
OPPA European Social Fund
Prague & EU: We invest in your future.



Machine Learning and Data Analysis
Lecture 10: Infinite Hypothesis Spaces (wrap-up)

Filip Železný
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Chernoff bound

Let PZ be distribution on {0, 1} and {z1, z2, . . . zm} be an i.i.d. sample
from PZ. Then for the difference between the true and sample means it
holds

Pr

(
m

∑
i=1

zi < (1− γ)PZ(1)m

)

≤ e−mγ2/2

Similar to the Hoeffding inequality we know but multiplicative.

Consequence: given an i.i.d x-sample S with m elements from PX and a
region r ⊆ X such that ∑x∈r PX(x) = ǫ

Pr

(

|S∩ r| ≤
1

2
ǫm

)

≤ e−m/8
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PAC Learning with Infinite F

Any hypothesis consistent with an ǫ-net is good (e(f ) < ǫ).

So we want to bound by δ the probability that a sample is not an ǫ-net.

Assume we bound by P the probability that a random error region r
contains no sample point.

If there were a finite number of error regions (finite |∆ǫ(c)|), we could
bound the probability that some of them contains no sample point by
|∆ǫ(c)|P.

But |∆ǫ(c)| is generally infinite.

Instead we adopt the double-sampling trick.
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PAC Learning with Infinite F (cont’d)

Let S1 and S2 be two x-samples, each of size m. Distinguish two random
events:

A : S1 is not an ǫ-net

B : A happens and |S2 ∩ r| >
1
2ǫm for some r ∈ ∆ǫ(c)

If A happens, then there is some r ∈ ∆ǫ(c) such that ∑x∈r PX(x) ≥ ǫ, so
by the Chernoff bound

Pr

(

|S∩ r| >
1

2
ǫm

)

= 1− Pr

(

|S∩ r| ≤
1

2
ǫm

)

> 1− e−m/8

assume that m ≥ 8
ǫ
ln 2, then 1− e−m/8 ≥ 1

2 (keep the assumption)

So under these assumptions Pr (B|A) ≥ 1
2 .
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PAC Learning with Infinite F (cont’d)

Remind:

A : S1 is not an ǫ-net

B : A happens and |S2 ∩ r| >
1
2ǫm for some r ∈ ∆ǫ(c)

Pr(B) = Pr(A∧ B) = Pr(B|A)Pr(A)

we proved that Pr(B|A) ≥ 1
2 so

Pr(A) ≤ 2 Pr(B)

So to bound Pr(A) ≤ δ, we bound Pr(B) ≤ δ
2
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PAC Learning with Infinite F (cont’d)
Event B equivalently:

Sample |S1 ∪ S2| = 2m points and randomly partition then into S1
and S2 of equal size.

There is some r ∈ Π∆ǫ(c)(S1 ∪ S2) such that

|r| >
1

2
ǫm and r∩ S2 = {}

Example for m = 2, S1 = blue, S2 = green

∈ ∆ǫ(c)

r ∈ Π∆ǫ(c)(S1 ∪ S2)

Event B did not occur Event B occurred
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PAC Learning with Infinite F (cont’d)

For a fixed r, the probability that by partitioning S1 ∪ S2, all elements fall
in S2 is (

m
|r|

)

(
2m
|r|

) ≤ 2−|r| ≤ 2−ǫm/2

(Remind that |r| > ǫm/2.)

There are |Π∆ǫ(c)(S1 ∪ S2)| possible r’s, so

Pr(B) ≤ |Π∆ǫ(c)(S1 ∪ S2)|2
−ǫm/2
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PAC Learning with Infinite F (cont’d)

Pr(B) ≤ |Π∆ǫ(c)(S1 ∪ S2)|2
−ǫm/2

≤ |Π∆0(c)(S1 ∪ S2)|2
−ǫm/2 because ∆ǫ(c) ⊆ ∆0(c)

≤ |ΠF (S1 ∪ S2)|2
−ǫm/2 because V(∆0(c)) = V(F )

≤ GF (S1 ∪ S2)2
−ǫm/2 by definition of GF

≤ Φ(V(F ), 2m)2−ǫm/2 by the bound we proved

≤

(
2em

V(F )

