»The Representation Theorem for Essential Matrices
Let <UD o+ € lLe UDVT

Theorem

A 3 x 3 matrix E is an essential matrix iff D ~ diag(1,1,0).

&
€= E—é“] Z

1. Part I: General properties of antisymmetric 3 X 3 matrices

Proof.

2. Part Il (direct):

If E is essential then the it has two equal singular values and the third is zero.

3. Part Il (converse):

Let A=UDV' s.t. D = diag(1,1,0) then A = [G3] R, where R is orthogonal, Gi3 is the

0 a 0
3rd column of fJ and R = fJWVT where W= |—a 0 0]. W= 1
0 0 1 [}
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Proof, Part |I: More Properties of Antisymmetric 3 x 3 Matrices

Given vector b, let there be matrices D, W, V

1 0 0 0 a O
D=|bj{0 1 0|, W=|-a 0 0 ,V:[a,c,ﬁ] (11)
0 0 O 0 0 1
[
such that
1 |al=1 3. a, ¢, b mutually orthogonal: VTV =1 b
2. ||lall=cll=1 4. detV =1 ¥
a
Lis given, acc uot
note that

e WI'W =1, W is a rotation by 90°
o if & — —a then W i— W T
® a, c are determined up to a rotation ¢ about b, V= T,V, Tob=b

Theorem (A)

Let V, D, W, T, be defined as above. Then UDVTIS an SVD of [b] 1i_ff
Ung,VWT,VfTwV for some . TYV'V - 0 JVVVW

It follows U = VW7 for any ¢ and UDVT =VvW'DV' = UDW U
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cont’d

Proof of Theorem A.

1. Converse (Ij, V,D,V, W, T, as defined = UDVT is an SVD of [b],):
a. UDVT =T, VW' DVTT:; is indeed an SVD of some matrix for any ¢.

&ﬁ—/\“,_/
m

U / T
b. what matrix?

Tw\\/:YVL]?gT; =Ty|bl|(ca” —ac™)T] = |b|| Ty[ax ], T] =

S _ T (12)
L1J]V‘ - L;; ‘] :Tv[b]xTcp :[T<Pb]>< :[b]x
hence it is an SVD of [b], but also of [T,b], for any ¢ )

2. Direct: For every ¢ we go back\a/ard in (12) and obtain an SVD.

P S

2
(ch-ch) b =

- 8]
~ T _
=0 v= Lae b1l vv =1
1ol
cae —adle =-a
e~ R
) 1
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Proof, Parts Il and IlI

We are proving (from Slide 78):

Part 11

If E is essential then the it has two equal singular values and the third is zero.
e The E is essential, hence E ~ [t] R =%y

o Let UDV be the SVD of [t] .. Then, by Theorem A, U D V'R is an SVD of

" t “ orthogonal orthogonal

E with singular values D :/\diag(l, 1,0).

Part 111
Let A = UDV' st. D = diag(1,1,0) then A = [t3] R, where R is orthogonal.
. . T
UDV' = UDWU'R = [i3] R
~—~ —_————
choice: WUTR antisymmetric by Theorem A

where [113], is obtained by inspection and we have defined Vst R=UWV'

3D Computer Vision: IV. Computing with a Camera Pair (p. 81/203) 9DaC R. Sara, CMP; rev. 23-Oct-2012 <@l



»Essential Matrix Decompaosition

Essential matrix captures relative camera position [Longuet-Higgins 1981]

E = [—t21], Ro1 = [R2b], R21 = Rai1[R1b],

1. rank E = 2 since rank [t21], =2

2. Let E=UDV ' be the SVD of E s.t. D = diag(1,1,0). Then [H&Z, sec. 9.6]
a. in case det U < 0 transform it to —U, do the same for V
b. compute [U\b.’/j = gvd (&
i b (v)< 0
0 a 0 0 U= -v; V==V
Roy=U|—-a 0 0|V, t5n=-U|0], ol =1, B#0 (13)
0 0 1 8 ewo
T
Notes Bpp= UWYV
. i 'ézq 5_’(‘("1 3)
e the result for R2; is unique = spite rQn-uniqueness of SVD
\ T, T
e change of sign in rotates the solution by 180° about t @: uwiv
Ri=UWV , Ro=UW VT = T=RyR}| = ... = Udiag(—1,—1,1)UT which is a

rotation by 180° about uz = to; 1,1‘ =+ M 3)

e to; recoverable up to scale 3 and direction sign (3

e 4 solution sets for 4 sign combinations of «, 8 see next for geometric interpretation
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»Four Solutions to Essential Matrix Decomposition

a, —f (baseline reversal) —a, —3 (combination of both)

e chirality constraint: all 3D points are in front of both cameras

e this singles-out the upper left case [H&Z, Sec. 9.6.3]
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»7-Point Algorithm for Estimating Fundamental Matrix

