
1AE0B36APO Computer Architectures

Computer Architectures

Number Representation and Computer Arithmetics

Pavel Píša, Michal Štepanovský, Miroslav Šnorek

Ver.1.10

Czech Technical University in Prague, Faculty of Electrical Engineering

English version partially supported by:
European Social Fund Prague & EU: We invests in your future.

2AE0B36APO Computer Architectures

Reasons to study computer architectures

● To invent/design new computer architectures
● To be able to integrate selected architecture into silicon
● To gain knowledge required to design computer

hardware/systems (big ones or embedded)
● To understand generic questions about computers,

architectures and performance of various architectures
● To understand how to use computer hardware

efficiently (i.e. how to write good software)
● It is not possible to efficiently use resources provided by any

(especially by modern) hardware without insight into their
constraints, resource limits and behavior

● It is possible to write some well paid applications without real
understanding but this requires abundant resources on the
hardware level. But no interesting and demanding tasks can
be solved without this understanding.

3AE0B36APO Computer Architectures

More motivation and examples

● The knowledge is necessary for every programmer who
wants to work with medium size data sets or solve little
more demanding computational tasks

● No multimedia algorithm can be implemented well without
this knowledge

● The 1/3 of the course is focussed even on peripheral
access

● Examples
● Facebook – HipHop for PHP  C++/GCC  machine code
● BackBerry (RIM) – our consultations for time source
● RedHat – JAVA JIT for ARM for future servers generation
● Multimedia and CUDA computations

4AE0B36APO Computer Architectures

The course's background and literature

● Course is based on worldwide recognized book and
courses

Paterson, D., Henessy, J.: Computer Organization and
Design, The HW/SW Interface. Elsevier, ISBN:
978-0-12-370606-5
● John L. Henessy – president of Stanford University, one of

founders of MIPS Computer Systems Inc.
● David A. Patterson – leader of Berkeley RISC project and

RAID disks research
● Our experience even includes distributed systems,

embedded systems design (of mobile phone like
complexity), peripherals design, cooperation with
carmakers, medical and robotics systems design

5AE0B36APO Computer Architectures

Topics of the lectures

● Architecture, structure and organization of computers and its
subsystems.

● Central Processing Unit (CPU)
● Memory
● Pipelined instruction execution
● Input/output subsystem of the computer
● Input/output subsystem (part 2)
● External events processing and protection
● Processors and computers networks
● Parameter passing
● Classic register memory-oriented CISC architecture
● INTEL x86 processor family
● CPU concepts development (RISC/CISC) and examples
● Multi-level computer organization, virtual machines
● Analog and digital I/O interfacing

6AE0B36APO Computer Architectures

The 1. lecture contents

● Number representation in computers
● numeral systems
● integer numbers, unsigned and signed
● floating point representation for real numbers
● boolean values

● Basic arithmetic operations and their implementation
● addition, subtraction
● shift right/left
● multiplication and division

7AE0B36APO Computer Architectures

Motivation: What is the output of next code snippet?

int main() {
 int a = -200;
 printf("value: %u = %d = %f = %c \n", a, a,
((float)(&a)), a);

 return 0;
}

value: 4294967096 = -200 = nan = 8

and memory content is: 0x38 0xff 0xff 0xff
when run on little endian 32 bit CPU.

8AE0B36APO Computer Architectures

Terminology basics

● Positional (place-value) notation
● Decimal/radix point
● z … base of numeral system
● smallest representable number
● Module = , one increment/unit

higher than biggest representable
number in the given grid

● A, the representable number for given
grid, where k is natural number in
range 0,zn+m+1 -1

● The representation and value

radix point

a
n

a
n-1

a
0

a
-1

a
-m

n -m-10

… …

9AE0B36APO Computer Architectures

Integer number representation (unsigned, non-negative)

● The most common numeral system base in computers is
z=2

● The value of ai is in range {0,1,…z-1}, i.e. {0,1} for base 2
● This maps to true/false and unit of information (bit)
● We can represent number 0 … 2n-1 when n bits are used
● Which range can be represented by one byte?

