

OI-OPPA. European Social Fund
Prague & EU: We invests in your future.

1/26LEARNING & LINEAR CLASSIFIERS

J. Matas

Czech Technical University, Faculty of Electrical Engineering
Department of Cybernetics, Center for Machine Perception

121 35 Praha 2, Karlovo nám. 13, Czech Republic

matas@fel.cvut.cz, http://cmp.felk.cvut.cz

LECTURE PLAN

� The problem of classifier design.

� Learning in pattern recogniton.

� Linear classifiers.

� Perceptron algorithms.

� Optimal separating plane with the Kozinec algorithm.

http://cmp.felk.cvut.cz
http://cmp.felk.cvut.cz

2/26

CLASSIFIER DESIGN (1)

The object of interest is characterised by observable properties x ∈ X and

its class membership (unobservable, hidden state) k ∈ K, where X is

the space of observations and K the set of hidden states.

The objective of classifier design is to find a function q∗ : X → K that

has some optimal properties.

Bayesian decision theory solves the problem of minimisation of risk

R(q) =
∑
x,k

W (q(x), k) p(x, k)

given the following quantities:

� p(x, k),∀x ∈ X, k ∈ K – the statistical model of the dependence of

the observable properties (measurements) on class membership

� W (q(x), k) the loss of decision q(x) if the true class is k

Do you know the solution for the 0-1 loss function?

http://cmp.felk.cvut.cz

3/26

CLASSIFIER DESIGN (2)

Non-Bayesian decision theory solves the problem if p(x|k),∀x ∈ X, k ∈ K

are known, but p(k) are unknown (or do not exist). Constraints or

preferences for different errors depend on the problem formulation.

Do you know any non-bayesion problem formulations?

However, in applications typically:

� none of the probabilities are known! The designer is only given a

training multiset T = {(x1, k1) . . . (xL, kL)}, where L is the length

(size) of the training multiset.

� the desired properties of the classifier q(x) are known

How would you proceed ?

http://cmp.felk.cvut.cz

4/26

CLASSIFIER DESIGN via PARAMETER
ESTIMATION

� Assume p(x, k) have a particular form, e.g. Gaussian (mixture),

piece-wise constant, etc., with a finite (i.e. small) number of parameters

Θk.

� Estimate the parameters from the using training set T

� Solve the classifier design problem (e.g. risk minimisation), substituting

the estimated p̂(x, k) for the true (and unknown) probabilities p(x, k)
? : What estimation principle should be used?

What estimation paradigms do you know?

– : There is no direct relationship between known properties of estimated

p̂(x, k) and the properties (typically the risk) of the obtained classifier

q′(x)
– : If the true p(x, k) is not of the assumed form, q′(x) may be arbitrarily

bad, even if the size of training set L approaches infinity!

+ : Implementation is often straightforward, especially if parameters Θk for

each class are assumed independent.

+ : Performance on training data can be predicted by crossvalidation.

http://cmp.felk.cvut.cz

5/26

LEARNING in STATISTICAL PATTERN
RECOGNITION

� Choose a class Q of decision functions (classifiers) q : X → K.

� Find q∗ ∈ Q minimising some criterion function on the training set that

approximates the risk R(q) (which cannot be computed).

� Learning paradigm is defined by the criterion function:

Empirical risk (training set error) minimization. True risk approximated

Remp(qΘ(x)) =
1
L

L∑
i=1

W (qΘ(xi), ki) ,

Θ∗ = argmin
Θ

Remp(qΘ(x))

Examples: Perceptron, Neural nets (Back-propagation), etc.

Structural risk minimization.

Example: SVM (Support Vector Machines).

http://cmp.felk.cvut.cz

6/26
OVERFITTING AND UNDERFITTING

� How rich class Q of classifiers qΘ(x) should be used?

� The problem of generalization is a key problem of pattern

recognition: a small empirical risk Remp need not imply a

small true expected risk R!

underfit fit overfit

http://cmp.felk.cvut.cz

7/26

STRUCTURAL RISK MINIMIZATION PRINCIPLE (1)

We would like to minimise the risk

R(q) =
∑
x,k

W (qΘ(x), k) p(x, k)

but p(x, k) is unknown.

Vapnik and Chervonenkis proved a remarkable inequality

R(q) ≤ Remp(q) + Rstr

(
h,

1
L

)
,

where h is VC dimension (capacity) of the class of strategies Q.

