
IThe Representation Theorem for Essential Matrices

Theorem
Let E be a 3× 3 matrix with SVD E = UDV>. Then E is an essential matrix iff
D ' diag(1, 1, 0).

Proof.

1. Part I: General properties of antisymmetric 3× 3 matrices

2. Part II (direct):

If E is essential then the it has two equal singular values and the third is zero.

3. Part III (converse):

Let A = ÛDV̂> s.t. D = diag(1, 1, 0) then A = [û3]×R, where R is orthogonal, û3 is the

3rd column of Û, and R = ÛWV̂>, where W =

24 0 α 0
−α 0 0
0 0 1

35 and |α| = 1.
ut
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Proof, Part I: More Properties of Antisymmetric 3× 3 Matrices

Given vector b, let there be matrices D, W, V

D = ‖b‖

241 0 0
0 1 0
0 0 0

35, W =

24 0 α 0
−α 0 0
0 0 1

35 , V =
h
a, c, b

‖b‖

i
(11)

such that

1. |α| = 1
2. ‖a‖ = ‖c‖ = 1

3. a, c, b mutually orthogonal: V>V = I

4. det V = 1


 b' a
note that

• W>W = I; W is a rotation by 90◦

• if α 7→ −α then W 7→W>

• a, c are determined up to a rotation ϕ about b, V̂ = TϕV, Tϕb = b

Theorem (A)

Let V, D, W, Tϕ be defined as above. Then ÛDV̂>is an SVD of [b]× iff

Û = TϕVW>, V̂ = TϕV for some ϕ.

It follows Û = V̂W> for any ϕ and ÛDV̂> = V̂W>DV̂> = ÛDW>Û
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cont’d

Proof of Theorem A.

1. Converse (Û, V̂, D, V, W, Tϕ as defined ⇒ ÛDV̂> is an SVD of [b]×):

a. ÛDV̂> = TϕVW>| {z }
Û

D V>T>ϕ| {z }
V̂>

is indeed an SVD of some matrix for any ϕ.

b. what matrix?

TϕVW>DV>T>ϕ = Tϕ‖b‖
`
ca> − ac>

´
T>ϕ = ‖b‖Tϕ[a× c]×T>ϕ =

= Tϕ[b]×T>ϕ = [Tϕb]× = [b]×
(12)

hence it is an SVD of [b]× but also of [Tϕb]× for any ϕ

2. Direct: For every ϕ we go backward in (12) and obtain an SVD.

ut
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Proof, Parts II and III

We are proving (from Slide 78):

Part II

If E is essential then the it has two equal singular values and the third is zero.

• The E is essential, hence E ' [t]×R

• Let ÛDV̂> be the SVD of [t]×. Then, by Theorem A, Û|{z}
orthogonal

D V̂>R| {z }
orthogonal

is an SVD of

E with singular values D = ‖t‖diag(1, 1, 0).

Part III
Let A = ÛDV̂> s.t. D = diag(1, 1, 0) then A = [û3]×R, where R is orthogonal.

ÛD V̂>|{z}
choice: WÛ>R

= ÛDWÛ>R = [û3]×R

DW =

24 0 α 0
−α 0 0
0 0 0

35, hence ÛDWÛ> = û1û>2 − û2û>1| {z }
antisymmetric with null space u3

= [û3]×

where we have defined V̂ s.t. R = ÛWV̂>
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IEssential Matrix Decomposition

Essential matrix captures relative camera position [Longuet-Higgins 1981]

E = [−t21]×R21 = [R2b]×R21 = R21[R1b]×

1. rank E = 2 since rank [t21]× = 2

2. Let E = UDV> be the SVD of E s.t. D = diag(1, 1, 0). Then [H&Z, sec. 9.6]
a. in case det U < 0 transform it to −U, do the same for V
b. compute

R21 = U

24 0 α 0
−α 0 0
0 0 1

35V>, t21 = −U

24 0
0
β

35 , |α| = 1, β 6= 0 (13)

Notes

• the result for R21 is unique up to α = ±1 despite non-uniqueness of SVD

• change of sign in W rotates the solution by 180◦ about t

R1 = UWV>, R2 = UW>V> ⇒ T = R2R>1 = · · · = U diag(−1,−1, 1)U> which is a
rotation by 180◦ about u3 = t21:

U diag(−1,−1, 1)U>u3 = U

24−1 0 0
0 −1 0
0 0 1

35240
0
1

35 = u3

• t21 recoverable up to scale β and direction signβ

• 4 solution sets for 4 sign combinations of α, β see next for geometric interpretation
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IFour Solutions to Essential Matrix Decomposition

C1 C2
C1 C2

α, β −α, β (twisted pair)

C1
C2

C1
C2

α, −β (baseline reversal) −α, −β (combination of both)

• chirality constraint: all 3D points are in front of both cameras

• this singles-out the upper left case [H&Z, Sec. 9.6.3]
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I7-Point Algorithm for Estimating Fundamental Matrix

Problem: Given a set {(xi, yi)}ki=1 of k = 7 correspondences, estimate f. m. F.

y>i Fxi = 0, i = 1, . . . , k, known: xi = (xi1, xi2, 1), yi = (yi1, yi2, 1)

terminology: correspondence = truth, later: match = algorithm’s result; hypothesised corresp.

