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Reasons to study computer architectures

● To invent/design new computer architectures
● To be able to integrate selected architecture into silicon
● To gain knowledge required to design computer 

hardware/systems (big ones or embedded)
● To understand generic questions about computers, 

architectures and performance of various architectures
● To understand how to use computer hardware 

efficiently (i.e. how to write good software)
● It is not possible to efficiently use resources provided by any 

(especially by modern) hardware without insight into their 
constraints, resource limits and behavior

● It is possible to write some well paid applications without real 
understanding but this requires abundant resources on the 
hardware level. But no interesting and demanding tasks can 
be solved without this understanding.
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More motivation and examples

● The knowledge is necessary for every programmer who 
wants to work with medium size data sets or solve little 
more demanding computational tasks

● No multimedia algorithm can be implemented well without 
this knowledge

● The 1/3 of the course is focussed even on peripheral 
access

● Examples
● Facebook – HipHop for PHP  C++/GCC  machine code
● BackBerry (RIM) – our consultations for time source
● RedHat – JAVA JIT for ARM for future servers generation
● Multimedia and CUDA computations
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The course's background and literature

● Course is based on worldwide recognized book and 
courses

Paterson, D., Henessy, J.: Computer Organization and 
Design, The HW/SW Interface. Elsevier, ISBN: 
978-0-12-370606-5 
● John L. Henessy – president of Stanford University, one of 

founders of MIPS Computer Systems Inc.
● David A. Patterson – leader of Berkeley RISC project and 

RAID disks research
● Our experience even includes distributed systems, 

embedded systems design (of mobile phone like 
complexity), peripherals design, cooperation with 
carmakers, medical and robotics systems design
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Topics of the lectures

● Architecture, structure and organization of computers and its 
subsystems.

● Central Processing Unit (CPU)
● Memory
● Pipelined instruction execution
● Input/output subsystem of the computer
● Input/output subsystem (part 2)
● External events processing and protection
● Processors and computers networks
● Parameter passing
● Classic register memory-oriented CISC architecture
● INTEL x86 processor family
● CPU concepts development (RISC/CISC) and examples
● Multi-level computer organization, virtual machines
● Analog and digital I/O interfacing
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The 1. lecture contents

● Number representation in computers
● numeral systems
● integer numbers, unsigned and signed
● floating point representation for real numbers
● boolean values

● Basic arithmetic operations and their implementation
● addition, subtraction
● shift right/left
● multiplication and division
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Motivation: What is the output of next code snippet?

int main() {
  int a = -200; 
  printf("value: %u = %d = %f = %c \n", a, a, 
*((float*)(&a)), a);

  return 0;
}

value: 4294967096 = -200 = nan = 8

and memory content is: 0x38 0xff 0xff 0xff
when run on little endian 32 bit CPU.
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Terminology basics

● Positional (place-value) notation
● Decimal/radix point
● z … base of numeral system
● smallest representable number
● Module =      , one increment/unit 

higher than biggest representable 
number in the given grid

● A, the representable number for given 
grid, where k is natural number in 
range 0,zn+m+1 -1

● The representation and value

radix point

a
n

a
n-1

a
0

a
-1

a
-m

n -m-10

… …
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Integer number representation (unsigned, non-negative)

● The most common numeral system base in computers is 
z=2

● The value of ai is in range {0,1,…z-1}, i.e. {0,1} for base 2
● This maps to true/false and unit of information (bit)
● We can represent number 0 … 2n-1 when n bits are used
● Which range can be represented by one byte?

1B (byte) … 8 bits, 28 = 256d combinations, values 0 … 
255d = 0b11111111b

● Use of multiple consecutive bytes
● 2B … 216 = 65536d, 0 … 65535d = 0xFFFFh  ,(h … 

hexadecimal, base 16, a in range 0, … 9, A, B, C, D, E, F)
● 4B … 232 = 4294967296d, 0 … 4294967295d = 

0xFFFFFFFFh
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Signed integer numbers

● Work with negative numbers is required for many 
applications

● When appropriate representation is used then same 
hardware (with minor extension) can be used for many 
operations with signed and unsigned numbers

● Possible representations
● sign-magnitude code, direct representation, sign bit
● two's complement
● ones' complement
● excess-K, offset binary or biased representation
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Integer – sign-magnitude code

● Sign and magnitude of the value (absolute 
value)