Notes:

+ Rstr does not depend on the unknown p(x, k)!!

+ Rstr known for some classes of Q, e.g. linear classifiers.

http://cmp.felk.cvut.cz

8/26

STRUCTURAL RISK MINIMIZATION PRINCIPLE (2)

� There are more types of upper bounds on R.

E.g. for linear discriminant functions

R

m
VC dimension (capacity)

h ≤ R2

m2 + 1

� Examples of learning algorithms: SVM or ε-Kozinec.

(w∗, b∗) = argmax
w,b

min
(

min
x∈X1

〈w, x〉+ b

|w|
, min
x∈X2

〈w, x〉+ b

|w|

)
.

http://cmp.felk.cvut.cz

9/26
EMPIRICAL RISK MINIMISATION REVISITED

Is then empirical risk minimisation = minimisation of training set error, e.g.

neural networks with backpropagation, dead ? No!

– Rstr may be so large that the upper bound is useless.

Find a tighter bound and you will be famous! It is not impossible!

+ Vapnik’s theory justifies using empirical risk minimisation on classes of

functions with VC dimension.

+ Vapnik suggests learning with progressively more complex classes Q.

+ Empirical risk minimisation is computationally hard (impossible for large

L). Most classes of decision functions Q where empirical risk

minimisation (at least local) can be effeciently organised are often useful.

Where does the nearest neighbour classifier fit in the picture?

http://cmp.felk.cvut.cz

10/26

WHY ARE LINEAR CLASSIFIERS
IMPORTANT?

� For some statistical models, the Bayesian or non-Bayesian

strategy is implemented by a linear discriminant function.

You should know an example!?

� Capacity (VC dimension) of linear strategies in an

n-dimensional space is n + 2. Thus, the learning task is

well-posed, i.e., strategy tuned on a finite training multiset

does not differ much from correct strategy found for a

statistical model.

� There are efficient learning algorithms for linear classifiers.

� Some non-linear discriminant functions can be implemented

as linear after the feature space transformation.

http://cmp.felk.cvut.cz

11/26

LINEAR DISCRIMINANT FUNCTION q(x)

� fj(x) = 〈wj, x〉+ bj, where 〈 〉 denotes a scalar product.

� A strategy j = argmax
j

fj(x) divides X into |K| convex

regions.

k=1 k=2

k=3

k=4

k=5
k=6

http://cmp.felk.cvut.cz

12/26

DICHOTOMY, TWO CLASSES ONLY

|K| = 2, i.e. two hidden states (typically also classes)

q(x) =

 k = 1 , if 〈w, x〉+ b ≥ 0 ,

k = −1 , if 〈w, x〉+ b < 0 .

x
1

x
2

http://cmp.felk.cvut.cz

13/26

PERCEPTRON LEARNING:
Formulation

Input: T = {(x1, k1) . . . (xL, kL)}, k ∈ {−1, 1}
Output: a weight vector w, offset b, satisfying, ∀j ∈ {1..L} :

〈w, xj〉+ b ≥ 0 if kj = 1 ,

〈w, xj〉+ b < 0 if kj = −1

equivalently, multiplying both inequalities by kj,

〈w, kjxj〉+ kjb ≥ 0

or even simpler

〈w′, kjx
′
j〉 ≥ 0,

where x′ = [x 1], w′ = [w b]

http://cmp.felk.cvut.cz

14/26

PERCEPTRON LEARNING:
Simplified Formulation

To simplify notation, we reformulate the problem.

Input: T = {x′′1, . . . x′′L} where x′′j = kj[xj 1]
Output: a weight vector w′ = [w b], such that :

〈w′, x′′j 〉 ≥ 0,∀j ∈ {1..L}

We drop the primes and go back to w, x notation. The vector w has the

offset b as last element, x has an extra 1 and has been multiplied by k.

http://cmp.felk.cvut.cz

15/26

PERCEPTRON LEARNING:
THE ALGORITHM

Input: T = {x1, . . . xL}
Output: a weight vector w

Perceptron algorithm, (Rosenblat 1962):

1. w1 = 0.

2. A wrongly classified observation xj is sought, i.e.,

〈wt, xj〉 < 0, j ∈ {1..L}.

3. If there is no misclassified observation then the algorithm terminates

otherwise

wt+1 = wt + xj .

