» The Triangulation Problem

Problem: Given cameras P, P and a correspondence = <+ y compute a 3D point X
projecting to x and y

lL1 U2 (pzl)T
Mx=PiX, Juy=PX, x=|[v'|, y=[], Pi=[(ph)'
1 1 (p3) "

Linear triangulation method

® back-projected rays will generally not intersect due to image error, see next 3
e using Jack-knife (Slide 66) not recommended sensitive to small error
e we will use SVD (Slide 86)

® but the result will not be invariant to projective frame
replacing P1 — P;H P;_( — F;_*H does not always result in X — H™1X

e the homogeneous form in (12) can represent points at infinity
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» The Least-Squares Triangulation by SVD

e if D is full-rank we may minimize the algebraic least-squares error
. z 2
foague 2@ (0= DX7 s X =1,

XeR' X=X
e let D; be the i-th row of D, then

ovl = ) ;
4 Q . X USIED¥
||DXH2:Z(D X)? ZXTDTD X =X'QX, whereX =Y D/D,=D'D eR™
=1
(bx) (»ix) = Tbb)( .
e we write the SVD of Q as Q = ZUJQ ujujT, in which  [Golub & van Loan 1996, Sec. 2.5]
j=1
0 ifl
01> >0;>0 and u/ u, = ' 7”7
1 otherwise
e then .
X =arg min = Uy, T = o?q'u;u) q= o? (u] q)°
g min g "Qua=w, d'Qgq ; ERNGAVN. ; i (5 )
we have a sum of non-negative elements 0 < (uqu)2 <1, letgq=ugs+q s.t. q_L uyg, then
43
a'Qa=0i+Y o3 (ujq?’ >0}

j=1
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»cont'd

e if 04 < 03, there is a unique solution X = uy with residual error (D X)? = o7
the quality (conditioning) of the solution may be expressed as ¢ = 03/04 (greater is better)

Matlab code for the least-squares solver:

vq /C{)
[U,0,V] = svd(D);
X = V(:,end);
q = 0(3,3)/0(4,4);

® P1; 2pt: Why did we decompose D and not Q = DT D? Could we use QR decomposition
instead of SVD?
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» Numerical Conditioning

e The equation DX = 0 in (12) may be ill-conditioned for
numerical computation, which results in a poor estimate for X.

Why: on a row of D there are big entries together with small
entries, e.g. of orders  projection centers in mm, image points in px

102 0 10® 10°
0 10® 10® 10°
102 0 10® 10°
0 10® 10® 10°

Quick fix:

1. re-scale the problem by a regular diagonal conditioning matrix S € R**
1 — _ -
0:Dq:]9%’SS‘q:Dq 739 2 9=S9

. 9
choose S to make the entries in D all smaller than unity in absolute value:
S = diag(1072,107%,107%,1079) S = diag(1./max(max(abs(D)),1))
N—
2. solve for q as before

3. get the final solution as q =S q

e when SVD is used in camera resectioning, conditioning is essential for success — Slide 65
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»Back to Triangulation: The Golden Standard Method

We are given P, P2 and a single correspondence x < y and we look for 3D point X
projecting to x and y.

— Slide 85
Idea:
1. compute F from Py, P2, eg. F = (Q1Q; ") "[a1 — (Q1Q5 Maz],
2. correct measurement by linear estimate of the correction vector
at ul ul - (F) Ty
ol N UL T S EVR y Fx (Fo)Ty
o B T TN u?l - [SFx|? + [ISFTy|? |(F) x
02 v? v? B (F2)Tx
3. use the SVD algorithm with numerical conditioning — Slide 86

Ex (cont’d from Slide 89):
C] Cy

______ U

X — noiseless ground truth position
— reprojection error minimizer
Xs — Sampson-corrected algebraic error minimizer
X, — algebraic error minimizer
m — measurement (mqg with noise in v?)

& m

my mel
ey
P LTy SR p— .

e =m e
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Optimal Triangulation for the Geeks

o detected image points x, y do not satisfy epipolar geometry exactly
® as a result optical rays do not intersect in space, we must correct the image points to z, ¥ first
X

1. given epipolar line I1 and l2, I, ~ F[ei], L the Z, § are the closest points on [, [2
2. parameterize all possible 1 by 0
e find 0 after translating x, y to (0,0, 1), rotating the epipoles to (1,0, f1), (1,0, f2), and
parameterising 1; = (0,0, ﬂ x (1,0, f1)
3. minimise the error
0" = arg mein d? (z,0(0)) + d? (y,12(0))

the problem reduces to 6-th degree polynomial root finding, see [H&Z, Sec 12.5.2]
4. compute &, § and triangulate using the linear method on Slide 85

® the midpoint of the common perpendicular to both optical rays gives about 50% greater error in 3D
® 3 fully optimal procedure requires error re-definition in order to get the most probable Z, ¥
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»We Have Added to The ZOO