)V(F )

2−ǫm/2 plugging in the bound for Φ
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PAC Learning with Infinite F (cont’d)

Remind that we require

Pr(B) ≤

(
2em

V(F )

)V(F )

2−ǫm/2 ≤
δ

2

Taking logarithms:

V(F ) log2
2em

V(F )
−

ǫm

2
≤ log2

δ

2

So for m:

m ≥
2

ǫ
log2

2

δ
+

2V(F )

ǫ
log2

2em

V(F )
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PAC Learning with Infinite F (cont’d)

m ≥
2

ǫ
log2

2

δ
+

2V(F )

ǫ
log2

2em

V(F )

To guarantee this, we make m/2 greater than each of the two summands.

For the first summand:

m ≥
4

ǫ
log2

2

δ

but earlier we also assumed m ≥ 8
ǫ
ln 2, so we strenghten the above:

m ≥
8

ǫ
log2

2

δ
≥

8

ǫ
ln 2
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PAC Learning with Infinite F (cont’d)
For the second summand:

m ≥
4V(F )

ǫ
log2

2em

V(F )

Left-hand side grows faster (linearly) in m than right-hand side
(logarithmically). Thus we only need to find a minimum value m0 of m
satisfying the inequality, and it will be satisfied for all m ≥ m0.

Plugging

m0 =
8V(F )

ǫ
log2

13

ǫ

for m in the inequality, we obtain (verify!) the equivalent inequality

132

16eǫ
≥ log2

13

ǫ

which is true for any ǫ ≤ 1.
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PAC Learning with Infinite F : Result

PAC Learning with Infinite F

Let F be a hypothesis class with a finite V(F ) and C be concept class,
both on X. Let c ∈ C be a concept. A hypothesis f consistent with a
sample {(x1, c(x1)), . . . , (xm, c(xm))} will have e(f ) ≤ ǫ with probability
at least 1− δ if

m ≥ max

(
8

ǫ
log2

2

δ
,
8V(F )

ǫ
log2

13

ǫ

)

Therefore any C is (efficiently) PAC-learnable by F if there is an (efficient)
learner producing a consistent f ∈ F for any sample, and V(F ) is
polynomial (in the size of examples n).

As we have seen, V(F ) is usually linear in the number of hypothesis class
parameters, which corresponds to n.
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V(F ): Remarks

The result can be rewritten into a simpler form

m ≥ c0

(
V(F )

ǫ
log2

1

ǫ
+

1

ǫ
log2

1

δ

)

where c0 is a constant.

The result holds also for finite F . For some F , it may even provide
better bounds than those we derived specially for finite F .

Finite V(F ) is also a necessary condition for PAC-learning. It can be
proved that at least

V(F )− 1

64ǫ

examples are needed to PAC-learn a concept class with F if
δ ≤ 1/15.
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Error Bounds for Infinite F

V(F ) also enables to derive error bounds for inconsistent hypotheses.
V(F ) is ‘analogical’ to ln |F | for finite hypothesis classes.

With probability at least 1− δ, for a training set S:

|e(f )− e(S, f )| ≤ O

(√

V(F )

m
log2

m

V(F )
+

1

m
log2

1

δ

)

and if f minimizes training error e(f ,S) then with probability at least 1− δ:

e(f ) ≤ e(f ∗) + O

(√

V(F )

m
log2

m

V(F )
+

1

m
log2

1

δ

)

where f ∗ minimizes classification error e(f ).
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Universal learnability

PAC bounds may be very loose (pessimistic) in practice due to overly
general assumptions.

Prior probabilities of hypotheses are not assumed in the PAC model.

The universal learnability framework (Muggleton, Page 1997) is an extension
of the PAC-model where a prior probability distribution PF (f ) on
hypotheses is considered. For example:

PF (f ) ≈ e−DL(f )

where DL(f ) is the description length (i.e., complexity) of the hypothesis
in a suitable language. Many real-life learning algorithms indeed prefer
simpler hypotheses.

The Universal learnability framework enables to prove some stronger
results than the PAC-framework.
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Bayesian PAC-learning

Bayesian PAC-learning is a currently vivid stream in computational
learning theory.