4. Goto 2.

http://cmp.felk.cvut.cz

16/26
PERCEPTRON: WEIGHT UPDATE

http://cmp.felk.cvut.cz

17/26
NOVIKOFF THEOREM

If the data are linearly separable then there

exists a number t∗ ≤ D2

m2, such that the

vector wt∗ satisfies the inequality

〈wt∗, x
j〉 > 0,∀j ∈ {1..L}.

? What if the data is not separable?

? How to terminate perceptron learning?

D

m

http://cmp.felk.cvut.cz

18/26

PERCEPTRON LEARNING:
Non-separable case

Perceptron algorithm, batch version, handling non-separability:

Input: T = {x1, . . . xL}
Output: a weight vector w∗

1. w1 = 0, E = |T | = L, w∗ = 0 .

2. Find all mis-classified observations X− = {x ∈ X : 〈wt, x〉 < 0}.
3. if |X−| < E then E = |X−|;w∗ = wt

4. if tc(w∗, t, tlu) then terminatate else wt+1 = wt + ηt

∑
x∈X−

x

5. Goto 2.

� The algorithm converges with probability 1 to the optimal solution.

� Convergence rate not known (to me).

� Termination condition tc(.) is a complex function of the quality of the

best solution, time since last update t− tlu and requirements on the

solution.

http://cmp.felk.cvut.cz

19/26

PERCEPTRON LEARNING as an Optimisation
problem (1)

Perceptron algorithm, batch version, handling non-separability, another

perspective:

Input: T = {x1, . . . xL}
Output: a weight vector w minimsing

J(w) = |{x ∈ X : 〈wt, x〉 < 0}|
or, equivalently

J(w) =
∑

x∈X:〈wt,x〉<0

What would the most common optimisation method, i.e. gradient descent,

perform?

wt = w − η∇J(w)

The gradient of J(w) is either 0 or undefined. Gradient minimisation cannot

proceed.

http://cmp.felk.cvut.cz

20/26

PERCEPTRON LEARNING as an Optimisation
problem (2)

Let us redefine the cost function:

Jp(w) =
∑

x∈X:〈w,x〉<0

〈w, x〉

∇Jp(w) =
∂J

∂w
=

∑
x∈X:〈w,x〉<0

x

� The Perceptron Algorithm is a gradient descent method for Jp(w)!

� Learning and empirical risk minimisation is just and instance of an

optimization problem.

� Either gradient minimisation (backpropagation in neural networks) or

convex (quadratic) minimisation (in mathematical literature called

convex programming) is used.

http://cmp.felk.cvut.cz

21/26

OPTIMAL SEPARATING PLANE and
THE CLOSEST POINT TO THE CONVEX HULL

The problem of optimal separation by a hyperplane

(1) w∗ = argmax
w

min
j

〈
w

|w|
, xj

〉
can be converted to seek for the closest point to a convex hull (denoted by

the overline)

x∗ = argmin
x∈X

|x|

There holds that x∗ solves also the problem (1).

Recall that the classfier that maximises separation minimises the structural

risk Rstr (page 8)!

http://cmp.felk.cvut.cz

22/26

CONVEX HULL, ILLUSTRATION

w* = m

X

min
j

〈
w

|w|
, xj

〉
≤ m ≤ |w| , w ∈ X

lower bound upper bound

http://cmp.felk.cvut.cz

23/26
ε-SOLUTION

� The aim is to speed up the algorithm.

� The allowed uncertainty ε is introduced.

|w| −min
j

〈
w

|w|
, xj

〉
≤ ε

http://cmp.felk.cvut.cz

24/26

TRAINING ALGORITHM 2 – KOZINEC (1973)

1. w1 = xj, i.e. any observation.

2. A wrongly classified observation xt is sought, i.e.,

〈wt, x
j〉 < b, j ∈ J .

3. If there is no wrongly classified observation then the

algorithm finishes otherwise

wt+1 = (1− k) · wt + xt · k , k ∈ R .

where k = argmin
k

|(1− k) · wt + xt · k|.

4. Goto 2.

http://cmp.felk.cvut.cz

25/26

KOZINEC, PICTORIAL ILLUSTRATION

wt

wt+1

b

xt

0

w ,x = 0t

Kozinec

http://cmp.felk.cvut.cz

26/26
KOZINEC and ε-SOLUTION

The second step of Kozinec algorithm is modified to:

A wrongly classified observation xt is sought, i.e.,

|wt| −min
j

〈
wt

|wt|
, xt

〉
≥ ε

m

0

ε

t

|w |
t

http://cmp.felk.cvut.cz