1B (byte) … 8 bits, 28 = 256d combinations, values 0 …
255d = 0b11111111b

● Use of multiple consecutive bytes
● 2B … 216 = 65536d, 0 … 65535d = 0xFFFFh ,(h …

hexadecimal, base 16, a in range 0, … 9, A, B, C, D, E, F)
● 4B … 232 = 4294967296d, 0 … 4294967295d =

0xFFFFFFFFh

10AE0B36APO Computer Architectures

Signed integer numbers

● Work with negative numbers is required for many
applications

● When appropriate representation is used then same
hardware (with minor extension) can be used for many
operations with signed and unsigned numbers

● Possible representations
● sign-magnitude code, direct representation, sign bit
● two's complement
● ones' complement
● excess-K, offset binary or biased representation

11AE0B36APO Computer Architectures

Integer – sign-magnitude code

● Sign and magnitude of the value (absolute
value)

● Natural to humans -1234, 1234
● One (usually most significant – MSB) bit of

the memory location is used to represent
the sign

● Bit has to be mapped to meaning
● Common use 0 ≈ “+”, 1 ≈ “-”
● Disadvantages:

● When location is k bits long then only k-1
bits hold magnitude and each operation has
to separate sign and magnitude

● Two representations of the value 0

-2n-1+1 … 0 … 2n-1-1

12AE0B36APO Computer Architectures

Integer – two's complement

● Other option is to designate one half of
range/combinations for non-negative
numbers and other one for positive numbers

● Transform to the representation
D(A) = A iff A≥0
D(A) = Z-∣A∣ iff A<0

● Advantages
● Continuous range when cyclic arithmetics is

considered
● Single and one to one mapping of value 0
● Same HW for signed and unsigned adder

● Disadvantage
● Asymmetric range (-(-1/2Z))

-2n-1 … 0 … 2n-1-1

13AE0B36APO Computer Architectures

Integers – ones' complement

● Transform to the representation
D(A) = A iff A≥0
D(A) = Z-1-∣A∣ iff A<0 (i.e. subtract from all ones)

● Advantages
● Symmetric range
● Almost continuous, requires hot one addition when sign

changes
● Disadvantage

● Two representations of value 0
● More complex hardware

● Negate (-A) value can be computed by bitwise
complement (flipping) of each bit in representation

-2n-1+1 … 0 … 2n-1-1

14AE0B36APO Computer Architectures

Integer – biased representation

● Known as excess-K or offset binary as well
● Transform to the representation

D(A) = A+K
● Usually K=Z/2
● Advantages

● Preserves order of original set in mapped
set/representation

● Disadvantages
● Needs adjustment by -K after addition and +K after

subtraction processed by unsigned arithmetic unit
● Requires full transformation before and after multiplication

-K … 0 … 2n-1-K

15AE0B36APO Computer Architectures

Back to two's complement and the C language

● Two's complement is most used signed integer numbers
representation in computers

● Complement arithmetic is often used as its synonym
● “C” programing language speaks about integer numeric type

without sign as unsigned integers and they are declared in
source code as unsigned int.

● The numeric type with sign is simply called integers and is
declared as signed int.

● Examples of the values representations when 32 bits are used:
● 0D = 00000000H,
● 1D = 00000001H, -1D = FFFFFFFFH,
● 2D = 00000002H, -2D = FFFFFFFEH,
● 3D = 00000003H, -3D = FFFFFFFDH,

● Considerations about value overflow and underflow from order grit are discussed later.