Prior probabilities of hypotheses are also assumed as in Universal
learnability. After seeing training sample S, they are used to derive the
posterior probabilities

PF|S(f |S) ≈ PS|F (S|f )PF (f ) ≈ e(f ,S)PF (f )

A new example x is then classified into class 1 iff

∑
f∈F

f (x)PF|S(f |S) >
1

2

(This decision be approximated by sampling a set of f from PF|S and
taking the majority vote.)

Stronger results may be derived than in the conventional PAC-framework.
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Different Learning Protocols

The conventional PAC-learning framework applies to the supervised
learning protocol. It does not cover other protocols such as

Learning with queries. The learning algorithm may ask queries to the
teacher (oracle). Existing frameworks consider e.g.:

membership queries, such as what is the class of x?
statistical queries, such as what is the probability of

drawing x such that x(1) ∈ [0.3, 0.4]?

The statistical query model proves some stronger results
(i.e., fewer examples needed) than the PAC model.

Reinforcement learning. Instead of class information, feedback from the
teacher is received after a sequence of decisions made by the
learner.

Other scenarios. Such as those where decisions made by the learner
influence PY|X.
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Bias-Variance Trade-off Revisited

Remind: in the finite F case, by extending F

e(f ) ≤

(

min
f∈F

e(f )

)

︸ ︷︷ ︸

‘bias’: may decrease

+ 2

√

1

2m
ln

2|F |

δ
︸ ︷︷ ︸

‘variance’: will increase

This holds analogically for infinite F

e(f ) ≤

(

min
f∈F

e(f )

)

︸ ︷︷ ︸

‘bias’: may decrease

+O

(√

V(F )

m
log2

m

V(F )
+

1

m
log2

1

δ

)

︸ ︷︷ ︸

‘variance’: will increase
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Bias-Variance Trade-off Revisited (cont’d)

Resulting behavior (we have seen this before)

small m

e(f )

e(S, f )

← bias
variance →

large m

e(f )

e(S, f )

← bias
variance →
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Bias-Variance Trade-off in Regression

The PAC framework provides bounds for classification. Not applicable in
regression.

An analogy of the bias-variance trade-off may be derived for regression.
Consider loss function

L(y, y′) = LSQ(y, y′) = (y− y′)2

Under LSQ, risk of f is the mean squared error

MSE(f ) =
∫

x∈X

∫

y∈Y

LSQ (y, f (x))dPXY(x, y)
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Bias-Variance Trade-off in Regression (cont’d)
MSE(f ) can be expressed as

MSE(f ) =
∫

x∈X

MSE(f (x))dPX(x)

where

MSE(f (x)) =
∫

y∈Y

LSQ (y, f (x))dPY|X(y|x)

is the mean squared error at a fixed x.

For simplicity, we assume that PY|X is deterministic, i.e.

PY|X(y|x) = 1 iff f ∗(x) = y

where f ∗ : X → Y is some function. Then

MSE(f (x)) = (f (x)− f ∗(x))2
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Bias-Variance Trade-off in Regression (cont’d)

In MSE(f (x)), f is learned from a given sample S. We now study how
f (x) behaves over multiple samples S.

S is random (drawn from S = 2X), therefore f (x) is now random even
though x is fixed. Then also MSE(f (x)) is a random variable and for its
mean value we have:

ES [MSE(f (x))] = ES

[

(f (x)− f ∗(x))2
]

=ES

[
f (x)2 − 2f (x)f ∗(x) + f ∗(x)2

]

=ES

[
f (x)2

]
−2ES [f (x)] f ∗(x) + f ∗(x)2 + ES [f (x)]2−ES [f (x)]2

=ES

[
f (x)2

]
− ES [f (x)]2 + (ES [f (x)]− f ∗(x))2

=VarS (f (x)) + Bias2S (f ∗(x), f (x))

(note the linearity of the expectation operator E)
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Bias-Variance Trade-off in Regression (cont’d)

More generally, assume that PY|X is not deterministic. In particular,
assume

y = f ∗(x) + z

where z is a random variable (‘additive noise’). Then

E [MSE(f (x))] = VarS (f (x)) + Bias2S (f ∗(x), f (x)) + VarS (z)

Here, VarS (z) is the irreducible error.
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