AL & Continuous Black-Box Optimization oo oo oocococoo

Active Learning in Regression Tasks

Jakub Repický

Faculty of Mathematics and Physics, Charles University

Institute of Computer Science, Czech Academy of Sciences

Selected Parts of Data Mining Dec 01 2017, Prague

Jakub Repický

- Motivation
- Active Learning Scenarios
- Uncertainty Sampling
- Version Space Reduction
- Variance Reduction

2 AL & Continuous Black-Box Optimization

- Motivation
- Bayesian Optimization
- Surrogate Models

AL & Continuous Black-Box Optimization 00 000000000

Bibliography

Burr Settles. Active Learning. Synthesis Lectures on Artificial Intelligence and Machine Learning 6 (1), 1-114.

э

Jakub Repický

Introduction	to	Active	Learning
00			

Motivation

Definition

Active learning

Machine learning algorithms that aim at reducing the training effort by posing queries to an oracle.

Targets tasks, in which:

- Unlabeled data are abundant
- Obtaining unlabeled instances is cheap
- Labeling is expensive

Motivation

Examples of expensive labeling tasks

- Annotation of domain-specific data
- Extracting structured information from documents or multi-media
- Transcribing speech
- Testing scientific hypotheses
- Evaluating engineering designs by numerical simulations

. . . .

Active Learning Scenarios

Query Synthesis

- Learner may inquire about any instance from the input space
- May create uninterpretable queries
- Applicable for non-human oracles (e.g., scientific experiments)

(Lang and Baum, 1992)

(日) (同) (三) (三)

э

Active Learning Scenarios

AL & Continuous Black-Box Optimization 00 000000000

Selective (Stream-Based) Sampling

- Drawing (observing) instances from an input source
- The learner decides whether to discard or query the instance
- Applicable on sequential or large data

AL & Continuous Black-Box Optimization 00 000000000

Active Learning Scenarios

Pool-Based Sampling

- A small set \mathcal{L} of labeled instances
- A large pool \mathcal{U} of unlabeled instances
- Instances selected from *L* according to a utility measure evaluated on *U*
- Most widely used in applications (information extraction, text classification, speech recognition, ...)

AL & Continuous Black-Box Optimization 00 000000000

∃ 𝒫𝔅

Uncertainty Sampling

Pool-Based Uncertainty Sampling

- 1 \mathcal{L} initial set of labeled instances
- 2 \mathcal{U} pool of unlabeled instances
- 3 while true

Jakub Repický

Uncertainty Sampling

AL & Continuous Black-Box Optimization OO OO OOOOOOOOO

Uncertainty Measures - Least confident

$$\begin{aligned} \boldsymbol{x}_{\text{LC}}^* &= \operatorname*{arg\,min}_{\boldsymbol{x}} P_{\theta}(\hat{y} | \boldsymbol{x}) \\ &= \operatorname*{arg\,max}_{\boldsymbol{x}} 1 - P_{\theta}(\hat{y} | \boldsymbol{x}) \end{aligned}$$

- $\hat{y} = \arg \max_{y} P_{\theta}(y|\boldsymbol{x})$
 - minimizes the expected zero-one loss
- Only the most likely prediction is considered

AL & Continuous Black-Box Optimization 00 000000000

Uncertainty Sampling

Uncertainty Measures – Margin

$$\begin{aligned} \boldsymbol{x}_{M}^{*} &= \operatorname*{arg\,min}_{\boldsymbol{x}} \left(P_{\theta}(\hat{y}_{1}|\boldsymbol{x}) - P_{\theta}(\hat{y}_{2}|\boldsymbol{x}) \right) \\ &= \operatorname*{arg\,max}_{\boldsymbol{x}} \left(P_{\theta}(\hat{y}_{2}|\boldsymbol{x}) - P_{\theta}(\hat{y}_{1}|\boldsymbol{x}) \right) \end{aligned}$$

• \hat{y}_1 and \hat{y}_2 – the first and second most likely classes, respectively

Still ignores the remainder of the predictive distribution

Jakub Repický

AL & Continuous Black-Box Optimization 00 000000000

Uncertainty Sampling

Uncertainty Measures – Entropy

$$\begin{aligned} \boldsymbol{x}_{H}^{*} &= \operatorname*{arg\,max}_{\boldsymbol{x}} H(Y|\boldsymbol{x}) \\ &= \operatorname*{arg\,max}_{\boldsymbol{x}} - \sum_{y} P_{\theta}(y|\boldsymbol{x}) \, \log P_{\theta}(y|\boldsymbol{x}) \end{aligned}$$

