StarSpace: Embed All The Things

Jan Pichl

Motivation

- Dimensionality reduction
- Incorporating additional knowledge
- One embedding for multiple problems:
 - Text classification, ranking, image labelling, embedding of graphs (words, sentences, documents)
- One embedding for various types of entities
 - o Comparing different types of entities sentences, graphs, images, words, ...

Unsupervised method for words - word2vec

- We need to embed a word into a lower dimensional space
- Skip-gram neural network
- Arithmetic operations show some interesting relations

Word2vec in matrix form

The trained matrix is used as a lookup table

Generalization

- We need to embed other entities than words
- We need to embed different kinds of entities into a same vector space
- Compare embeddings vectors of different kind of entities
- Train a lookup table similar to a word2vec
- Using a supervised task to train the representation

StarSpace

- Facebook research
- Star (*) Space embedding for "everything" -> Star
- Main idea
 - Transform discrete features to a vector of real numbers
 - Use one simple approach for different task (avoid computationally expensive neural networks)
- Directly trained on a desired task or...
- The model can be used as an input for neural network for different tasks

StarSpace

- Input: discrete feature vector
- Each entity consist of one or more features (bag of features)
- Embedding matrix: D x d (number of features x desired dimensionality)
- Each row of a matrix is the embedding for one feature
- Entity with multiple features sum of embeddings
- Fixed feature dictionary

Optimization

- Similarity function: cosine similarity
- Loss function:

- Positive and negative sample
- Task specific spample generation

Training

- Stochastic Gradient Descent
- Adagrad
- Each SGD step contains one positive sample
- Margin ranking loss:
 - \circ max $\{0, \mu sim(a, b) + sim(a, b^-)\}$
- Positive examples need to be ranked higher than negative ones
- Each batch contains k negative examples
- Testing
 - Direct usage of similarity function
 - Embedding as an input for another model

Tasks

- Classification:
 - Positive: training set
 - Negative: labels sampled from set of labels
- Collaborative Filtering-based Recommendation:
 - o Positive: user ID embedding OR list of items users like except one, label the left out item
 - Negative: sampled from possible items
- Content-based Recommendation:
 - User: bag of documents, Document: bag of words
 - Same as before: one left out
- Multi-Relational Knowledge Graphs:
 - Graph (head, relation, tail) e.g. (Beyonce, born-in, Houston)
 - Randomly remove head or tail -> removed item as a label

Example

E+: {('restaurant has great food', '#yum #restaurant')}

E-: {'#animals', '#donald trump'}

ranking loss:

$$sim(\bigcirc,\bigcirc,\bigcirc)$$

sim(, , ,)

The higher the ranking of the relevant item the better

In Testing:

for a given input a, using $\max_{\hat{b}} sim(a,\hat{b})$

Tasks

Document Search:

- Input: query keywords, Output: document bag of words
- Unsupervised data: random keywords from document
- Negative: irrelevant documents
- Implicit learning of document embeddings

Word embeddings:

- Input: windows of words (n words on both sides of selected word)
- Output: selected word

Sentence embeddings:

- Positive pairs: sentences from the same document
- Negative: from different documents

Image labelling:

- Input: ResNet (or another model) image features
- Output: Image label
- Negative: irrelevant labels

Number of k negative samples

- Dataset collection of Freebase triplets
- Removed head and tail respectively
- Prediction of missing entity
- Reported how many entities were ranked among first ten (hit@10)
- Best result on this task: k = 50

K	1	5	10	25	50	100	250	500	1000
Epochs	3260	711	318	130	69	34	13	7	4
hit@10	67.05%	68.08%	68.13%	67.63%	69.05%	66.99%	63.95%	60.32%	54.14%

Table 5: Adapting the number of negative samples k for a 50-dim model for 1 hour of training on Freebase 15k.

Results

- Tasks: select sentence from Wikipedia article, try to find the article it came from
- Original article has sentences as a features (minus the original one)

Metric	Hits@1	Hits@10	Hits@20	Mean Rank	Training Time
Unsupervised methods					
TFIDF	56.63%	72.80%	76.16%	578.98	-
fastText (public Wikipedia model)	18.08%	36.36%	42.97%	987.27	-
fastText (our dataset)	16.89%	37.60%	45.25%	786.77	40h
Supervised method					
SVM Ranker BoW features	56.73%	69.24%	71.86%	723.47	-
SVM Ranker: fastText features (public)	18.44%	37.80%	45.91%	887.96	-
StarSpace	56.75%	78.14%	83.15%	122.26	89h

Results

- Tasks: select two sentences from a single Wikipedia article
- Based on the one sentence we want to try the other one

Metric	Hits@1	Hits@10	Hits@20	Mean Rank	Training Time
Unsupervised methods					
TFIDF	24.79%	35.53%	38.25%	2523.68	-
fastText (public Wikipedia model)	5.77%	14.08%	17.79%	2393.38	-
fastText (our dataset)	5.47%	13.54%	17.60%	2363.74	40h
StarSpace (word-level training)	5.89%	16.41%	20.60%	1614.21	45h
Supervised methods					
SVM Ranker BoW features	26.36%	36.48%	39.25%	2368.37	-
SVM Ranker: fastText features (public)	5.81%	12.14%	15.20%	1442.05	-
StarSpace (sentence pair training)	30.07%	50.89%	57.60%	422.00	36h
StarSpace (word+sentence training)	25.54%	45.21%	52.08%	484.27	69h

Thank you!

Bibliography

[1] WU, Ledell, et al. StarSpace: Embed All The Things!. arXiv preprint arXiv:1709.03856, 2017.

https://www.slideshare.net/akihikowatanabe3110/starspace-embed-all-the-things