameras and constrain s;; > 0; see Slide 80

+ pairwise correspondences are sufficient
— suitable for well-located cameras only (dome-like configurations)
otherwise intractable or numerically unstable
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Finding The Rotation Component in Eq. (25)

Task: Solve RijR; =R, i,j € V, (i,j) € E where R are a 3 x 3 rotation matrix each.
Per columns ¢ =1, 2,3 of R;:

Rir{ —r; =0, for all 4, j 27
e fix ¢ and denote r¢ = [I“{, rs, ..., rﬂ T c-th columns of all rotation matrices stacked; r¢ € R3F
e then (27) becomes Dr¢ =0 D € R3P:3F
e 3p equations for 3k unknowns — p > k in a 1-connected graph we have to fix r{ = [1, 0, 0]
Ex: (k=p=23)
]§,121‘L1: — I‘(z =0 ng -1 0 I‘?
—  Raar5—-r;=0 — Dr°=|0 Ra -I| |[r3| =0
A . al c
Risri —r3=0 Ris 0 11|75

e must hold for any ¢

Idea: [Martinec & Pajdla CVPR 2007]
1. find the space of all r¢ € R3¥ that solve (27) D is sparse, use [V,E] = eigs(D’*D,3,0); (Matlab)
2. choose 3 unit orthogonal vectors in this space 3 smallest eigenvectors

3. find closest rotation matrices per cam. using SVD  because ||r®|| = 1 is necessary but insufficient

L ) R; =UV', where R; = UDV "
e global world rotation is arbitrary

3D Computer Vision: VI. 3D Structure and Camera Motion (p. 127/205) 9AC R. Sara, CMP; rev. 27-Nov-2012 =@l



Finding The Translation Component in Eq. (25)

From egs. (25) and (26):

d — rank of camera center set p — No. of pairs, kK — No. of cameras
k

Ri]‘ti + Sijf}ij — tj = 0, Zti = 07 ZbU =p, Sij > 07 t; € Rd

i=1 (2]

e inrank d: d-p+d+ 1 equations for d - k + p unknowns — p > de=1)-1

d—1
Ex: Chains and circuits construction from sticks of known orientation and unknown length?
p=k—1 k=p=3 k=p=4 k=p>4
@)
N
o
O/

k <2foranyd d>2: non-collinear ok d > 3: non-planar ok d > k — 1: not possible

e rank is not sufficient for chains, trees, or when d = 1 (collinear cameras)

e 3-connectivity gives a sufficient rank for d = 3 (cams. in general pos. in 3D)
— s-connected graph has p > (%k] edges for s > 2, hence p > [%] > % -2

e 4-connectivity gives a sufficient rank for any k for d = 2 (coplanar cams)

— since p > [2k] > 2k —3

— maximal planar tringulated graphs have p = 3k — 6 and give the rank for
k>3
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cont’d

Linear equations in (25) and (26) can be rewritten to
Dt =0,  t=[t]{, b3, ..,t], s12, .-, 85, -]
ford=3: teR3**P, D € R3"3%*P s sparse

t"=argmint D' Dt
t,s;;>0

e this is a quadratic programming problem (constraints!)

z
t

zeros (3*k+p,1);
quadprog(D’*D, z, diag([zeros(3*k,1); -ones(p,1)]), z);

e but check the rank first!
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»Solving Eq. (25) by Stepwise Gluing

Given: Calibration matrices K; and tentative correspondences per camera triples.

Initialization
1. initialize camera cluster C with Py, P,

2. find essential matrix E12 and matches
M2 by the 5-point algorithm  Slide 84

3. construct camera pair
P,=Ki[I 0], P;=Kz[R t]

4. compute 3D reconstruction {X;} per
match from Mo Slide 90

5. initialize point cloud X with {X;}
satisfying chirality constraint z; > 0
and apical angle constraint |a;| > ar

Attaching camera P; ¢ C

b

i1(Xi, P1)

m;;

1. select points X from X that have matches to P;

add Pj to C

ok wnN

perform bundle adjustment on X and C

estimate P; using X;, RANSAC with the 3-pt alg. (P3P), projection errors e;; in X; Slide 69
reconstruct 3D points from all tentative matches from P; to all P, | # k that are not in X’
. filter them by the chirality and apical angle constraints and add them to X

coming next
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»Bundle Adjustment

Given: Required:
. p
1. set of 3D points {X;}i_, 1. corrected 3D points {X;}7_,

2. set of cameras {P;}5_
{Piliz 2. corrected cameras {P}}5_;

3. fixed tentative projections m;;
Latent:

X; 1. visibility decision v;; € {0,1} per m;;

e for simplicity, X, m are considered direct (not homogeneous)
e we have projection error e;;(X;,P;) = x; — m; per image feature, where x; = P;X;
o for simplicity, we will work with scalar error ¢;; = ||e;;|
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Robust Objective Function for Bundle Adjustment

Data likelihood is constructed by marginalization, as in Robust Matching Model, Slide 107

sy ey = 11 11 ((1 = ao)pr(es; | Xi,Py) + aopoles; | Xi, Py))

pts:i=1 cams:j=1

the simplified log-likelihood is (as on Slide 108)
e?j(xivpj)

V(m} | {Ph) = —logp({m} [ {PH =33 —log(e T +¢) € 332X, Py)
% J i J

p(ef;(X3,P;)) = v7;(X;,P;)

v;; is a ‘robust’ error fcn.; it is non-robust (v;; = e;;) when t =0 0=1,1-002
p(+) is a ‘robustification function’ we often find in M-estimation
the L;; in Levenberg-Marquardt changes to vector

i 1 1 1 0e2(0)
(Lij)l = 90 = = /@ 2) — g e (28)
L 1+ teii o1) v5(0) 4dof 06,
D e —

small for big e; ;

but the LM method stays the same as on Slides 101-102

e outliers have virtually no impact on ds in normal equations because of the red term in (28)
that scales contributions to the sums down

—ZL” vi; (0 (ZL )
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»Sparsity in Bundle Adjustment

We have ¢ = 3p + 11c parameters: 0 = (X1, Xa,...,X;p; P1,P2,...,P.) points, cameras
We will use a running indexr=1,...,k, k=p-c. Then each r corresponds to some i, j

k k k
. . 2 s+l._gs T sy T i T .
0 —argmeln;w( , 077 :=0"+d,, — ;Lr v (0°) = (ZLT L, + ) diagL, LT> d,

r=1
The block form of L, in Levenberg-Marquardt (Slide 101) is zero except in columns ¢ and j:
r-th error term is 12 = p(e”(XL,P )

i J blocks:
L, = DOOmIr=—T 11 0: X;,1x3
O:P,,1x11
: 3p 11c
i J —

o 3
H blocks: Y
Tr o Vo 0. X; —X;,3x3 Tr
L, L. *]v D """" I:[ """ 0:X; -P;,3x11 ZLTLT*
R Rt el 0:P; —P;, 11 x11 =1

e "“points first, then cameras” scheme
e standard bundle adjustment eliminates points and solves cameras, then back-substitutes
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