»The Representation Theorem for Essential Matrices

Theorem
Let E be a 3 x 3 matrix with SVD E = UDV ". Then E is an essential matrix iff
D ~ diag(1,1,0).

Proof.
1. Part I: General properties of antisymmetric 3 x 3 matrices

2. Part Il (direct):

If E is essential then the it has two equal singular values and the third is zero.

3. Part Ill (converse):

Let A=UDV' s.t. D = diag(1,1,0) then A = [a3], R, where R is orthogonal, Gi3 is the

0 a 0
3rd column of I:T, and R = UWVT, where W= [—a 0 O0f and |a] = 1.
0 0 1 [}
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Proof, Part |I: More Properties of Antisymmetric 3 x 3 Matrices

Given vector b, let there be matrices D, W, V

1 0 0 0 a O
D=|bj{0 1 0|, W=|-a 0 0 ,V:[a,c,ﬁ] (11)
0 0 O 0 0 1
[
such that
1 |al=1 3. a, ¢, b mutually orthogonal: VTV =1 b
2. ||lall=cll=1 4. detV =1 ¥
a
note that

e WI'W =1, W is a rotation by 90°
o if & — —a then W i— W T
® a, c are determined up to a rotation ¢ about b, V= T,V, Tyb=b

Theorem (A)

Let V, D, W, T, be defined as above. Then UDV "is an SVD of [b], iff
U= T,VWT, V= T,V for some .

It follows U = VW for any ¢ and UDVT = VW'DV’ = UDW U
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cont’d

Proof of Theorem A.
1. Converse (Ij, V,D,V, W, T, as defined = UDVT is an SVD of [b],):

a. UDVT = T(PVW—r DVTT:; is indeed an SVD of some matrix for any .
—_—— ——
U vT
b. what matrix?

T,VW'DV'T] = T,|b| (ca’ —ac")T] = ||b]| Tylaxc],T] =

- (12)
= T#P[b]xTap = [wa]x = [b]x
hence it is an SVD of [b], but also of [T,b], for any ¢
2. Direct: For every ¢ we go backward in (12) and obtain an SVD.
[m]
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Proof, Parts Il and IlI

We are proving (from Slide 78):
Part |1

If E is essential then the it has two equal singular values and the third is zero.

e The E is essential, hence E ~ [t] R

o Let UDV be the SVD of [t] .. Then, by Theorem A, U D V'R is an SVD of
~ ——~

orthogonal orthogonal

E with singular values D = ||t|| diag(1, 1,0).

Part 11l
Let A =UDV' st. D = diag(1,1,0) then A = [i15] R, where R is orthogonal.

UDV' = UDWU'R = [a3],R

choice: WUTR

—a 0

2

I
L — |
o
Q
coo

} , hence UDWUT =  d1a] — o] = [as],
| S ——
antisymmetric with null space ug

where we have defined V s.t. R=UWV "
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»Essential Matrix Decompaosition

Essential matrix captures relative camera position [Longuet-Higgins 1981]

E = [—t21], Ro1 = [R2b], R21 = Rai1[R1b],

1. rank E = 2 since rank [t21], =2

2. Let E=TUDV' be the SVD of E s.t. D = diag(1,1,0). Then [H&Z, sec. 9.6]
a. in case det U < 0 transform it to —U, do the same for V
b. compute

0 a 0 0
Ryy=U|-a 0 0|V, t=-U|0], laj=1, B#0 (13)
0 0 1
Notes
o the result for R21 is unique up to oo = £1 despite non-uniqueness of SVD

e change of sign in W rotates the solution by 180° about t

Ri=UWV' Ry =UW'VT = T =RoR/| =--- = Udiag(—1,—1,1)UT which is a
rotation by 180° about uz = to1:

—1 0 0] |0
Udiag(—1,-1,)UTus=U [0 -1 0| [0| =u3
0 0 1 1
® to1 recoverable up to scale 8 and direction sign 3
® 4 solution sets for 4 sign combinations of «, (3 see next for geometric interpretation
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»Four Solutions to Essential Matrix Decomposition

a, —f3 (baseline reversal) —a, —f (combination of both)

e chirality constraint: all 3D points are in front of both cameras

e this singles-out the upper left case [H&Z, Sec. 9.6.3]
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»7-Point Algorithm for Estimating Fundamental Matrix

