Bayesian Hypotheses Testing

Jakub Repický

Faculty of Mathematics and Physics, Charles University

Institute of Computer Science, Czech Academy of Sciences

Selected Parts of Data Mining Jan 19 2018, Prague

Null hypothesis significance testing

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

NHST in machine learning

Pitfalls of NHST

Bayesian tests

Bibliography

Based on tutorial by Benavoli et al.

http://ipg.idsia.ch/tutorials/2016/bayesian-tests-ml/

Experiments:

 Comparing Adaboost (ada) vs. Gradient boosting classifier (gbc)

- scikit-learn implementation
- max_depth=1, n_estimators=100
- learning_rate=1.0 (gbc)

Data

Table: 27 UCI data sets

	Name	Size	No. of features
0	heart-statlog	270	13
1	mushroom	5644	22
2	segment	2310	19
3	cleveland-14-heart-disease	296	13
4	zoo	101	17
23	ionosphere	351	34
24	pima_diabetes	768	8
25	vote	232	16
26	vehicle	846	18

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

Procedure of NHST

- 1. State the null and the alternative hypotheses H_0 and H_1
- 2. Based on statistical assumption about data, choose a statistical test
- 3. Under the null hypothesis, the test statistic T follows a known probability distribution
- 4. Calculate observed test statistic t(x)
- 5. Calculate the probability that T is "more extreme" than observed t(x) (the *p*-value)
- 6. If $p < \alpha$, reject H_0

Correlated *t*-test

- Used to test two algorithms on one data set
- Calculates a score (e.g., accuracy) on p runs of k-fold cross-validation
- Sample size: n = pk
- Observations: $oldsymbol{x} = (x_i)_{i=1}^n$, the score differences on each fold

- The standard *t*-test assumes x_i to be independently, identically and normally distributed
- Correlated *t*-test accounts for correlations between $x_i, x_j, i \neq j$ due to cross-validation

Correlated *t*-test (II)

The test statistic:

$$t(\boldsymbol{x},\mu) = rac{ar{\boldsymbol{x}}-\mu}{\sqrt{\hat{\sigma}^2\left(rac{1}{n}-rac{
ho}{1-
ho}
ight)}}$$

- t follows Student's distribution with n-1 degrees of freedom
- ρ correlation between results from overlapping training sets
- $\frac{\rho}{1-\rho} = \frac{n_{te}}{n_{tr}}$ a heuristic for the correlation correction parameter (Nadeau and Bengio, 2003)
- Two-sided test: $H_0: \mu = 0, H_1: \mu \neq 0$
- One-sided test: $H_0: \mu \leq 0, \ H_1: \mu > 0$

Example

Table: p-values of the two-sided correlated t-test. 14 out of 27 results are significant at $\alpha=0.05.$

	Name	p-val
0	heart-statlog	0.51
1	mushroom	0.00*
2	segment	0.00*
3	cleveland-14-heart-disease	0.42
4	Z00	0.00*
23	ionosphere	0.23
24	pima_diabetes	0.29
25	vote	0.39
26	vehicle	0.00*

Wilcoxon signed-rank test

- Used to compare two classifiers on multiple data sets
- Counts ranks of differences, not their magnitudes
- z_i the mean score difference on ith data set, $i=1,\ldots,q$
- z_i assumed to be i.i.d. samples from a symmetric distribution

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Wilcoxon signed-rank test (II)

The test statistic is

$$t = \min\left\{\sum_{i:z_i>0} \operatorname{rank}(|z_i|) + \frac{1}{2}\sum_{i:z_i=0} \operatorname{rank}(|z_i|), \\ \sum_{i:z_i<0} \operatorname{rank}(|z_i|) + \frac{1}{2}\sum_{i:z_i=0} \operatorname{rank}(|z_i|)\right\}$$

- Critical value tables exist for q small enough, e.g., q<25
- Otherwise $w = \frac{t \frac{1}{4}q(q+1)}{\sqrt{\frac{1}{24}q(q+1)(2q+1)}}$ follows an approximately normal distribution

Wilcoxon signed-rank test of mean accuracy difference between ada and gbc:

w = 120, *p*-value = 0.10.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Pitfalls of NHST

p-value not what researchers want

p-value is not the probability of the null hypothesis

$$p(T > t(\boldsymbol{x})|H_0) \neq p(H_0|\boldsymbol{x})$$

 \blacktriangleright Similarly, 1-p is not the probability of the alternative hypothesis

 $p(T \leq t(\boldsymbol{x})|H_0) \neq p(H_1|\boldsymbol{x})$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

└─ Pitfalls of NHST

p-value depends on sample size

- The difference between classifiers is never zero
- Arbitrarily small effects can be confirmed on large enough samples

Pitfalls of NHST

NHST cannot measure effect size

Statistical significance does not imply practical significance

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

And more...