16AE0B36APO Computer Architectures

Two's complement – addition and subtraction

● Addition
● 0000000 0000 0111B ≈ 7D Symbols use: 0=0H, 0=0B

● + 0000000 0000 0110B ≈ 6D

● 0000000 0000 1011B ≈ 13D

● Subtraction can be realized as addition of
negated number
● 0000000 0000 0111B ≈ 7D

● + FFFFFFF 1111 1010B ≈ -6D

● 0000000 0000 0001B ≈ 1D

● Question for revision: how to obtain negated number in
two's complement binary arithmetics?

17AE0B36APO Computer Architectures

Binary adder hadrwareHardware of ripple-carry adder

Common symbol for adder

Internal structure

Realized by 1-bit
full adders

where half
adder is

 x
y

z

w

w = x ⊕ yz = x . y

18AE0B36APO Computer Architectures

Fast parallel adder realization and limits

● The previous, cascade based adder is slow – carry
propagation delay

● The parallel adder is combinatorial circuit, it can be
realized through sum of minterms (product of sums), two
levels of gates (wide number of inputs required)

● But for 64-bit adder 1020 gates is required

Solution #1
● Use of carry-lookahead circuits in adder combined with

adders without carry bit

Solution #2
● Cascade of adders with fraction of the required width

Combination (hierarchy) of #1 and #2 can be used for wider
inputs

19AE0B36APO Computer Architectures

Speed of the adder

● Parallel adder is combinational logic/circuit. Is there any
reason to speak about its speed? Try to describe!

● Yes, and it is really slow. Why?
● Possible enhancement – adder with carry-lookahead

(CLA) logic!

carry-lookahead

20AE0B36APO Computer Architectures

CLA – carry-lookahead

● Adder combined with CLA provides enough speedup
when compared with parallel ripple-carry adder and yet
number of additional gates is acceptable

● CLA for 64-bit adder increases hardware price for about
50% but the speed is increased (signal propagation time
decreased) 9 times.

● The result is significant speed/price ratio enhancement.

21AE0B36APO Computer Architectures

The basic equations for the CLA logic

● Let:
● the generation of carry on position (bit) j is defined as:

● the need for carry propagation from previous bit:

● Then:
● the result of sum for bit j is given by:

● and carry to the higher order bit (j+1) is given by:

jjj yxg =

jjjjjjj yxyxyxp ∨=⊕=

() () jjjjjjjjjjjjj cppcpcyxcyxcs ⊕=∨=⊕∨⊕=

() jjjjjjjjj cpgcyxyxc ∨=⊕∨=+1

22AE0B36APO Computer Architectures

CLA

The carry can be computed as:

c1 = g0 ∨ p0c0

c2 = g1 ∨ p1c1 = g1 ∨ p1(g0 ∨ p0c0) = g1 ∨ p1g0 ∨ p1p0c0

c3 = g2 ∨ p2c2 = g2 ∨ p2(g1 ∨ p1g0 ∨ p1p0c0) = g2 ∨ p2g1 ∨ p2p1g0 ∨ p2p1p0c0

c4 = g3 ∨ p3c3 = ... = g3 ∨ p3g2 ∨ p3p2g1 ∨ p3p2p1g0 ∨ p3p2p1p0c0

c5 = ...

 Description of the equation for c3 as an example:

The carry input for bit 3 is active when carry is generated in bit 2 or carry
propagates condition holds for bit 2 and carry is generated in the bit 1 or
both bits 2 and 1 propagate carry and carry is generated in bit 0

23AE0B36APO Computer Architectures

Arithmetic unit for add/subtract operations

SUB
ADD

bitwise not

Inspiration: X36JPO, A. Pluháček

24AE0B36APO Computer Architectures

Arithmetic overflow (underflow)

● Result of the arithmetic operation is
incorrect because, it does not fit into
given fraction grid (number of the
representation bits)

● But for the signed arithmetics, it is not
equivalent to the carry from the most
significant bit.