- Maximizes the expected log-loss
- Shannon entropy H the expected self-information of a random variable

AL & Continuous Black-Box Optimization 00 000000000

Uncertainty Sampling

Uncertainty Measures

Jakub Repický

Uncertainty Sampling in Regression

- Normal distribution maximizes entropy given a variance
- Variance-based uncertainty sampling equivalent to entropy-based sampling under assumption of normality
- Requires estimation of variance

(Settles, 2012)

< ∃⇒

э

Variance-based sampling for a 2-layer perceptron

Jakub Repický

Uncertainty Sampling

Uncertainty Sampling Caveats

- Utility measures based on a single hypothesis
- Training set *L* is very small
- As a result, sampling bias is introduced

(a) target function

(b) initial sample

(c) uncertainty-based selective sampling over time

• • • • • • • • • • • • •

(Settles, 2012)

lakub Repický

00000000

Version Space Reduction

Version Space

- Hypothesis H a concrete model parametrization
- Hypothesis space H the set of all hypotheses allowed by the model class
- Version space V ⊆ H the set of all hypotheses consitent with data
- Active learning \rightarrow try to reduce \mathcal{V} as quickly as possible

AL & Continuous Black-Box Optimization oo ooooooooo

(Settles, 2012)

▲口 ▶ ▲□ ▶ ▲臣 ▶ ▲臣 ▶ ─ 臣 ─ のへで

Version Space Reduction

Query by Disagreement

- **1** $\mathcal{V} \subseteq \mathcal{H}$ the version and hypothesis spaces, resp.
- 2 \mathcal{L} the initial set of labeled instances
- 3 repeat

Version Space Reduction

Practical Query by Disagreement

Version space $\ensuremath{\mathcal{V}}$ might be uncountable and thus unrepresentable

- Speculative hypotheses approach
 - $h_1 \leftarrow \operatorname{train}(\mathcal{L} \cup (\boldsymbol{x}, \oplus))$
 - $h_2 \leftarrow \operatorname{train}(\mathcal{L} \cup (\boldsymbol{x}, \ominus))$
- Specific-General (SG) approach
 - A conservative h_S and a liberal h_G hypothesis
 - Approximation of region of disagreement by $DIS(\mathcal{V}) \approx \{ \boldsymbol{x} \in \mathcal{X} : h_S(\boldsymbol{x}) \neq h_G(\boldsymbol{x}) \}$
 - Obtaining h_S and h_G : assign \oplus and \ominus , in turn, to a sample of background points $\mathcal{B} \subseteq \mathcal{U}$

Jakub Repický

AL & Continuous Black-Box Optimization oo oo oocococoo

(Settles, 2012)

A B >
A B >
A
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
A
B
A
A
B
A
A
B
A
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Version Space Reduction

Query by Disagreement – Example

(f) disagreement-based selective sampling over time

(g) uncertainty-based selective sampling over time

Jakub Repický

- Variance Reduction
 - Previous heuristics were not aimed at predictive accuracy
 - The goal: select points that minimize the *future* expected error
 - Equivalent to reducing output variance (Geman et al., 1992):

$$x_{\mathrm{VR}}^* = \operatorname*{arg\,min}_{\boldsymbol{x}\in\mathcal{L}} \sum_{\boldsymbol{x}'\in\mathcal{U}} \mathrm{Var}_{\theta^+}(Y|\boldsymbol{x}')$$

• $heta^+$ – model after retraining on $\mathcal{L} \cup (oldsymbol{x},y)$

A straightforward implementation leads to complexity explosion

Introduction to Active Learning ○○ ○○ ○○○ ○○○ ○○○ ○○○ ○○○ ○○○	AL & Continuous Black-Box Optimization 00 00 000000000
Variance Reduction	
Score	

Given a model of random variable Y with parameters θ , the score is the gradient of the log likelihood w.r.t. θ :

$$u_{\theta}(\boldsymbol{x}) = \nabla_{\theta} \log L(Y|\boldsymbol{x};\theta)$$
$$= \frac{\partial}{\partial \theta} \log P_{\theta}(Y|\boldsymbol{x})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 めへで

