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Outline

= motivation
why clustering? applications,

clustering as an optimization task

complexity,

k-means algorithm

direct greedy search,

(dis)advantages,

generalization

k-means as an instance of EM algorithm,
soft clustering,

EM algorithm and Gaussian distribution mixture,

hierarchical clustering

motivation — extras?

agglomerative and divisive approach,

summary, method categorization.




Clustering — example

m clusters and their prototypes bring new domain knowledge,
m interpretation e.g. in connection with geographic data and visualization,

m ‘clustering” 210 million Facebook profiles based on friendship connections,
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Clustering — example

m clusters and their prototypes bring new domain knowledge,

= survey: why do people drink alcohol?

m goal: to find “sample drinkers” and represent condensed people’s attitude to alcohol,
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Clustering — example

= application for image segmentation,

m features: (coordinates), (a) color components, (b) brightness for b&w image.

Xiao Zhang: Image Segmentation.
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Clustering — utilization, applications

s clustering for learning

class discovery in (unannotated) data,

unsupervised learning,
m data understanding, their structured representation

taxonomies (biology — organisms, genes),
rapid access to pieces of information (web search engine output organization),

outlier detection,
m usage of prototypes

summarization (original objects completely forgotten),
compression (vector quantization),

efficient nearest neighbor search.




Clustering — formalization

= goal

split unclassified objects into mutually disjoint subsets,
we divide so that the objects

1. are similar inside a cluster,

2. are dissimilar when lying in different clusters,
disjoint of an object set defined in an input space (usually R") into k& > 1 classes
X ... aset of m objects, 2 = {C4,...,Cy}... partition of the set X,
Vi,j<k,i#jCi#0, C;NC;=0,CtUCU---UC, =X,

= we solve an

inputs

* training data,

* distance function (dissimilarity function),
* (optimization criterion).

unknown

* the number of clusters,

* cluster-object links — partition,

* (prototypes — cluster ethalons, typical examples).




Clustering — complexity

= variant of a Bayesian decision-making task

develop a strategy Q : X — D (D stands for decisions) minimizing
argmin ) ., p(x)W(z,q(z)) (W is a loss function),
q

= how large space to be searched?

the number of different disjoint partitions: of the second kind

S(m, k)= {7} = %Z?:o (—1)k_j<l;)] among other S(m,2) = {7/} =2m"1 —

3 4 5 6 7 8

1 2

1 1

1 3 1

1 7 6 1

1 15 25 10 1

1 31 90 65 15 1

1 63 301 350 140 21 1

1 127 966 1701 1050 266 28 1

the optimization criterion cannot be applied in a naive way (exhaustive search),
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s NP-hard problem, heuristic solutions.




K-means — strategy, an ideal run (Borgelt: IDA slides)
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K-means algorithm

= global homogeneity criterion: W (k) = argénin S ijeci d(z;, i),

m inputs: X ={x1,...,2,,} CR", kEN,d: X x X =R,

1. randomly initialize cluster centroids 11, (e.g. select &k objects),

2. each object z; € X" assign to the nearest centroid — Vi argmin d(x;, 41;),
j=1..k

3. recompute cluster centroids — centroid is a mean vector of objects assigned to the cluster,

4. repeat steps 2 and 3 until cluster centroids change.

m greedy algorithm

guaranteed convergence, typically fast,
finds a locally optimal solution,
initialization sensitive,

= illustrative demo applet

http://www.kovan.ceng.metu.edu.tr/“maya/kmeans/index.html.




K-means — stucked in local optima (Borgelt: IDA slides)
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Distance function

= typically

on X, Vx,y,z € X:
dz,y) >0, d(z,y) =0z =y, dz,y) =dy,z), dz,z) < dx,y)+dy, z)

s common functions

Minkowski metric: d(z,y) = <Z?_1(asz — yl)k)
* selection of k: dy(k = 1) (Manhattan, Hamming, taxi), dp(k = 2) (Euclid), d¢(k

o0) (Chebyshev),

cosine dissimilarity (documents): d(x,y) = 1 — cos(0)

edit (Levenshtein) distance (words, strings, sequences)
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K-means: the number of clusters choice

= k known a priori,
m k based on the object number only: k& ~ \/@

m homogeneity W necessarily monotonously increases with increasing £, a heuristic “elbow”
method:

run k-means algorithm repeatedly with increasing k&,

a proper k is in the point of sudden non-homogeneity decrease or in a curve elbow,

Hartigan criterion: H (k) = W%ﬁ?ﬂ&(ﬁ;ﬂ)

choose the smallest £ > 1 with H (k) small enough.
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K-means: the number of clusters choice

= Tibshirani (2001):

compares development of W (k), resp log(W (k)), with the referential curve W,.¢(k),

log(W(F))

instead of log(W (k)) searches minimum in Tog(Wre (R))"

W,ef(k) can be obtained in two ways

s uniform distribution homogeneity “without clusters” (Wy,;f(k)),
* permuted distribution homogeneity — feature values randomly shuffled (W,e,m(k)),

* the domain is kept in both,

the method originated in statistics.
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K-means: the number of clusters choice
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s EM with theoretically well-founded AIC or BIC criteria.
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Expectation Maximization (EM) algorithm

m k-means is an EM algorithm specialization,
= maximizes Pr(X|0)
0* = argmaxPr(X|0) = argmax [/, Pr(x;|0)
0 0

introduces a latent variable (), which simplifies maximization of Pr(X’|0)

* estimate latent variable (distribution) for the given data and current param values 6,

«x modify parameters 6 so that likelihood is maximized wrt given @),

k-means specification

() gives binary cluster membership,
E-step: assign objects and centroids,

M-step: recalculate cluster centroids.




