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LECTURE PLAN
¢ The problem of classifier design.
¢ Learning in pattern recogniton.
¢ Linear classifiers.
¢ Perceptron algorithms.

¢ Optimal separating plane with the Kozinec algorithm.
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The object of interest is characterised by observable properties x € X and
its class membership (unobservable, hidden state) k € K, where X is
the space of observations and K the set of hidden states.

The objective of classifier design is to find a function ¢*: X — K that
has some optimal properties.

Bayesian decision theory solves the problem of minimisation of risk

R(q) =) Wi(q(z),k) p(x, k)
x,k

given the following quantities:

¢ p(x,k),Ve € X,k € K — the statistical model of the dependence of
the observable properties (measurements) on class membership

¢ W(q(x), k) the loss of decision g(x) if the true class is k

Do you know the solution for the 0-1 loss function?
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Non-Bayesian decision theory solves the problem if p(z|k),Vz € X,k € K
are known, but p(k) are unknown (or do not exist). Constraints or
preferences for different errors depend on the problem formulation.

Do you know any non-bayesion problem formulations?
However, in applications typically:

® none of the probabilities are known! The designer is only given a
training multiset T' = {(x1, k1) ... (xr, kL) }, where L is the length
(size) of the training multiset.

¢ the desired properties of the classifier g(x) are known

How would you proceed ¢
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CLASSIFIER DESIGN via PARAMETER CAm ¢
ESTIMATION 4/26

¢ Assume p(x, k) have a particular form, e.g. Gaussian (mixture),
piece-wise constant, etc., with a finite (i.e. small) number of parameters

Op.

¢ Estimate the parameters from the using training set T°

¢ Solve the classifier design problem (e.g. risk minimisation), substituting
the estimated p(x, k) for the true (and unknown) probabilities p(z, k)

? : What estimation principle should be used?
What estimation paradigms do you know?

: There is no direct relationship between known properties of estimated
p(x, k) and the properties (typically the risk) of the obtained classifier
q(z)

. If the true p(x, k) is not of the assumed form, ¢'(x) may be arbitrarily
bad, even if the size of training set L approaches infinity!

. Implementation is often straightforward, especially if parameters O for
each class are assumed independent.

. Performance on training data can be predicted by crossvalidation.
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LEARNING in STATISTICAL PATTERN @ s
RECOGNITION 5/26

¢ Choose a class @) of decision functions (classifiers) ¢ : X — K.

¢ Find ¢* € Q minimising some criterion function on the training set that
approximates the risk R(q) (which cannot be computed).

¢ Learning paradigm is defined by the criterion function:

Empirical risk (training set error) minimization. True risk approximated

Remp(4e(2)) = 7 > Wlae(wi). ki),

1=1

O©* = argmin Remp(ge(x))
S

Examples: Perceptron, Neural nets (Back-propagation), etc.

Structural risk minimization.
Example: SVM (Support Vector Machines).
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OVERFITTING AND UNDERFITTING

¢ How rich class @) of classifiers go(x) should be used?

® The problem of generalization is a key problem of pattern
recognition: a small empirical risk R.,,, need not imply a
small true expected risk R!

underfit fit overfit
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STRUCTURAL RISK MINIMIZATION PRINCIPLE (1) @ -
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We would like to minimise the risk

R(q) =) Wl(ge(x),k) p(x, k)

but p(z, k) is unknown.

Vapnik and Chervonenkis proved a remarkable inequality

1
R(Q) S Remp(Q) + Rstr (h, Z) 9

where h is VC dimension (capacity) of the class of strategies Q).

Notes:
+ R4 does not depend on the unknown p(z, k)!!

+ R, known for some classes of (), e.g. linear classifiers.
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STRUCTURAL RISK MINIMIZATION PRINCIPLE (2) @ -
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® There are more types of upper bounds on R.
E.g. for linear discriminant functions

VC dimension (capacity)

2

m

¢ Examples of learning algorithms: SVM or e-Kozinec.

( . {w, ) +b <w,az>+b>.

(w™, b*) = argmax min
w,b

111111 , 111111
reXy |’UJ’ reXo ’w‘
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Is then empirical risk minimisation = minimisation of training set error, e.g.
neural networks with backpropagation, dead ? No!

— Rt may be so large that the upper bound is useless.

Find a tighter bound and you will be famous! It is not impossible!

+ Vapnik's theory justifies using empirical risk minimisation on classes of
functions with VC dimension.

+ Vapnik suggests learning with progressively more complex classes ().

+ Empirical risk minimisation is computationally hard (impossible for large
L). Most classes of decision functions () where empirical risk
minimisation (at least local) can be effeciently organised are often useful.

Where does the nearest neighbour classifier fit in the picture?
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WHY ARE LINEAR CLASSIFIERS CAm ¢
IMPORTANT? 10/26

For some statistical models, the Bayesian or non-Bayesian
strategy is implemented by a linear discriminant function.

You should know an example!?

Capacity (VC dimension) of linear strategies in an
n-dimensional space is n + 2. Thus, the learning task is
well-posed, i.e., strategy tuned on a finite training multiset
does not differ much from correct strategy found for a
statistical model.

® There are efficient learning algorithms for linear classifiers.

® Some non-linear discriminant functions can be implemented

as linear after the feature space transformation.
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LINEAR DISCRIMINANT FUNCTION g(x) @ -
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¢ fi(z) = (w;,x) + b;, where () denotes a scalar product.