● Natural to humans -1234, 1234
● One (usually most significant – MSB) bit of 

the memory location is used to represent 
the sign

● Bit has to be mapped to meaning
● Common use 0 ≈ “+”, 1 ≈ “-”
● Disadvantages:

● When location is k bits long then only k-1 
bits hold magnitude and each operation has 
to separate sign and magnitude

● Two representations of the value 0

-2n-1+1 … 0 … 2n-1-1
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Integer – two's complement

● Other option is to designate one half of 
range/combinations for non-negative 
numbers and other one for positive numbers

● Transform to the representation
D(A) = A iff A≥0
D(A) = Z-∣A∣ iff A<0

● Advantages
● Continuous range when cyclic arithmetics is 

considered
● Single and one to one mapping of value 0
● Same HW for signed and unsigned adder

● Disadvantage
● Asymmetric range (-(-1/2Z))

-2n-1 … 0 … 2n-1-1
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Integers – ones' complement

● Transform to the representation
D(A) = A   iff A≥0
D(A) = Z-1-∣A∣  iff A<0  (i.e. subtract from all ones)

● Advantages
● Symmetric range
● Almost continuous, requires hot one addition when sign 

changes
● Disadvantage

● Two representations of value 0
● More complex hardware

● Negate (-A) value can be computed by bitwise 
complement (flipping) of each bit in representation

-2n-1+1 … 0 … 2n-1-1
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Integer – biased representation

● Known as excess-K or offset binary as well
● Transform to the representation

D(A) = A+K
● Usually K=Z/2
● Advantages

● Preserves order of original set in mapped 
set/representation

● Disadvantages
● Needs adjustment by -K after addition and +K after 

subtraction processed by unsigned arithmetic unit
● Requires full transformation before and after multiplication

-K … 0 … 2n-1-K
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Back to two's complement and the C language

● Two's complement is most used signed integer numbers 
representation in computers

● Complement arithmetic is often used as its synonym
● “C” programing language speaks about integer numeric type 

without sign as unsigned integers and they are declared in 
source code as unsigned int.

● The numeric type with sign is simply called integers and is 
declared as signed int.

● Examples of the values representations when 32 bits are used:
● 0D = 00000000H,
● 1D = 00000001H,  -1D = FFFFFFFFH,
● 2D = 00000002H,  -2D = FFFFFFFEH,
● 3D = 00000003H,  -3D = FFFFFFFDH,

● Considerations about value overflow and underflow from order grit are discussed later. 
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Two's complement – addition and subtraction

● Addition
●   0000000 0000 0111B ≈ 7D        Symbols use: 0=0H, 0=0B 

  

● + 0000000 0000 0110B ≈  6D

●   0000000 0000 1011B ≈ 13D

● Subtraction can be realized as addition of 
negated number
●   0000000 0000 0111B ≈ 7D

● + FFFFFFF 1111 1010B ≈  -6D

●   0000000 0000 0001B  ≈ 1D

● Question for revision: how to obtain negated number in 
two's complement binary arithmetics?
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Binary adder hadrwareHardware of ripple-carry adder

Common symbol for adder 

Internal structure

Realized by 1-bit 
full adders

where half 
adder is

  x  
y

z

w

w = x ⊕ yz = x . y
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Fast parallel adder realization and limits

● The previous, cascade based adder is slow – carry 
propagation delay

● The parallel adder is combinatorial circuit, it can be 
realized through sum of minterms (product of sums), two 
levels of gates (wide number of inputs required)

● But for 64-bit adder 1020 gates is required

Solution #1
● Use of carry-lookahead circuits in adder combined with 

adders without carry bit

Solution #2
● Cascade of adders with fraction of the required width

Combination (hierarchy) of #1 and #2 can be used for wider 
inputs
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Speed of the adder

● Parallel adder is combinational logic/circuit. Is there any 
reason to speak about its speed? Try to describe!

● Yes, and it is really slow. Why?
● Possible enhancement – adder with carry-lookahead 

(CLA) logic!

carry-lookahead
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CLA – carry-lookahead

● Adder combined with CLA provides enough speedup 
when compared with parallel ripple-carry adder and yet 
number of additional gates is acceptable

● CLA for 64-bit adder increases hardware price for about 
50% but the speed is increased (signal propagation time 
decreased) 9 times.

● The result is significant speed/price ratio enhancement.



