INTRODUCTION	Problems of CNNs 0	Spatial relationships 0000000	Dynamic routing 0000	Examples of architectures	Final remarks 000

,,

Capsule Networks A novel type of neural networks

Vladimír Kunc FEL ČVUT

January 5, 2018

200

PROBLEMS OF CNNS

- it is difficult to detect spatial relationships among features
 - perspective
 - size
 - orientation
- pooling layers (if present) lose information
 - but helps with positional invariance
- rotation (etc.) robustness achieved by training filters for each possible rotation
 - · blow up in the number of neurons and redundancy
 - needs many training data in different positions (e.g. the same image is randomly rotated in each epoch)

SPATIAL RELATIONSHIPS AMONG FEATURES

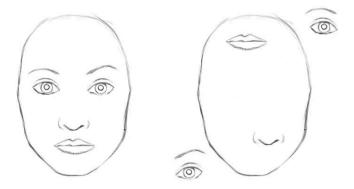


Figure: For such images the classical CNNs are more prone to failure. Source.

<ロト < 回 > < 巨 > < 巨 > 三 = のへで 3

SPATIAL RELATIONSHIPS AMONG FEATURES II

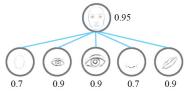


Figure: How a CNN evaluates features. Source.

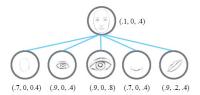


Figure: How a capsule network evaluates features. Source.

4 ロ ト 4 回 ト 4 三 ト 4 三 ト 三 - の Q (P 4)

SPATIAL RELATIONSHIPS AMONG FEATURES III

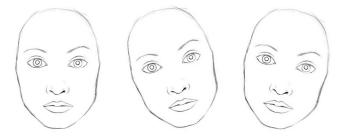


Figure: Examples of rotation. Source.

<ロト < 回 > < 三 > < 三 > < 三 > < 三 > < ○ < 5

SPATIAL RELATIONSHIPS AMONG FEATURES IV

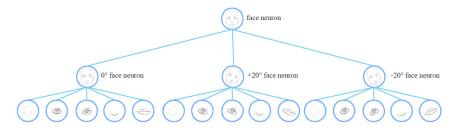


Figure: Classical CNNs dealing with rotation. Source.

<ロト < 団 ト < 臣 ト < 臣 ト 三 の < で 6</p>

SPATIAL RELATIONSHIPS AMONG FEATURES V

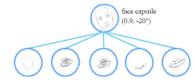


Figure: Capsule network dealing with rotation. Source.

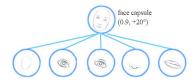


Figure: Capsule network dealing with rotation. Source.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで ヵ

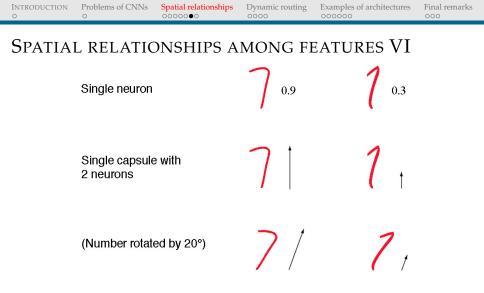


Figure: Output of a (vector) capsule. Source.

INVARIANCE VS EQUIVARIANCE

- Invariance
 - · detection of features regardless of the variants
 - loss of spatial orientation
 - classical CNNs (learning rotated features need for huge amounts of data)

- ► Equivariance
 - · detection of objects that can transform to each other
 - it might be possible to extrapolate variants with less training data

DYNAMIC ROUTING

- the capsule network need to learn hierarchies among features
 - it performs hierarchical clustering
 - it selects to which capsule in the upper layer a capsule will send the output
- iterative process
 - another loop during training (harder to implement in some frameworks)
- "capsule layers may eventually behaves as a parse tree that explore the part-whole relationship" (Source).

DYNAMIC ROUTING II

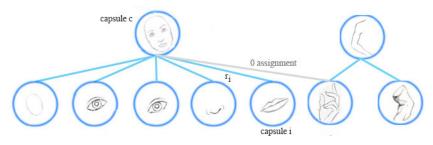


Figure: Routing example Source.