¢ A strategy j = argmax f;(x) divides X into |K| convex
J

regions.



http://cmp.felk.cvut.cz

DICHOTOMY, TWO CLASSES ONLY -
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| K| =2, i.e. two hidden states (typically also classes)

k=1, if (w,z)+b>0,
Q(CL’){

k=-1, if (w,x)+b<0.
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PERCEPTRON LEARNING: © L
Formulation
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Input: T ={(x1,k1) ... (xr, kr)}, k€ {-1,1}
Output: a weight vector w, offset b, satisfying, Vj € {1..L} :

(w,z;) +b>0 if k;j=1,
(w,z;) +b<0 if kj=-1
equivalently, multiplying both inequalities by £;,
<w, kj.fl?j> + ]Cjb >0

or even simpler
/ /
<UJ 7ij]> > 07

where /' = [z 1], w' = [w ]
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PERCEPTRON LEARNING: @ o
Simplified Formulation 14/26

To simplify notation, we reformulate the problem.

Input: T' = {x7,...27} where z// = k;[z; 1]
Output: a weight vector w’ = [w b], such that :

(w',z7) >0, € {1..L}

We drop the primes and go back to w, x notation. The vector w has the
offset b as last element, x has an extra 1 and has been multiplied by k.

Yofution safeelion
region _‘lr;z_ vegion  ¥2
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PERCEPTRON LEARNING: © L
THE ALGORITHM 15/26

Input: T'={x1,...21}
Output: a weight vector w

Perceptron algorithm, (Rosenblat 1962):
1. w1 — 0.

2. A wrongly classified observation z; is sought, i.e.,
(we, ;) <0, 5 €{1..L}.

3. If there is no misclassified observation then the algorithm terminates
otherwise

Wiyl = Wt + T .

4. Goto 2.



http://cmp.felk.cvut.cz

PERCEPTRON: WEIGHT UPDATE ©
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NOVIKOFF THEOREM

If the data are linearly separable then there
. " D2

exists a number t* < =3 such that the

vector wy+ satisfies the inequality

(wy, 7Y > 0,Vj € {1..L}.

? What if the data is not separable?

? How to terminate perceptron learning?

17/26
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PERCEPTRON LEARNING: @ o

Non-separable case 18/26
Perceptron algorithm, batch version, handling non-separability:

Input: T'={x1,...21}
Output: a weight vector w*

1. wy=0,E=|T|=L, w" =0.

2. Find all mis-classified observations X~ = {z € X : (w¢, x) < 0}
3. if | X7| < E then F = | X" |;w" = w,
4

. if te(w*, t, ) then terminatate else wii 1 =wr +n: Y
reX

5. Goto 2.

¢ The algorithm converges with probability 1 to the optimal solution.

4

Convergence rate not known (to me).

¢ Termination condition tc(.) is a complex function of the quality of the
best solution, time since last update ¢ — t;,, and requirements on the
solution.
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PERCEPTRON LEARNING as an Optimisation |(® [ulie
problem (1) 19/26

Perceptron algorithm, batch version, handling non-separability, another
perspective:

Input: T'={z1,... 21}
Output: a weight vector w minimsing

J(w)={zx e X : (w, z) <0}

J(w) = Z

reX:(wt,x)<0

or, equivalently

What would the most common optimisation method, i.e. gradient descent,
perform?
wy = w —nVJ(w)

The gradient of J(w) is either 0 or undefined. Gradient minimisation cannot
proceed.
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PERCEPTRON LEARNING as an Optimisation | (@ [ulis
problem (2) 20/26

Let us redefine the cost function:

Jp(w) = Z (w, )

reX:(w,xr)<0

0J

reX:(w,r)<0

¢ The Perceptron Algorithm is a gradient descent method for J,(w)!

¢ Learning and empirical risk minimisation is just and instance of an
optimization problem.

¢ Either gradient minimisation (backpropagation in neural networks) or
convex (quadratic) minimisation (in mathematical literature called
convex programming) is used.
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OPTIMAL SEPARATING PLANE and CAm ¢
THE CLOSEST POINT TO THE CONVEX HULL 21/26

The problem of optimal separation by a hyperplane

(1) w” = argmax min <|w—’, Zl;'j>
w

w J

can be converted to seek for the closest point to a convex hull (denoted by
the overline)
r* = argmin |x|
reX
There holds that z* solves also the problem (1).

Recall that the classfier that maximises separation minimises the structural
risk R (page 8)!
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CONVEX HULL, ILLUSTRATION =
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m1n<w ><m<|w| we X

lower bound upper bound
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®
c-SOLUTION & -
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® The aim is to speed up the algorithm.

® The allowed uncertainty ¢ is introduced.

wl - mm<ﬁ\%>§€
w
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TRAINING ALGORITHM 2 — KOZINEC (1973)

1.
2.

w1 = Tj, I.e. any observation.

A wrongly classified observation z; is sought, i.e.,
(wy, x’) < b, j € J.

If there is no wrongly classified observation then the
algorithm finishes otherwise

wt+1:(1—k)-wt+xt-k, kER.
where k = argmin |(1 — k) - wy + x4 - k.

k
Goto 2.
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KOZINEC, PICTORIAL ILLUSTRATION =
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Kozinec
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KOZINEC and e-SOLUTION =
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he second step of Kozinec algorithm is modified to:

A wrongly classified observation x; is sought, i.e.,

lw'| — min w Ty ) > €
; ‘wt‘7 t /] —
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