21AE0B36APO   Computer Architectures

The basic equations for the CLA logic

● Let:
● the generation of carry on position (bit) j is defined as:

● the need for carry propagation from previous bit:

● Then:
● the result of sum for bit j is given by: 

● and carry to the higher order bit (j+1) is given by:

jjj yxg =

jjjjjjj yxyxyxp ∨=⊕=

( ) ( ) jjjjjjjjjjjjj cppcpcyxcyxcs ⊕=∨=⊕∨⊕=

( ) jjjjjjjjj cpgcyxyxc ∨=⊕∨=+1
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CLA

The carry can be computed as:

c1 = g0 ∨ p0c0

c2 = g1 ∨ p1c1 = g1 ∨ p1(g0 ∨ p0c0) = g1 ∨ p1g0 ∨ p1p0c0

c3 = g2 ∨ p2c2 = g2 ∨ p2(g1 ∨ p1g0 ∨ p1p0c0) = g2 ∨ p2g1 ∨ p2p1g0 ∨ p2p1p0c0

c4 = g3 ∨ p3c3 = ... = g3 ∨ p3g2 ∨ p3p2g1 ∨ p3p2p1g0 ∨ p3p2p1p0c0

c5 = ...

  Description of the equation for c3 as an example:

The carry input for bit 3 is active when carry is generated in bit 2 or carry 
propagates condition holds for bit 2 and carry is generated in the bit 1 or 
both bits 2 and 1 propagate carry and carry is generated in bit 0
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Arithmetic unit for add/subtract operations

SUB
ADD

bitwise not

Inspiration: X36JPO, A. Pluháček
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Arithmetic overflow (underflow)

● Result of the arithmetic operation is 
incorrect because, it does not fit into 
given fraction grid (number of the 
representation bits)

● But for the signed arithmetics, it is not 
equivalent to the carry from the most 
significant bit.

● The arithmetic overflow is signaled if 
result sign is different from operand 
signs if both operand has same sign

● or can be detected with exclusive-OR 
of carry to and from the most 
significant bit
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Arithmetic shift to the left and to the right

● arithmetic shift by one to the left/right is equivalent to 
signed multiply/divide by 2 (movement in the fraction grid) 

● Notice difference between arithmetic, logic and cyclic shift 
operations

loss of the
precision

● Remark: Barrel shifter can be used for fast variable shifts
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Addition and subtraction for the biased representation

● Short note about other signed number representation

● Overflow detection
● for addition:

same sign of addends and different result sign
● for subtraction:

signs of minuend and subtrahend are opposite and sign of 
the result is opposite to the sign of minuend



27AE0B36APO   Computer Architectures

Unsigned binary numbers multiplication
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Sequential hardware multiplier (32b case)

AC                  MQ

The speed of the multiplier is horrible
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Algorithm for multiplication

A = multiplicand; 
MQ = multiplier; 
AC = 0; 

for( int i=1; i <= n; i++)    //  n – represents number of bits

{
   if(MQ0 = = 1)  AC = AC + A;   //  MQ0 = LSB of MQ

   SR (shift AC MQ by one bit right and insert information about 
carry from the MSB from previous step)
}
end.

when loop ends AC MQ holds 64-bit result
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Example of the multiply X by Y

i operation AC MQ A comment

000 101 110 initial setup

1 AC = AC+MB 110 101 start of the cycle

SR 011 010
2 nothing 011 010 because of MQ0 = = 0

SR 001 101
3 AC = AC+MB 111 101

SR 011 110 end of the cycle

Multiplicand x=110 and multiplier y=101.

The whole operation: x×y = 110×101 = 011110, ( 6×5 = 30 )
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Signed multiplication by unsigned HW for two's complement

One possible solution

C = A • B
Let A and B representations are n bits and result is 2n bits

D(C) = D(A) • D(B)
– (D(B)<<n) if A < 0
– (D(A)<<n) if B < 0

Consider for negative numbers

(2n+A) • (2n+B) = 22n+2n A + 2n B + A•B

where 22n is out of the result representation, next two elements 
have to be eliminated if input is negative
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Wallace tree based multiplier

