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IThe Triangulation Problem

Problem: Given cameras P1, P2 and a correspondence x↔ y compute a 3D point X
projecting to x and y
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377775 , D ∈ R4,4, X ∈ R4 (12)

• back-projected rays will generally not intersect due to image error, see next

• using Jack-knife (Slide 66) not recommended sensitive to small error

• we will use SVD (Slide 86)

• but the result will not be invariant to projective frame
replacing P1 7→ P1H, P2 7→ P2H does not always result in X 7→ H−1X

• the homogeneous form in (12) can represent points at infinity
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IThe Least-Squares Triangulation by SVD

• if D is full-rank we may minimize the algebraic least-squares error

ε2(X) = ‖DX‖2 s.t. ‖X‖ = 1, X ∈ R4

• let Di be the i-th row of D, then
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• we write the SVD of Q as Q =
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j , in which [Golub & van Loan 1996, Sec. 2.5]
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we have a sum of non-negative elements 0 ≤ (u>j q)2 ≤ 1, let q = u4 + q̄ s.t. q̄ ⊥ u4, then
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Icont’d

• if σ4 � σ3, there is a unique solution X = u4 with residual error (DX)2 = σ2
4

the quality (conditioning) of the solution may be expressed as q = σ3/σ4 (greater is better)

Matlab code for the least-squares solver:

[U,O,V] = svd(D);

X = V(:,end);

q = O(3,3)/O(4,4);

~ P1; 2pt: Why did we decompose D and not Q = D>D? Could we use QR decomposition
instead of SVD?
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INumerical Conditioning

• The equation DX = 0 in (12) may be ill-conditioned for
numerical computation, which results in a poor estimate for X.

Why: on a row of D there are big entries together with small
entries, e.g. of orders projection centers in mm, image points in px2664

103 0 103 106

0 103 103 106

103 0 103 106

0 103 103 106

3775
Quick fix:

1. re-scale the problem by a regular diagonal conditioning matrix S ∈ R4,4

0 = Dq = DSS−1q = D̄ q̄

choose S to make the entries in D̂ all smaller than unity in absolute value:

S = diag(10−3, 10−3, 10−3, 10−6) S = diag(1./max(max(abs(D)),1))

2. solve for q̄ as before
3. get the final solution as q = S q̄

• when SVD is used in camera resectioning, conditioning is essential for success → Slide 65
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Algebraic Error vs Reprojection Error

• algebraic residual error: from SVD → Slide 87
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• algebraic error zero ⇒ reprojection error zero σ4 = 0 ⇒ non-trivial null space

• epipolar constraint satisfied ⇒ equivalent results

• in general: minimizing algebraic error cheap but it gives inferior results

• minimizing reprojection error expensive but it gives good results

• the gold standard method – deferred to Slide 100

Ex: • forward camera motion

• error f/50 in image 2, orthogonal to epipolar plane

XT – noiseless ground truth position
Xr – reprojection error minimizer
Xa – algebraic error minimizer
m – measurement (mT with noise in v2)
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Optimal Triangulation for the Geeks

• detected image points x, y do not satisfy epipolar geometry exactly

• as a result optical rays do not intersect in space, we must correct the image points to x̂, ŷ first

ŷ l2�1 �2� yx X
e1l1 x̂

1. given epipolar line l1 and l2, l2 ' F[e1]×l1 the x̂, ŷ are the closest points on l1, l2
2. parameterize all possible l1 by θ

• find θ after translating x, y to (0, 0, 1), rotating the epipoles to (1, 0, f1), (1, 0, f2), and

parameterising l1 = (0, θ, 1)× (1, 0, f1)

3. minimise the error
θ∗ = arg min

θ
d2`x, l1(θ)

´
+ d2`y, l2(θ)

´
the problem reduces to 6-th degree polynomial root finding, see [H&Z, Sec 12.5.2]

4. compute x̂, ŷ and triangulate using the linear method on Slide 85

• the midpoint of the common perpendicular to both optical rays gives about 50% greater error in 3D

• a fully optimal procedure requires error re-definition in order to get the most probable x̂, ŷ
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IWe Have Added to The ZOO

Continuation from Slide 71

problem given unknown slide

resectioning 6 world–img correspondences
˘

(Xi, mi)
¯6

i=1
P 65

exterior orientation K, 3 world–img correspondences
˘

(Xi, mi)
¯3

i=1
R, C 69

fundamental matrix 7 img–img correspondences
˘

(mi, m
′
i)
¯7

i=1
F 81

relative orientation K, 5 img–img correspondences
˘

(mi, m
′
i)
¯5

i=1
R, t 84

triangulation 1 img–img correspondence (mi, m
′
i) X 85

A bigger ZOO at http://cmp.felk.cvut.cz/minimal/

calibrated problems
• have fewer degenerate configurations
• can do with fewer points (good for geometry proposal generators → Slide 113)

