Frequent Sequence Mining

In this tutorial, you will implement missing parts of two simple algorithms
for frequent sequence mining. There are many variants of this problem (one
sequence / multiple sequences, various definitions of frequency etc). We will
restrict our attention to the case when we have one sequence and frequency
of a subsequence is defined as the number of occurrences of the subsequence
divided by the maximum possible number of occurrences, which is for a
subsequence of length m and f occurrences in a sequence of length n equal

f
to e

Algorithm

We will use tha algorithm for frequent sequence mining using canonical codes
which was presented at the lectures. The following Matlab code is listed
in general form, i.e. it is not restricted to directed or undirected sequence
mining. (Do not worry that the code is not commented. A commented version
is available in the zip file with Matlab files for this tutorial.) Note that we
will use direct representation of the sequences in the code - the theory of
canonical codes presented in the lectures is used only indirectly here as we
use it only as a recipe how to extend candidate frequent subsequences.

function fregPatterns = aprioriFPM(data, sMin, initializeWords, ...
expandWords, findSupport, sortedAlphabet, prune)

fregPatterns = {};

sortedA = sortedAlphabet (data);
wordsO = initializeWords (sortedA);

words = {};

for 1 = l:size(wordsO, 2)
s = findSupport (words0{i}, data);
words0{i}.support = s;
if s > sMin



words{end+1} = wordsO0{i};
end
end

% we repeat this loop as long as new frequent patterns are found
while —isempty (words)

for i = l:size(words, 2)
fregPatterns{end+1l} = words{i};

end

wordCand = expandWords (words, sortedA)

[

% checks if all subsequences are frequent (i.e. present in words)
wordCand = prune (words, wordCand);

words = {};
for i l:1length (wordCand)
s findSupport (wordCand{i}, data);
wordCand{i}.support = s;
if s>sMin
words{end+1} = wordCand{i};
end
end

end

Implementation

Your task is to implement function expandSequences(oldPatterns, alphabet)
to files directedSequence Mining.m a undirectedSequence Mining.m.

function frequentPatterns = directedSequenceMining(data, sMin)

frequentPatterns = aprioriFPM(data, sMin, @initializeWords, ...
@expandSequences, @findSupport, @sortAlphabet, @prune);

function emptyWordArray = initializeWords (sortedAlphabet)
emptyWord.sequence = {};
emptyWordArray = {emptyWord};

function nextPatterns = expandSequences (oldPatterns, alphabet)

<)

% zacatek kodu, ktery studenti mit nebudou

o)

% konec kodu, ktery studenti mit nebudou

function support = findSupport (pattern, data)

o

°



function sortedAlphabet = sortAlphabet (data)
sortedAlphabet = sort (unique (data.sequence));

function filtered = prune(shorter, longer)

o

°

In case of directed sequences, function ezpandSequences(oldPatterns, alpha-
bet) expects on its input a cell array containing frequent sequences of length
n and an alphabet of used symbols (which will be created for you by function
sortAlphabet(data)) and it returns a cell array containing candidate sequences
of length n + 1. The following piece of code demonstrates a way to construct
a new subsequence from old shorter subsequence in Matlab by adding one
symbol at the end of the old sequence.

newPattern.sequence = [oldPattern.sequence { 'a'} ]

You will implement function ezpandSequences(oldPatterns, alphabet) twice -
once for directed sequence mining and once for undirected sequence mining.
The skeleton of the main algorithm and description above correspond to
the directed sequence mining whereas the code below corresponds to the
undirected version.

function frequentPatterns = undirectedSequenceMining(data, sMin)

frequentPatterns = aprioriFPM(data, sMin, @initializeWords, ...
@expandSequences, @findSupport, @sortAlphabet, @prune);

function initial = initializeWords (sortedAlphabet)

emptyWord.sequence = {};

emptyWord.symmetryFlag = 1;

initial = {emptyWord};

for i = l:size(sortedAlphabet,?2)
iw.sequence = {sortedAlphabet{i}};
iw.symmetryFlag = 1;
initial{end+1} = iw;

end

function nextPatterns = expandSequences (oldPatterns, alphabet)

o)

% zacatek kodu, ktery studenti mit nebudou

o)

% konec kodu, ktery studenti mit nebudou

function support = findSupport (pattern, data)

o)

°



function sortedAlphabet = sortAlphabet (data)
sortedAlphabet = sort (unique (data.sequence));

function filtered = prune(shorter, longer)

o

O e e e

You can notice that there is a difference in functions initilize Words in case
of directed and undirected sequences. This difference is due to the fact that
the canonical codes for directed and undirected sequences are different. The
first difference is that there is an attribute called symmetryFlag which has
value 1 if the given (sub)sequence is a palindrome and is 0 otherwise. The
second difference is that we first generate sequences of length 0 (i.e. the
empty sequence), which we also do in case of directed sequences, but also all
sequences of length 1 in case of undirected sequences. The reason is that, in
case of undirected sequences, we create new sequences by adding two letters
- one at the end and one at the beginning, i.e. sequences of length n + 1 and
n + 2 are created from sequences of length n — 1 and n respectively.

How You Should Implement This...

... you have learnt this at the lecture. There, you have learnt how canonical
codes for directed and undirected sequences look like. Except that, you have
learnt how we can exploit these canonical codes for effective generation of
subsequences. You can find several useful tips how to work with so called cell
arrays and structures at the end of this document.

Test Data (DNA of a Virus and Yeast)

Use the algorithms to find frequent sequences (directed and undirected) in
the DNA of virus Equine rhinitis A (Figure and yeast Saccharomyces
cerevisiae (specifically its chromosome no III). When debugging your code,
you may want to use only a subset of data.

Load data using Matlab command load_dna, which loads the DNA se-
quence of the virus into variable virus_dna and the DNA sequence of the
yeast into variable saccharomyces_dna. Below you can see an example how
to use the algorithms on the virus sequence.

load_dna;
dna_data.sequence = virus_dna;



Obrazek 1: Left: Spatial structure of protein envelope of virus Equine rhinitis
A. Right: Yeast Saccharomyces cerevisiae.

%% directed sequence mining

seqs = directedSequenceMining(dna_data, 0.01);
fprintf ('Printing results of directed sequence mining...\n');
printResults (seqgs, 3);

Try to discuss differences between frequent sequences of the virus and

the yeast (Note that yeasts are eucaryotic organisms and the complementary
DNA bases are A-T and C-G).

Expected Result

You should obtain the next four frequent oriented subsequences of length 4
for minimum frequency 0.01: attt, ttga, tttg, tttt. Similarly, you should get the
next two frequent subsequences of length 4 for frequency 0.01: gttt, tttt.

Several useful tips for working with structures
and ”cell arrays”in Matlab

If you have not encountered structures or cell arrays in Matlab, you might
find the next few tips useful.



Cell arrays

Cell arrays differ from matrices mainly in that they can contain not just num-
bers, but also strings, structures, matrices or even other nested cell arrays.
An empty cell array may be constructed e.g. as a = {};.

The entries of a cell array are accessed as follows:a = {'a', 'b', 'c'};
x = a{l}; s x = 'a'. Notice that we use curly brackets for accessing cell
array entries. If we used curly brackets instead of square brackets here, we
would not get a cell array with four entries but a cell array containing the
two nested cell arrays.

Structures

Structures in Matlab are very flexible. For example
data.sequence = {'a','b','c'};

creates a structure containing one cell array called sequence (it is not neces-
sary to define a structure contents apriori). It is possible to add any number
of other items to a structure. The items in a structure are then accessed
easily, e.g. x = data.sequence.