Q=X .Y,   X and Y are considered as and 8bit unsigned numbers 

( x7 x6 x5 x4 x-3 x2 x1 x0). (y7 y6 y5 y4 y3 y2 y1 y0) =

0 0 0 0 0 0 0 0 x7y0 x6y0 x5y0 x4y0 x3y0 x2y0 x1y0 x0y0 P0

0 0 0 0 0 0 0 x7y1 x6y1 x5y1 x4y1 x3y1 x2y1 x1y1 x0y1 0 P1

0 0 0 0 0 0 x7y2 x6y2 x5y2 x4y2 x3y2 x2y2 x1y2 x0y2 0 0 P2

0 0 0 0 0 x7y3 x6y3 x5y3 x4y3 x3y3 x2y3 x1y3 x0y3 0 0 0 P3

0 0 0 0 x7y4 x6y4 x5y4 x4y4 x3y4 x2y4 x1y4 x0y4 0 0 0 0 P4

0 0 0 x7y5 x6y5 x5y5 x4y5 x3y5 x2y5 x1y5 x0y5 0 0 0 0 0 P5

0 0 x7y6 x6y6 x5y6 x4y6 x3y6 x2y6 x1y6 x0y6 0 0 0 0 0 0 P6

0 x7y7 x6y7 x5y7 x4y7 x3y7 x2y7 x1y7 x0y7 0 0 0 0 0 0 0 P7

Q15 Q14 Q13 Q12 Q11 Q10 Q9 Q8 Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0

The sum of P0+P1+...+P7 gives result of X and Y multiplication. 
 Q = X .Y =  P0 + P1 + ... + P7
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Wallace tree based fast multiplier

The basic element is an CSA circuit (Carry Save Adder)

S = Sb + C 

Sb
i = xi ⊕ yi ⊕ zi

Ci+1 = xi yi + yi zi + zi xi

⊕

⊕

& & &

1
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Hardware divider

negate
hot one

reminder

return

quotient
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Hardware divider logic (32b case)

divident = quotient × divisor + reminder

AC                  MQ

negate
hot one

return

reminder quotient
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Algorithm of the sequential division

MQ = dividend;
B = divisor; (Condition: divisor is not 0!)
AC = 0;

for( int i=1; i <= n; i++) {
   SL (shift AC MQ by one bit to the left, the LSB bit is kept on zero)

   if(AC >= B)   {
AC = AC – B;
MQ0 = 1; // the LSB of the MQ register is set to 1

    }
}

→ Value of MQ register represents quotient and AC remainder
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Example of X/Y division

i operation AC MQ B comment
0000 1010 0011 initial setup

1 SL 0001 0100

nothing 0001 0100 the if condition not true

2 SL 0010 1000

0010 1000 the if condition not true

3 SL 0101 0000 r ≥ y

AC = AC – B;   
MQ0 = 1;

0010 0001

4 SL 0100 0010 r ≥ y

AC = AC – B;   
MQ0 = 1;

0001 0011 end of the cycle

Dividend x=1010 and divisor y=0011

x : y = 1010 : 0011 = 0011 reminder 0001,   (10 : 3 = 3 reminder 1)
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Higher dynamic range for numbers (REAL/float)

● Scientific notation, semilogarithmic, floating point
● The value is represented by:

– EXPONENT (E) – represents scale for given value
– MANTISSA (M) – represents value in that scale
– the sign(s) are usually separated as well

● Normalized notation
● The exponent and mantissa are adjusted such way, that 

mantissa is held in some standard range. 〈0.5, 1) or 〈1, 2) for 
considered base z=2

● Generally: the first digit is non-zero or mantissa range is 〈1, z)
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Standardized format for REAL type numbers

● Standard IEEE-754 defines next REAL representation 
and precision
● single-precision – in the C language declared as float
● double-precision – C language double
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Examples of (de)normalized numbers in base 10 and 2

binary

The radix point position for E and M

Sign of M
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The representation/encoding of floating point number

● Mantissa encoded as the sign and absolute value 
(magnitude) – equivalent to the direct representation

● Exponent encoded in biased representation (K=127 for 
single precision)

● The implicit leading one can be ommited due to 
normalization of m ∈ 1, 2) 〈  – 23+1 implicit bit for single

Radix point position for E and M

Sign of M

X = -1s 2A(E)-127 m where m ∈ 1, 2)〈

m = 1 + 2-23 M
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Implied (hidden) leading 1 bit

● Most significant bit of the mantissa is one for each 
normalized number and it is not stored in the 
representation for the normalized numbers