Problem: Given a set {(x;,:)}*_, of k = 7 correspondences, estimate f. m. F.
T .
viFxi=0, i=1,...,k,  known: x = (zi1,®i2,1), yi = (yi1,¥i2,1)
terminology: correspondence = truth, later: match = algorithm’s result; hypothesised corresp.
Solution:
T11Y11 T11Y12 Ti11  T12Y11 T12Y12 Ti12 Y11 Y12 1

T21Y21 T21Y22 21 T22Y21 T22Y22 22 Y21 Y22 1 5.9
D=| . |, DeRr®

Trp1Ykl ThiYk2 Tkl Tk2Ykl Tk2Yk2 Tk2  Yel Yk2 1

Df =0, f=[f11 far far ... fSS]T, f e R’

e for k = 7 we have a rank-deficient system, the null-space of D is 2-dimensional
e but we know that det F' =0
e 7-point algorithm:
1. find a basis of the null space of D: Fy, Fa by SVD or QR factorization
2. get up to 3 real solutions for o from
det(aF1 4+ (1 — a)F2) =0 cubic equation in «
3. get up to 3 fundamental matrices F = o;F1 + (1 — «;)F2

® the result may depend on image transformations
e normalization improves conditioning Slide 91
e this gives a good starting point for the full algorithm Slide 110
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»Degenerate Configurations for Fundamental Matrix Estimation

When is F' not uniquely determined from any number of correspondences? [H&Z, Sec. 11.9]

y =~ Hx
1. camera centers coincide C; = C>
e epipolar geometry is not defined
e images are related by homography H
e we do get an F from the 7-point algorithm but it

is of the form of F = SH, with S antisymmetric l~sx Hx arbitrary s
te e i yel:0=y (sxHx) =y [, Hx
2. all 3D points lie in a plane
e images related by homography SH
e again, F is not unique, F = SH, where S is as
above

note essential matrix estimation can deal with planes, Slide 87

3. both camera centers and all 3D points lie on a ruled quadric

hyperboloid of one sheet, cones, cylinders, two planes
e there are 3 solutions for F

notes

® a complete treatment with additional degenerate configurations in [H&Z, sec. 22.2]
® stronger epipolar constraint can reject some configurations

® we assume correct correspondences, dealing with mismatches need not be a part of the
7-point algorithm — Slide 112
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A Note on Oriented Epipolar Constraint

e a tighter epipolar constraint preserves orientations
e requires all points and cameras be on the same side of the plane at infinity

notation: m + nmeans m = An, A >0

® note that the constraint is not invariant to the change of either sign of m;

e all 7 correspondence in 7-point alg. must have the same sign see later
e this may help reject some wrong matches, see Slide 112 [Chum et al. 2004]
® an even more tight constraint: scene points in front of both cameras expensive

this is called chirality constraint
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»Five-Point Algorithm for Relative Camera Orientation

Problem: Given {m;, m}}5_; corresponding image points and calibration matrix K,
recover the camera motion R, t.
Obs:
1. R - 3DOF, t — we can recover 2DOF only, in total 5 DOF — we need 3 constraints on E
2. real F € R332 is a fundamental matrix iff det F = 0
3. fundamental matrix is essential iff its two non-zero eigenvalues are equal

This gives an equation system:

viEV,=0 5 linear constraints (v = K~ 'm)
detE =0 1 cubic constraint
1 . . .
EE'E — 3 tr(EE")E =0 9 cubic constraints, 2 independent

1. estimate E by SVD from v; E v, = 0 by the null-space method, this gives
E=2E: +yE> + 2E3 + E4
2. at most 10 (complex) solutions for x, y, z from the cubic constraints

e when all 3D points lie on a plane: at most 2 solutions (twisted-pair)
can be disambiguated in 3 views
or by chirality constraint (Slide 83) unless all 3D points are closer to one camera
® 6-point problem for unknown f [Kukelova et al. BMVC 2008]
® resources at http://cmp.felk.cvut.cz/minimal/5_pt_relative.php
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