Solution:

D =

26664
x11y11 x11y12 x11 x12y11 x12y12 x12 y11 y12 1
x21y21 x21y22 x21 x22y21 x22y22 x22 y21 y22 1

...
...

xk1yk1 xk1yk2 xk1 xk2yk1 xk2yk2 xk2 yk1 yk2 1

37775 , D ∈ Rk,9

Df = 0, f =
ˆ
f11 f21 f31 . . . f33

˜>
, f ∈ R9,

• for k = 7 we have a rank-deficient system, the null-space of D is 2-dimensional
• but we know that det F = 0
• 7-point algorithm:

1. find a basis of the null space of D: F1, F2 by SVD or QR factorization

2. get up to 3 real solutions for α from

det(αF1 + (1− α)F2) = 0 cubic equation in α

3. get up to 3 fundamental matrices F = αiF1 + (1− αi)F2

• the result may depend on image transformations
• normalization improves conditioning Slide 91
• this gives a good starting point for the full algorithm Slide 110
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IDegenerate Configurations for Fundamental Matrix Estimation

When is F not uniquely determined from any number of correspondences? [H&Z, Sec. 11.9]

1. camera centers coincide C1 = C2

• epipolar geometry is not defined
• images are related by homography H
• we do get an F from the 7-point algorithm but it

is of the form of F = SH, with S antisymmetric

2. all 3D points lie in a plane
• images related by homography
• again, F is not unique, F = SH, where S is as

above

y ' Hxy0ls
l' s×Hx arbitrary s

y ∈ l : 0 = y>(s×Hx) = y> [s]×H| {z }
SH

x

note essential matrix estimation can deal with planes, Slide 87

3. both camera centers and all 3D points lie on a ruled quadric
hyperboloid of one sheet, cones, cylinders, two planes

• there are 3 solutions for F

notes

• a complete treatment with additional degenerate configurations in [H&Z, sec. 22.2]

• stronger epipolar constraint can reject some configurations

• we assume correct correspondences, dealing with mismatches need not be a part of the
7-point algorithm → Slide 112
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A Note on Oriented Epipolar Constraint

• a tighter epipolar constraint preserves orientations
• requires all points and cameras be on the same side of the plane at infinity"

b �2�1 d2d1
e2e1m1

X
C2l1 m2C1 l2

e2 ×m2 +∼ Fm1

notation: m +∼ n means m = λn, λ > 0

• note that the constraint is not invariant to the change of either sign of mi

• all 7 correspondence in 7-point alg. must have the same sign see later

• this may help reject some wrong matches, see Slide 112 [Chum et al. 2004]

• an even more tight constraint: scene points in front of both cameras expensive

this is called chirality constraint
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IFive-Point Algorithm for Relative Camera Orientation

Problem: Given {mi, m
′
i}5i=1 corresponding image points and calibration matrix K,

recover the camera motion R, t.

Obs:
1. R – 3DOF, t – we can recover 2DOF only, in total 5 DOF → we need 3 constraints on E

2. real F ∈ R3,3 is a fundamental matrix iff det F = 0

3. fundamental matrix is essential iff its two non-zero eigenvalues are equal

This gives an equation system:

v>i Ev′i = 0 5 linear constraints (v = K−1m)

det E = 0 1 cubic constraint

EE>E− 1

2
tr(EE>)E = 0 9 cubic constraints, 2 independent

1. estimate E by SVD from v>i Ev′i = 0 by the null-space method, this gives
E = xE1 + yE2 + zE3 + E4

2. at most 10 (complex) solutions for x, y, z from the cubic constraints

• when all 3D points lie on a plane: at most 2 solutions (twisted-pair)
can be disambiguated in 3 views

or by chirality constraint (Slide 83) unless all 3D points are closer to one camera

• 6-point problem for unknown f [Kukelova et al. BMVC 2008]

• resources at http://cmp.felk.cvut.cz/minimal/5_pt_relative.php
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