● If exponent representation is zero then encoded value is 
zero or denormalized number which requires to store 
most significant bit

● Denormalized numbers allow to keep resolution in the 
range from the smallest normalized number to zero
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Underflow/lost of the precision for IEEE-754 representation

● The case where stored number value is not zero but it is 
smaller than smallest number which can be represented 
in the normalized form

● The direct underflow to the zero can be prevented by 
extension of the representation range by denormalized 
numbers

smallest representable number
denormalized

0

underflow

normalized

normalized numbers
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ANSI/IEEE Std 754-1985 – 32b a 64b formats

ANSI/IEEE Std 754-1985 — double precision format — 64b

g . . . 11b f . . . 52b

ANSI/IEEE Std 754-1985 — single precision format — 32b

fraction point



45AE0B36APO   Computer Architectures

Representation of the fundamental values

Zero

Infinity

Representation corner values

Positive zero 0 00000000 00000000000000000000000 +0.0

Negative zero 1 00000000 00000000000000000000000 -0.0

Positive infinity 0 11111111 00000000000000000000000 +0.0

Negative infinity 1 11111111 00000000000000000000000 -0.0

Smallest 
normalized

* 00000001 00000000000000000000000 ±2(1-127)

±1.1755 10-38

Biggest 
denormalized

* 00000000 11111111111111111111111 ±(1-2-23)2(1-126)

Smallest 
denormalized

* 00000000 00000000000000000000001 ±2-232-126

±1.4013 10-45

Max. value 0 11111110 11111111111111111111111 (2-2-23)2(127)

+3.4028 10+38
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Not a number (NaN)

● All ones in the exponent
● Mantissa not equal to the zero
● Used, where no other value fits (i.e. +Inf + -Inf, 0/0)
● Compare to (X+ +Inf) where +Inf is sane result
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IEEE-754 special values summary

sign bit Exponent 
representation

Mantissa Represented value/meaning

0 0<e<255 any value normalized positive number

1 0<e<255 any value normalized negative number

0 0 >0 denormalized positive number

1 0 >0 denormalized  negative number

0 0 0 positive zero

1 0 0 negative zero

0 255 0 positive infinity

1 255 0 negative infinity

0 255 ≠0 NaN – does not represent a number

1 255 ≠0 NaN – does not represent a number



48AE0B36APO   Computer Architectures

Comparison

● Comparison of the two IEEE-754 encoded numbers 
requires to solve signs separately but then it can be 
processed by unsigned ALU unit on the representations

   A ≥ B  A − B ≥ 0  D(A) − D(B) ≥ 0⇐⇒ ⇐⇒
● This is advantage of the selected encoding and reason 

why sign is not placed at start of the mantissa
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Addition of floating point numbers

● The number with bigger exponent value is selected
● Mantissa of the number with smaller exponent is shifted 

right – the mantissas are then expressed at same scale
● The signs are analyzed and mantissas are added (same 

sign) or subtracted (smaller number from bigger)
● The resulting mantissa is shifted right (max by one) if 

addition overflows or shifted left after subtraction until all 
leading zeros are eliminated

● The resulting exponent is adjusted according to the shift
● Result is normalized after these steps
● The special cases and processing is required if inputs are 

not regular normalized numbers or result does not fit into 
normalized representation 
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Hardware of the floating point adder
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Multiplication of floating point numbers

● Exponents are added and signs xor-ed
● Mantissas are multiplied
● Result can require normalization

max 2 bits right for normalized numbers
● The result is rounded

● Hardware for multiplier is of the same or even lower 
complexity as the adder hardware – only adder part is 
replaced by unsigned multiplier
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Floating point arithmetic operations overview

Addition: A⋅za , B⋅zb , b < a unify exponents
                         B⋅zb = (B⋅zb-a)⋅zb-(b-a) by shift of mantissa

  A⋅za + B⋅zb = [A+(B⋅zb-a)]⋅za sum  + normalization

Subtraction: unification of exponents, subtraction and 
normalization

Multiplication: A⋅za ⋅ B⋅zb = A⋅B⋅za+b

                 A⋅B - normalize if required
 A⋅B⋅za+b = A⋅B⋅z⋅za+b-1 - by left shift

Division:          A⋅za/B⋅zb = A/B⋅za-b

                 A/B  - normalize if required
                          A/B⋅za-b = A/B⋅z⋅za-b+1 - by right shift
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