• algebraic error optimization (with SVD) makes sense in resectioning and triangulation only

• but it is not the best method; we will now focus on ‘optimizing optimally’
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Part V

Optimization for 3D Vision
5 Algebraic Error Optimization
6 The Concept of Error for Epipolar Geometry
7 Levenberg-Marquardt’s Iterative Optimization
8 The Correspondence Problem
9 Optimization by Random Sampling

covered by

[1] [H&Z] Secs: 11.4, 11.6, 4.7

[2] Fischler, M.A. and Bolles, R.C . Random Sample Consensus: A Paradigm for Model
Fitting with Applications to Image Analysis and Automated Cartography.
Communications of the ACM 24(6):381–395, 1981

additional references

P. D. Sampson. Fitting conic sections to ‘very scattered’ data: An iterative refinement of the Bookstein

algorithm. Computer Vision, Graphics, and Image Processing, 18:97–108, 1982.

O. Chum, J. Matas, and J. Kittler. Locally optimized RANSAC. In Proc DAGM, LNCS 2781:236–243.

Springer-Verlag, 2003.
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IThe Concept of Error for Epipolar Geometry

Problem: Given at least 8 corresponding points xi ↔ yj in a general position, estimate
the most likely (or most probable) fundamental matrix F.

xi = (u1
i , v

1
i ), yi = (u2

i , v
2
i ), i = 1, 2, . . . , k, k ≥ 8

F

x̂i

ŷi

xi

yi

image 1 image 2

• detected points xi, yi; the correspondence set is S =
˘

(xi, yi)
¯k
i=1

• corrected points x̂i, ŷi; the set is Ŝ =
˘

(x̂i, ŷi)
¯k
i=1

• corrected points satisfy the epipolar geometry exactly ŷ>
i

F x̂i = 0, i = 1, . . . , k
• small correction is more probable
• ok, but we need to choose a definite error function for optimization that is tractable

• the solution for calibrated cameras (unknown E) is essentially the same and is not mentioned
here explicitly
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Icont’d

• Let V (·) be a positive semi-definite ‘energy function’
• e.g., per correspondence,

Vi(xi, yi | x̂i, ŷi,F) = ‖xi − x̂i‖2 + ‖yi − ŷi‖2 (13)

• the total (negative) log-likelihood (of all data) then is

L(S | Ŝ,F) =

kX
i=1

Vi(xi, yi | x̂i, ŷi,F)

• and the optimization problem is

(Ŝ∗,F∗) = arg min
F

rank F = 2

min
Ŝ

ŷ>
i
F x̂i = 0

kX
i=1

Vi(xi, yi | x̂i, ŷi,F) (14)

we mention 3 approaches

1. direct optimization of ‘geometric error’ over all variables Ŝ, F Slide 95

2. approximate minimization of L(S | Ŝ,F) over Ŝ followed by minimization over F
Slide 96

3. marginalization of L(S, Ŝ | F) over Ŝ followed by minimization over F
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Method 1: Geometric Error Optimization

• we need to encode the constraints ŷ
i
F x̂i = 0, rank F = 2

• idea: reconstruct 3D point via equivalent projection matrices and use reprojection error
• equivalent projection matrices are see [H&Z,Sec. 9.5] for complete characterization

P1 =
ˆ
I 0

˜
, P2 =

ˆ
[e2]×F + e2e

>
1 e2

˜
~ H3; 2pt: Verify that F is a f.m. of P1, P2, for instance that F ' Q−>2 Q>1 [e1]×

1. compute F(0) by the 7-point algorithm Slide 81

2. construct camera P
(0)
2 from F(0)

3. triangulate 3D points X̂
(0)
i from correspondences (xi, yi) for all i = 1, . . . , k Slide 85

4. express the energy function as reprojection error

Wi(xi, yi | X̂i,P2) = ‖xi − x̂i‖2 + ‖yi − ŷi‖2 where x̂i ' P1X̂i, ŷi ' P2(F) X̂i

5. starting from P
(0)
2 , X̂(0) minimize

(X̂∗,P∗2) = arg min
P2, X̂

kX
i=1

Wi(xi, yi | X̂i,P2)

6. compute F from P1, P∗2

• 3k + 12 ‘parameters’ to be found: latent: X̂i, for all i (correspondences!), non-latent: P2

• there are pitfalls; this is essentially bundle adjustment; we will return to this later Slide 133
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Thank You
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