990 11

э

イロト イロト イヨト イヨト

DYNAMIC ROUTING III

- routing-by-agreement (first proposed)
 - iterative voting
- EM routing
 - proposed in paper Matrix capsules with EM routing
 - matrix capsules (not just vector) pose matrices to capture viewpoint of the object
 - EM algorithm used for routing

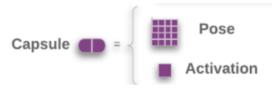


Figure: Matrix capsule output Source.

<□▶ < @ ▶ < E ▶ < E ▶ E の < ? 12</p>

Figure: Hierarchical features Source.

INTRODUCTION Problems of CNNs Spatial relationships OOOO Dynamic routing Examples of architectures Final remarks

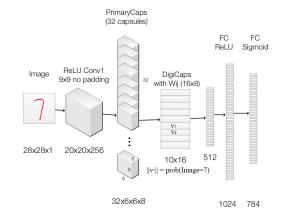


Figure: Architecture used for MNIST dataset Source.

 INTRODUCTION Problems of CNNs o o

CNNs Spatial r

Spatial relationships 0000000 Dynamic routing 0000 Examples of architectures 00000

Final remarks

MNIST

Figure: MNIST dataset Source.

EXAMPLE OF ARCHITECTURE (SMALLNORB)

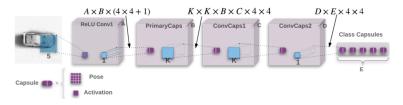


Figure: Architecture used for MNIST dataset Source.

<ロト 4 回 ト 4 臣 ト 4 臣 ト 臣 9 Q (* 16)</p>

SMALLNORB

Figure: smallNORB dataset Source.

- 5 toy classes: airplanes, cars, trucks, humans and animals
- 18 different azimuths (0-340), 9 elevations and 6 lighting conditions

RESULTS FOR SMALLNORB I

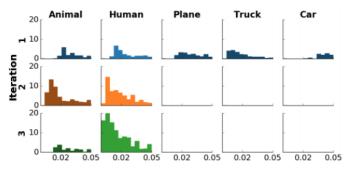


Figure: Dynamic routing (3 iterations) Source.

<ロト < 回 ト < 三 ト < 三 ト 三 の < () 18

RESULTS FOR SMALLNORB

Test set	Azimuth		Elevation	
	CNN	Capsules	CNN	Capsules
Novel viewpoints Familiar viewpoints	20% 3.7%	13.5% 3.7%	17.8% 4.3%	12.3% 4.3%

Figure: Results on smallNORB compared to CNNs Source.

<ロト < 回 > < 三 > < 三 > < 三 > の へ ? 19

better generalization with less data

INTRODUCTION	Problems of CNNs	Spatial relationships	Dynamic routing	Examples of architectures	Final remarks
0	0	0000000	0000	000000	•00

FINAL REMARKS

- capsule networks learn hierarchical features
 - · similarly (as we expect) to the functioning of a brain
 - · spatial relationships between features are preserved
- iterative process
 - another loop during training (harder to implement in some frameworks)

<ロト < 課 > < 注 > < 注 > 注 の < で 20

• "capsule layers may eventually behaves as a parse tree that explore the part-whole relationship" (Source).

CONCLUSION

- capsule networks are slow to learn compared to CNNs (at the moment)
 - it is easier to learn much more complex classical CNN that will perform better

4 ロト 4 部 ト 4 王 ト 4 王 - 9 4 で 21

- CapsNets are just at the beginning (similar position to CNNs several years ago)
- routing algorithms are expected to develop
- implementations available in many frameworks

FURTHER RESOURCES

- https://www.youtube.com/watch?v=rTawFwUvnLE
 - · Hinton's talk "What's wrong with CNNs"
- https://www.youtube.com/watch?v=pPN8d0E3900
 - quite good explanation of CapsNets with good visualization
- https://arxiv.org/pdf/1710.09829.pdf
 - original paper on CapsNets (Dynamic Routing Between Capsules)
- https://jhui.github.io/2017/11/03/ Dynamic-Routing-Between-Capsules/
- https://medium.com/ai%C2%B3-theory-practice-business/ understanding-hintons-capsule-networks-part-i-intuition-b4b559d11
- https://kndrck.co/posts/capsule_networks_explained/
- https://hackernoon.com/

what-is-a-capsnet-or-capsule-network-2bfbe48769cc

includes code in TensorFlow framework