Continuation from Slide 71

problem given unknown | slide
l resectioning 6 world—img correspondences {(Xi, mi)}?:l P 65
exterior orientation | K, 3 world—img correspondences { (X, mi)}?:1 R, C 69
fundamental matrix | 7 img—img correspondences {(mi, m;)}::l F 81
relative orientation | K, 5 img—img correspondences {(mi, m;)}le R, t 84
1 triangulation 1 img—img correspondence (m;, m;) X 85

A bigger ZOO at http://cmp.felk.cvut.cz/minimal/

calibrated problems
e have fewer degenerate configurations
e can do with fewer points (good for geometry proposal generators — Slide 113)

e algebraic error optimization (with SVD) makes sense in resectioning and triangulation only

e but it is not the best method; we will now focus on ‘optimizing optimally’
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Part V

Optimization for 3D Vision

@ Algebraic Error Optimization

@® The Concept of Error for Epipolar Geometry
@ Levenberg-Marquardt's Iterative Optimization
@® The Correspondence Problem

© Optimization by Random Sampling

covered by
[1] [H&Z] Secs: 11.4, 11.6, 4.7
[2] Fischler, M.A. and Bolles, R.C . Random Sample Consensus: A Paradigm for Model
Fitting with Applications to Image Analysis and Automated Cartography.
Communications of the ACM 24(6):381-395, 1981
additional references
@ P. D. Sampson. Fitting conic sections to ‘very scattered’ data: An iterative refinement of the Bookstein

algorithm. Computer Vision, Graphics, and Image Processing, 18:97-108, 1982.

@ O. Chum, J. Matas, and J. Kittler. Locally optimized RANSAC. In Proc DAGM, LNCS 2781:236-243.
Springer-Verlag, 2003.

@ O. Chum, T. Werner, and J. Matas. Epipolar geometry estimation via RANSAC benefits from the oriented
epipolar constraint. In Proc ICPR. vol 1:112-115. 2004.
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» The Concept of Error for Epipolar Geometry

Problem: Given at least 8 corresponding points z; <+ y; in a general position, estimate
the most likely (or most probable) fundamental matrix F'.

neatuvempls X = (ul, v), yi=(ul,v}), i=1,2,....k, k>8

PO\ ~ N (X .Cz)

image 1 image 2
. . k
o detected points x;, y;; the correspondence set is S = {(zi, yi)},_,
o corrected points i;, §;; the set is 5 = { (i, gi)}le
e corrected points satisfy the epipolar geometry exactly 31/? Fx, =0 {o/ M K=, 7’(
e small correction is more probable
e ok, but we need to choose a definite error function for optimization that is tractable

e the solution for calibrated cameras (unknown E) is essentially the same and is not mentioned
here explicitly
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»cont’'d

e Let V(-) be a positive semi-definite ‘energy function’
e e.g., per correspondence,

Vi@, yi | &4,9:, F) = [lxi = %il|* + [ly: — 9/ (13)
e the total (negative) log-likelihood (of all data) then is

k
L(S|S,F) = Vi(wi,yi | &:,9:,F)
i=1
e and the optimization problem is
k
(S*,F*) =arg min min Z Vi(xi, yi | 24,9, F) (14)
F > )
rank F = 2 QTF):(7 =0 =1
we mention 3 approaches
1. direct optimization of ‘geometric error’ over all variables 5' F Slide 95

. 2. approximate minimization of L(S | S, F) over S followed by minimization over F
Slide 96

3. marginalization of L(S, S | F) over S followed by minimization over F

3D Computer Vision: V. Optimization for 3D Vision (p. 94/213) 9DaC R. Sara, CMP; rev. 30-Oct-2012 *&l



Method 1: Geometric Error Optimization

* we need to encode the constraints y F x; = 0, rank F = 2
e idea: reconstruct 3D point via equivalent projection matrices and use reprojection error
e equivalent projection matrices are see [H&Z,Sec. 9.5] for complete characterization

Pi=[ 0], Py=[e],Ft+ee e

@® H3; 2pt: Verify that F is a f.m. of Py, P3, for instance that F ~ Q;TQI[m]X

. compute F© by the 7-point algorithm Slide 81
. construct camera Pgo) from F©

. triangulate 3D points Xfm from correspondences (x;,y;) forall i =1,...,k Slide 85
. express the energy function as reprojection error

Wi(zi,yi | Xi,P2) = ||xi — %[> + ly: — 9:]°  where %, ~P1X;, §; ~ Po(F)

B W N =

<>

5. starting from Pgo), X© minimize

k
(X*,P}) = arg min Z Wiz, y: | X, P2)

P2, X i=1

6. compute F from P, P35

e 3k 4 12 'parameters’ to be found: latent: Xi, for all ¢ (correspondences!), non-latent: Py
o there are pitfalls; this is essentially bundle adjustment; we will return to this later Slide 139
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Thank You
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