Soft (probabilistic) clustering

= “hard” object membership in a single cluster not needed,

s membership function Pr(C}|x;) is understood as probability
it must hold: Vi=1,...,m: ijl,...,k Pr(Cjlz;) =1

m a soft clustering algorithm — “soft” k-means

EM principle,
a model with parameters 6 used to calculate Pr(C}|x;),
6 most often defines a Gaussian Mixture Model (GMM)),

k
x Pr(x;|0) = ijl & (27r)"/2112j\1/

k
k 0 = {1, ooy Oy [y e ooy flly 2015+ - 5 2k |y ijlozj =1
% ... a mixture element weight, 1, ... centroid vector, >; ... covariance matrix,

| 1
e—g(ﬂfz‘—uj)tzj (@i—py)
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0 can also define a naive bayes model etc.,
s EM GMM clustering

() determines probability that an object was generated by a particular gaussian distribution,
m soft clustering is a special case of

membership Pr(C;|z;) without constraints needed for probability.




EM for GMM clustering

s EM is an iterative algorithm,

m illustration of one step after random initialization.

E-step
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EM clustering — k-means comparison

clustering defined as GM optimization in n dimensions,

= the number of elements (distributions) k (can be a part of likelihood maximization resp. AlC),

partition: object belongs to the distribution with the highest a posteriori prob Pr(C}|x;),
m assumes a normal object distribution within a cluster,

m more robust, but slower than k-means,

demo: http://staff.aist.go.jp/s.akaho/MixtureEM.html.

1 = 3, ourend wal = T 2233 globed wol = TERTT2S d= 2




Hierarchical clustering — motivation

0 is more informative than partition

— analyzes on various granularity levels,

— binary tree = :
m a reasonable decomposition of the clustering problem to subproblems

— a straightforward and computationally efficient solution.

Yeast Flies Fish Dog Chimp Human

i
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Hierarchical clustering — algorithm

recursive application of the standard clustering step,

agglomerative approach (bottom-up)

at the beginning each object makes a cluster,

iterate with merging the most similar clusters, typically pairs,

divisive approach (top-down)

split the object set into clusters, typically two of them,
iterate with splitting the clusters,
more difficult to implement — needs an internal clustering algorithm,

more efficient than agglomerative, namely when the complete dendrogram not needed,

needs no prior k, constructs a hierarchy.

a partition results from a dendrogram cut.

Y




Hierarchical clustering — cluster distance

m the key point is a generalized cluster distance function

makes a step from the object distance towards the object set distance,
originally: d : X x X — R,
now: ¢ : 2% x 2¢¥ R,

s elemental J definitions based on d

concern two most similar objects (single linkage)

5(CZ,CJ) = min d(%,y),

reC;,yel;
concern two most distant objects (complete linkage)

0(Cy,C5) = max d(x,y),

reCyyel;

average pair distance (average linkage)

5(027 C]) — m ZxGCl ZyEC’j d<x7 y)’ .

distance between cluster centroids (centroid) .

0(Cy, C5) = d(pi, 1), T




Example: relation between distance function and clustering outcome

m Ex.: 1 dimensional object set 2, 12, 16, 25, 29, 45.
the objects can be proportionally positioned on x dendrogram axis,

= different generalized distance functions lead to different dendrograms.

215
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2 1216 2529 45 2 1216 2529 45 2 1216 2529 15
Centroid Single Linkage Complete Linkage

Borgelt: IDA slides




Clustering — summary

m Intuitively comprehensible principle, in many contexts, in many domains
in general identification of any frequent event co-occurrence in data,
s combinatorially difficult optimization problem
heuristic solutions, local optimality,
m basic steps

representation definition,

distance function selection,
clustering itself,

abstract representation of partition,

evaluation, iteration.
m clustering algorithm quality

scalability — no of objects, dimensions,
robustness — noise, outliers, feature types, distance function,

ability to deal with various cluster shapes.




Clustering — method categorization

m nonhierarchical methods

aim to deliver the partition that minimizes an optimization criterion,
apply a global homogeneity criterion,
cluster membership can be hard (crisp) as well as probabilistic,

examples: k-means, EM

= hierarchical methods Yeast Flies Fish Dog Chimp  Human

generate a cluster hierarchy I_I:l_l

% binary tree = dendrogram,

apply a local cluster similarity criterion,

agglomerative — bottom-up,

divisive — top-down, divide and conquer,

examples: AHC (a general principle).




Recommended reading, lecture resources

:: Reading

m Hastie et al.: The Elements of Statistical Learning: DM, Inference and Prediction.
Springer book.
= Jain et al.: Data Clustering: A Review.

ACM Computing Surveys,

http://www.prip.tuwien.ac.at/teaching/ss/einfuhrung-in-die-mustererkennung/download-area-
and-links/p264-jain.pdf.

s Borgelt: Intelligent Data Analysis.

slides, a detailed intelligent data analysis course, clustering near the end,

http://www.borgelt.net/courses.html#ida,