If null hypothesis is not rejected, the result is inconclusive

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Significance level cannot be reasonably decided
- NHST assumes certain sampling intentions

Bayesian analysis

Bayesian inference:

1. Formulating a joint probability model of observable data x and unknown parameters θ :

$$p(\theta, \boldsymbol{x}) = p(\boldsymbol{x}|\theta)p(\theta)$$

2. Infering $\theta | \boldsymbol{x}$ by Bayes' theorem:

$$p(\boldsymbol{\theta}|\boldsymbol{x}) = \frac{p(\boldsymbol{\theta}, \boldsymbol{x})}{p(\boldsymbol{x})} = \frac{p(\boldsymbol{x}|\boldsymbol{\theta})p(\boldsymbol{\theta})}{p(\boldsymbol{x})}$$

3. Summarizing the posterior distribution

Bayesian tests

Bayesian correlated *t*-test

Likelihood:

$$\boldsymbol{x} \mid \boldsymbol{\mu}, \boldsymbol{\tau} \sim \text{MVN}(\boldsymbol{\mu} \mathbf{1}, \boldsymbol{\Sigma})$$
$$\boldsymbol{\Sigma} = \begin{pmatrix} 1/\tau & \rho/\tau & \cdots & \rho/\tau \\ \rho/\tau & 1/\tau & \cdots & \rho/\tau \\ \vdots & \vdots & \ddots & \vdots \\ \rho/\tau & \rho/\tau & \cdots & 1/\tau \end{pmatrix}$$

Prior:

 $\mu, \tau \sim \text{NormalGamma}(\mu_0, k_0, a, b)$ $\mu \mid \tau \sim \mathcal{N}(\mu_0, \frac{k_0}{\tau})$ $\tau \sim \text{Gamma}(a, b)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Bayesian tests

Bayesian correlated *t*-test (II)

- NormalGamma is conjugate to MVN
- The posterior is a NormalGamma distribution
- Marginalizing out precision τ , the posterior of μ is a Student *t*-distribution
- For $\mu_0 = 0, k_0 \rightarrow \infty, a = -1/2, b = 0$ (matching prior):

$$\mu \sim St\left(n-1, \bar{\boldsymbol{x}}, \sqrt{\hat{\sigma}^2\left(\frac{1}{n} + \frac{\rho}{1-\rho}\right)}\right)$$

What is the difference then?

Example

Region of practical equivalence (rope): 0.01

 $P(ada) > gbc) = 0.65 \quad P(rope) = 0.15 \quad P(gbc > ada) = 0.20$

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Bayesian tests

Example

- Can show practically significant differences (1 P(rope))
- Can quantify uncertainty (high density intervals)
- Posterior probability of the null: P(rope)
- Provides basis for decisions (expected loss minimization)

Bayesian signed-rank test

- Let $\boldsymbol{z} = (z_1, \dots, z_q)$ be i.i.d. samples of z
- Place Dirichlet process prior on z parameterized by strength s>0 and mean z_0
- The posterior is a Dirichlet mixture
- Can be reformulated to a ternary distribution of test outcomes

Monte Carlo sampling used to approximate the posterior

Example

Rope = 0.01P(ada > gbc) = 0.02 P(rope) = 0.24 P(gbc > ada) = 0.7560 50 p(rope) 40 30 20 10 p(ada) p(gbc)

Posterior for Bayesian signed-rank test for ada vs. gbc on 27 UCI data sets

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Conclusion

- NHST has many drawbacks
- Bayesian tests:
 - claimed significant differences are practical

- are able to detect practical equivalence
- provide estimate with uncertainty
- allow to automatize decisions

Bibliography

- A. Benavoli, G. Corani, J. Demsar, and M. Zaffalon, *Time for a change: a tutorial for comparing multiple classifiers through Bayesian analysis*, ArXiv e-prints (2016).
- J. Demšar, *Statistical comparisons of classifiers over multiple data sets*, J. Mach. Learn. Res. **7** (2006), 1–30.

Bibliography

Thank you! repicky at cs.cas.cz

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