Jakub Repický

Variance Reduction

AL & Continuous Black-Box Optimization 00 000000000

Fisher information is the variance of the score

 $F(\theta) = \operatorname{Var}(u_{\theta}(\boldsymbol{x})).$

Under some mild assumptions, $E[u_{\theta}(x)] = 0$. Further, it can be shown:

$$F(\theta) = E\left[\left(\frac{\partial}{\partial\theta}\log P_{\theta}(Y|\boldsymbol{x})\right)^{2}\right]$$
$$= -E\left[\frac{\partial^{2}}{\partial\theta^{2}}\log P_{\theta}(Y|\boldsymbol{x})\right]$$

Expected value of negative Hessian matrix of log likelihood
Expresses the amount of sensitivity of log likelihood w.r.t. to changes in θ

00 000 0000000 0000 00000000

Variance Reduction

AL & Continuous Black-Box Optimization 00 000000000

Optimal Experimental Design

Cramér-Rao bound

 $F(\theta)^{-1}$ is a lower bound on the variance of any unbiased estimator $\hat{\theta}$ of parameters $\theta.$

- "Minimize" Fisher information matrix inverse
- In general, *F* is a covariance matrix what to optimize?
- Optimal Experimental Design (Fedorov, 1972) strategies of optimizing real-valued statistics of Fisher information
- Using Fisher information, Var_{θ+}(Y|x) can be estimated without retraining at each x

AL & Continuous Black-Box Optimization 00 000000000

Variance Reduction

00000000

D-Optimal Design

$$\boldsymbol{x}_D^* = \operatorname*{arg\,min}_{\boldsymbol{x}} \det\left(\left(F_{\mathcal{L}} + u_{\theta}(\boldsymbol{x})u_{\theta}(\boldsymbol{x})^T\right)^{-1}\right)$$

- Can be viewed as a version space reduction strategy
- Reduces the amount of uncertainty in the parameter estimates

Variance Reduction

AL & Continuous Black-Box Optimization 00 000000000

A-Optimal Design

$$oldsymbol{x}_A^* = rgmin_{oldsymbol{x}} \operatorname{tr}(AF_{\mathcal{L}}^{-1})$$

- A a reference matrix
- Using $A_x = u_\theta(x)u_\theta(x)^T$ as the reference matrix leads to a variance sampling strategy

$$tr(A_{\boldsymbol{x}}F_{\mathcal{L}}^{-1}) = u_{\theta}(\boldsymbol{x})^{T}F_{\mathcal{L}}^{-1}u_{\theta}(\boldsymbol{x})$$

Minimizes the average variance of the parameter estimates

Jakub Repický

000000000

Variance Reduction

AL & Continuous Black-Box Optimization 00 000000000

2

Fisher information ratio

$$\begin{aligned} \boldsymbol{x}_{\text{FIR}}^{*} &= \arg\min_{\boldsymbol{x}} \sum_{\boldsymbol{x}' \in \mathcal{U}} \operatorname{Var}_{\theta^{+}}(Y | \boldsymbol{x}') \\ &= \arg\min_{\boldsymbol{x}} \sum_{\boldsymbol{x}' \in \mathcal{U}} \operatorname{tr} \left(A_{\boldsymbol{x}'} \left(F_{\mathcal{L}} + u_{\theta}(\boldsymbol{x}) u_{\theta}(\boldsymbol{x})^{T} \right)^{-1} \right) \\ &= \arg\min_{\boldsymbol{x}} \operatorname{tr} \left(F_{\mathcal{U}} \left(F_{\mathcal{L}} + u_{\theta}(\boldsymbol{x}) u_{\theta}(\boldsymbol{x})^{T} \right)^{-1} \right) \end{aligned}$$

 $\bullet A_{\boldsymbol{x}'} = u_{\theta}(\boldsymbol{x}')u_{\theta}(\boldsymbol{x}')^T$

Indirectly reduces the future output variance after labeling x

э

Variance Reduction

Comparison of Reviewed Strategies (Settles, 2012) Uncertainty sampling

- + simple, fast
- $-\,$ myopic, might be overly confident about incorrect predictions
- Query by committee / disagreement
 - + usable with any learning algorithm, some theoretical guarantees
 - difficult to train multiple hypotheses, does not try to reduce the expected error
- Error / variance reduction
 - $+\,$ optimizes the objection of interest, empirically successful
 - computationally expensive, difficult to implement