● The arithmetic overflow is signaled if
result sign is different from operand
signs if both operand has same sign

● or can be detected with exclusive-OR
of carry to and from the most
significant bit

25AE0B36APO Computer Architectures

Arithmetic shift to the left and to the right

● arithmetic shift by one to the left/right is equivalent to
signed multiply/divide by 2 (movement in the fraction grid)

● Notice difference between arithmetic, logic and cyclic shift
operations

loss of the
precision

● Remark: Barrel shifter can be used for fast variable shifts

26AE0B36APO Computer Architectures

Addition and subtraction for the biased representation

● Short note about other signed number representation

● Overflow detection
● for addition:

same sign of addends and different result sign
● for subtraction:

signs of minuend and subtrahend are opposite and sign of
the result is opposite to the sign of minuend

27AE0B36APO Computer Architectures

Unsigned binary numbers multiplication

28AE0B36APO Computer Architectures

Sequential hardware multiplier (32b case)

AC MQ

The speed of the multiplier is horrible

29AE0B36APO Computer Architectures

Algorithm for multiplication

A = multiplicand;
MQ = multiplier;
AC = 0;

for(int i=1; i <= n; i++) // n – represents number of bits

{
 if(MQ0 = = 1) AC = AC + A; // MQ0 = LSB of MQ

 SR (shift AC MQ by one bit right and insert information about
carry from the MSB from previous step)
}
end.

when loop ends AC MQ holds 64-bit result

30AE0B36APO Computer Architectures

Example of the multiply X by Y

i operation AC MQ A comment

000 101 110 initial setup

1 AC = AC+MB 110 101 start of the cycle

SR 011 010
2 nothing 011 010 because of MQ0 = = 0

SR 001 101
3 AC = AC+MB 111 101

SR 011 110 end of the cycle

Multiplicand x=110 and multiplier y=101.

The whole operation: x×y = 110×101 = 011110, (6×5 = 30)

31AE0B36APO Computer Architectures

Signed multiplication by unsigned HW for two's complement

One possible solution

C = A • B
Let A and B representations are n bits and result is 2n bits

D(C) = D(A) • D(B)
– (D(B)<<n) if A < 0
– (D(A)<<n) if B < 0

Consider for negative numbers

(2n+A) • (2n+B) = 22n+2n A + 2n B + A•B

where 22n is out of the result representation, next two elements
have to be eliminated if input is negative

32AE0B36APO Computer Architectures

Wallace tree based multiplier

Q=X .Y, X and Y are considered as and 8bit unsigned numbers

(x7 x6 x5 x4 x-3 x2 x1 x0). (y7 y6 y5 y4 y3 y2 y1 y0) =

0 0 0 0 0 0 0 0 x7y0 x6y0 x5y0 x4y0 x3y0 x2y0 x1y0 x0y0 P0

0 0 0 0 0 0 0 x7y1 x6y1 x5y1 x4y1 x3y1 x2y1 x1y1 x0y1 0 P1

0 0 0 0 0 0 x7y2 x6y2 x5y2 x4y2 x3y2 x2y2 x1y2 x0y2 0 0 P2

0 0 0 0 0 x7y3 x6y3 x5y3 x4y3 x3y3 x2y3 x1y3 x0y3 0 0 0 P3

0 0 0 0 x7y4 x6y4 x5y4 x4y4 x3y4 x2y4 x1y4 x0y4 0 0 0 0 P4

0 0 0 x7y5 x6y5 x5y5 x4y5 x3y5 x2y5 x1y5 x0y5 0 0 0 0 0 P5

0 0 x7y6 x6y6 x5y6 x4y6 x3y6 x2y6 x1y6 x0y6 0 0 0 0 0 0 P6

0 x7y7 x6y7 x5y7 x4y7 x3y7 x2y7 x1y7 x0y7 0 0 0 0 0 0 0 P7

Q15 Q14 Q13 Q12 Q11 Q10 Q9 Q8 Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0

The sum of P0+P1+...+P7 gives result of X and Y multiplication.
 Q = X .Y = P0 + P1 + ... + P7