Problem: Given a set {(x;,1:)}"_; of k = 7 correspondences, estimate f. m. F.
X@TF& =0, i=1,...,k,  known: x; = (21, %i2,1), yi = (yi1,¥i2,1)

terminology: correspondence = truth, later: match = algorithm’s result; hypothesised corresp.
. o
Solution: ¢ R 15
T11Y11 T11Y12 Ti11  T12Y11 T12Y12 T12 Y11 Y12 1

T21Y21 T21Y22 21 T22Y21 T22Y22 22 Y21 Y22 1 5.9
D=| . |, Der®

Trp1Ykl ThiYk2 Tkl Tk2Ykl Tk2Yk2 T2 Yel Yk2 1

7x9 \Df:0, f=[f11 far far ... fSS]T, feR?,

e for k = 7 we have a rank-deficient system, the null-space of D is 2-dimensional

e but we know that det F =0

e 7-point algorithm:
1. find a basis of the null space of D: Fy, Fa by SVD or QR factorization
2. get up to 3 real solutions for o from

det(aF1 4+ (1 — a)F2) =0 cubic equation in «

3. get up to 3 fundamental matrices F = o;F1 + (1 — o;)F2 E——\-\ ]
R . .

the result may depend on image transformations
e normalization improves conditioning Slnde 91
e this gives a good starting point for the full algorithm Slide 110
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»Degenerate Configurations for Fundamental Matrix Estimation

When is F not uniquely determined from any number of correspondences? [H&Z, Sec. 11.9]

<] | ¥ =M
1. camera centers coincide C; = (5

e epipolar geometry is not defined AR x
e images are related by homography H
e we do get an F from the 7-point algorithm but it

is of the form of F = SH, with S antisymmetric l~sx Hx arbitrary s
e e yel: 0=y (sxHx) =y [, Hx
2. all 3D points lie in a plane < <
e images related by homography aTJ: Xx=0 SH
e again, F is not unique, F = SH, where S is as
above

note essential matrix estimation can deal with planes, Slide 87

3. both camera centers and all 3D points lie on a ruled quadric

hyperboloid of one sheet, cones, cylinders, two planes
e there are 3 solutions for F

notes

® a complete treatment with additional degenerate configurations in [H&Z, sec. 22.2]
® stronger epipolar constraint can reject some configurations

® we assume correct correspondences, dealing with mismatches need not be a part of the
7-point algorithm — Slide 112
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A Note on Oriented Epipolar Constraint

e a tighter epipolar constraint preserves orientations
e requires all points and cameras be on the same side of the plane at infinity

notation: m + nmeans m = An, A >0

® note that the constraint is not invariant to the change of either sign of m;

e all 7 correspondence in 7-point alg. must have the same sign see later
e this may help reject some wrong matches, see Slide 112 [Chum et al. 2004]
® an even more tight constraint: scene points in front of both cameras expensive

this is called chirality constraint
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»Five-Point Algorithm for Relative Camera Orientation

Problem: Given {m;, m;}5_; corresponding image points and calibration matrix K,
recover the camera motion R, t.
Obs:
1. R - 3DOF, t — we can recover 2DOF only, in total 5 DOF — we need 3 constraints on E
2. real F € R332 is a fundamental matrix iff det F = 0
3. fundamental matrix is essential iff its two non-zero eigenvalues are equal

This gives an equation system:

viEVi=0 5 linear constraints (v = K~ 'm)
equil v pales valiws ) detE =0 1 cubic constraint % § +]
EE'E — %tr(EET)E =0 9 cubic constraints, 2 independent

1. estimate E by SVD from v; E v, = 0 by the null-space method, this gives
E =2E; + yEz + 2E3 + E4
2. at most 10 (complex) solutions for x, y, z from the cubic constraints

e when all 3D points lie on a plane: at most 2 solutions (twisted-pair)
can be disambiguated in 3 views
or by chirality constraint (Slide 83) unless all 3D points are closer to one camera
® 6-point problem for unknown f [Kukelova et al. BMVC 2008¢
® resources at http://cmp.felk.cvut.cz/minimal/5_pt_relative.php
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