AL & Continuous Black-Box Optimization ••• ••• •••

Motivation

Definition

$$\mathsf{Optimize}\;f\colon\mathcal{X} o\mathbb{R}$$
 on compact $\mathcal{X}\subseteq\mathbb{R}^D$

$$\boldsymbol{x}^* = \operatorname*{arg\,min}_{\boldsymbol{x}\in\mathcal{X}} f(\boldsymbol{x}),$$

under conditions

- Unknown analytical definition of f
- Unknown (analytical) derivatives, continuity, convexity properties
- f considered expensive to evaluate
- Observations of *f*-values possibly noisy

Motivation

Optimization of

- Empirical functions: material science, chemistry,...
- Numerically simulated functions: engineering design optimization

Example: Photonic coupler design

(Bekasiewicz and Koziel, 2017)

(日) (同) (日) (日)

AL & Continuous Black-Box Optimization

Bayesian Optimization

- **1** f the objective function
- 2 \mathcal{A} initial set of labeled instances
- 3 repeat

Jakub Repický

Bayesian Optimization

Acquisition Functions

Lower Confidence Bound:

$$LCB(\boldsymbol{x}) = \hat{f}(\boldsymbol{x}) - \alpha Var(Y|\boldsymbol{x})$$

Probability of Improvement

$$\operatorname{POI}(\boldsymbol{x}) = P_Y(f(\boldsymbol{x}) \leq T)$$

Expected Improvement

$$\operatorname{EI}(\boldsymbol{x}) = E\left(\max\left\{y^{\min} - f(\boldsymbol{x}), 0\right\}\right)$$

AL & Continuous Black-Box Optimization

Jakub Repický

0000000		

Surrogate Models

Evolution Strategies

- Population-based randomized search using operators of selection, mutation and recombination
- Covariance Matrix Adaptation Evolution Strategy one of the most successful continuous black-box optimizer
 - Derandomized mutative parameters
 - Invariant towards rigid transformations of the input space
 - Invariant towards strictly monotonic transformations of the output space

AL & Continuous Black-Box Optimization

Surrogate Models

$(\mu\,,\,\lambda)$ -CMA-ES (Hansen, 2001)

Jakub Repický

Surrogate Models

Surrogate modeling

- Stochastic optimization still requires large no. of function evaluations
- Surrogate models of the objective can be utilized as a heuristic
- Two levels of evolution control (EC) are distinguished (Jin, 2002)
 - Generation-based a fraction of populations is wholly evaluated with the objective function
 - Individual-based a fraction of each population is evaluated with the objective function

AL & Continuous Black-Box Optimization

Surrogate Models

Evolution Control

Generation-based EC

Jakub Repický

Surrogate Models

Active Learning in Individual-Based EC

Given an extended population and a surrogate model of the objective function

- Select the most promising points
 - Combine optimality w.r.t. to the objective and utility for improving the model
- The same functions as in Bayesian optimization may be used
 - Lower confidence bound
 - Probability of improvement
 - Expected improvement

00000000		

Surrogate Models

AL & Continuous Black-Box Optimization

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 うの()

Example – Metamodel Assisted Evolution Strategy (Emmerich, 2002)

- pop an initial population
- **2** f the objective function
- **3** C a pre-selection criterion
- 4 μ parent number
- 5 $\lambda, \lambda_{\mathrm{Pre}}$ population number, extended pop. number
- 6 repeat
 - **1** offspring ← **reproduce**(pop)
 - 2 offspring ← mutate(pop)
 - **3** offspring \leftarrow **select** λ best according to C
 - 4 pop \leftarrow select μ best according to f

AL & Continuous Black-Box Optimization

(日) (同) (三) (三)

3

Surrogate Models

Experimental comparison

Selected model-based optimizers and CMA-ES compared on the Black-Box optimization benchmarking framework

Јакир Керіску

Surrogate Models

Further Reading I

- Robert Burbidge, Jem J. Rowland, and Ross D. King, Active learning for regression based on query by committee, pp. 209–218, Springer Berlin Heidelberg, 2007.
- David A. Cohn, Neural network exploration using optimal experiment design, Neural Networks 9 (1996), no. 6, 1071 – 1083.

- Nalerii Fedorov, Theory of optimal experiments designs, Academic press, 01 1972.
- Stuart Geman, Elie Bienenstock, and René Doursat, Neural networks and the bias/variance dilemma, Neural Computation **4** (1992), no. 1, 1–58.

0000000		

Further Reading II

Burr Settles, Active learning, Morgan & Claypool Publ., 2012.

Surrogate Models

AL & Continuous Black-Box Optimization

・ロト ・四ト ・ヨト ・ヨト

= 990

Thank you! repicky at cs.cas.cz

Jakub Repický