33AE0B36APO Computer Architectures

Wallace tree based fast multiplier

The basic element is an CSA circuit (Carry Save Adder)

S = Sb + C

Sb
i = xi ⊕ yi ⊕ zi

Ci+1 = xi yi + yi zi + zi xi

⊕

⊕

& & &

1

34AE0B36APO Computer Architectures

Hardware divider

negate
hot one

reminder

return

quotient

35AE0B36APO Computer Architectures

Hardware divider logic (32b case)

divident = quotient × divisor + reminder

AC MQ

negate
hot one

return

reminder quotient

36AE0B36APO Computer Architectures

Algorithm of the sequential division

MQ = dividend;
B = divisor; (Condition: divisor is not 0!)
AC = 0;

for(int i=1; i <= n; i++) {
 SL (shift AC MQ by one bit to the left, the LSB bit is kept on zero)

 if(AC >= B) {
AC = AC – B;
MQ0 = 1; // the LSB of the MQ register is set to 1

 }
}

→ Value of MQ register represents quotient and AC remainder

37AE0B36APO Computer Architectures

Example of X/Y division

i operation AC MQ B comment
0000 1010 0011 initial setup

1 SL 0001 0100

nothing 0001 0100 the if condition not true

2 SL 0010 1000

0010 1000 the if condition not true

3 SL 0101 0000 r ≥ y

AC = AC – B;
MQ0 = 1;

0010 0001

4 SL 0100 0010 r ≥ y

AC = AC – B;
MQ0 = 1;

0001 0011 end of the cycle

Dividend x=1010 and divisor y=0011

x : y = 1010 : 0011 = 0011 reminder 0001, (10 : 3 = 3 reminder 1)

38AE0B36APO Computer Architectures

Higher dynamic range for numbers (REAL/float)

● Scientific notation, semilogarithmic, floating point
● The value is represented by:

– EXPONENT (E) – represents scale for given value
– MANTISSA (M) – represents value in that scale
– the sign(s) are usually separated as well

● Normalized notation
● The exponent and mantissa are adjusted such way, that

mantissa is held in some standard range. 〈0.5, 1) or 〈1, 2) for
considered base z=2

● Generally: the first digit is non-zero or mantissa range is 〈1, z)

39AE0B36APO Computer Architectures

Standardized format for REAL type numbers

● Standard IEEE-754 defines next REAL representation
and precision
● single-precision – in the C language declared as float
● double-precision – C language double

40AE0B36APO Computer Architectures

Examples of (de)normalized numbers in base 10 and 2

binary

The radix point position for E and M

Sign of M

41AE0B36APO Computer Architectures

The representation/encoding of floating point number

● Mantissa encoded as the sign and absolute value
(magnitude) – equivalent to the direct representation

● Exponent encoded in biased representation (K=127 for
single precision)

● The implicit leading one can be ommited due to
normalization of m ∈ 1, 2) 〈 – 23+1 implicit bit for single

Radix point position for E and M

Sign of M

X = -1s 2A(E)-127 m where m ∈ 1, 2)〈

m = 1 + 2-23 M

42AE0B36APO Computer Architectures

Implied (hidden) leading 1 bit

● Most significant bit of the mantissa is one for each
normalized number and it is not stored in the
representation for the normalized numbers

● If exponent representation is zero then encoded value is
zero or denormalized number which requires to store
most significant bit

● Denormalized numbers allow to keep resolution in the
range from the smallest normalized number to zero

43AE0B36APO Computer Architectures

Underflow/lost of the precision for IEEE-754 representation

● The case where stored number value is not zero but it is
smaller than smallest number which can be represented
in the normalized form

● The direct underflow to the zero can be prevented by
extension of the representation range by denormalized
numbers

smallest representable number
denormalized

0

underflow

normalized

normalized numbers

44AE0B36APO Computer Architectures

ANSI/IEEE Std 754-1985 – 32b a 64b formats

ANSI/IEEE Std 754-1985 — double precision format — 64b

g . . . 11b f . . . 52b

ANSI/IEEE Std 754-1985 — single precision format — 32b

fraction point

45AE0B36APO Computer Architectures

Representation of the fundamental values

Zero

Infinity

Representation corner values

Positive zero 0 00000000 00000000000000000000000 +0.0

Negative zero 1 00000000 00000000000000000000000 -0.0

Positive infinity 0 11111111 00000000000000000000000 +0.0

Negative infinity 1 11111111 00000000000000000000000 -0.0

Smallest
normalized

* 00000001 00000000000000000000000 ±2(1-127)

±1.1755 10-38

Biggest
denormalized

* 00000000 11111111111111111111111 ±(1-2-23)2(1-126)

Smallest
denormalized

* 00000000 00000000000000000000001 ±2-232-126

±1.4013 10-45

Max. value 0 11111110 11111111111111111111111 (2-2-23)2(127)

+3.4028 10+38

46AE0B36APO Computer Architectures

Not a number (NaN)

● All ones in the exponent
● Mantissa not equal to the zero
● Used, where no other value fits (i.e. +Inf + -Inf, 0/0)
● Compare to (X+ +Inf) where +Inf is sane result

47AE0B36APO Computer Architectures

IEEE-754 special values summary

sign bit Exponent
representation

Mantissa Represented value/meaning

0 0<e<255 any value normalized positive number

1 0<e<255 any value normalized negative number

0 0 >0 denormalized positive number

1 0 >0 denormalized negative number

0 0 0 positive zero

1 0 0 negative zero

0 255 0 positive infinity

1 255 0 negative infinity

0 255 ≠0 NaN – does not represent a number

1 255 ≠0 NaN – does not represent a number

48AE0B36APO Computer Architectures

Comparison

● Comparison of the two IEEE-754 encoded numbers
requires to solve signs separately but then it can be
processed by unsigned ALU unit on the representations

 A ≥ B A − B ≥ 0 D(A) − D(B) ≥ 0⇐⇒ ⇐⇒
● This is advantage of the selected encoding and reason

why sign is not placed at start of the mantissa

49AE0B36APO Computer Architectures

Addition of floating point numbers

● The number with bigger exponent value is selected
● Mantissa of the number with smaller exponent is shifted

right – the mantissas are then expressed at same scale
● The signs are analyzed and mantissas are added (same

sign) or subtracted (smaller number from bigger)
● The resulting mantissa is shifted right (max by one) if

addition overflows or shifted left after subtraction until all
leading zeros are eliminated

● The resulting exponent is adjusted according to the shift
● Result is normalized after these steps
● The special cases and processing is required if inputs are

not regular normalized numbers or result does not fit into
normalized representation

50AE0B36APO Computer Architectures

Hardware of the floating point adder

51AE0B36APO Computer Architectures

Multiplication of floating point numbers

● Exponents are added and signs xor-ed
● Mantissas are multiplied
● Result can require normalization

max 2 bits right for normalized numbers
● The result is rounded

● Hardware for multiplier is of the same or even lower
complexity as the adder hardware – only adder part is
replaced by unsigned multiplier

52AE0B36APO Computer Architectures

Floating point arithmetic operations overview

Addition: A⋅za , B⋅zb , b < a unify exponents
 B⋅zb = (B⋅zb-a)⋅zb-(b-a) by shift of mantissa

 A⋅za + B⋅zb = [A+(B⋅zb-a)]⋅za sum + normalization

Subtraction: unification of exponents, subtraction and
normalization

Multiplication: A⋅za ⋅ B⋅zb = A⋅B⋅za+b

 A⋅B - normalize if required
 A⋅B⋅za+b = A⋅B⋅z⋅za+b-1 - by left shift

Division: A⋅za/B⋅zb = A/B⋅za-b

 A/B - normalize if required
 A/B⋅za-b = A/B⋅z⋅za-b+1 - by right shift

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

