
Beyond manual tuning of hyperparameters

Matej Uhŕın

Department of Computer Science

November 23, 2018

Outline

1. Introduction
Why?
Formal Definition

2. Existing Approaches
Overview
Grid Search
Random Search
Manual Tuning

3. Bayesian methods

4. SMBO
Gaussian Process
Tree Structured Parzen Estimator

5. Conclusion

6. Experiment

Introduction

Why is it important

I In machine learning, the difference between state of the art
and average performance is often only the parameters.

I In testing, better chosen test cases = safer software.

I In general, less time spent by evaluation = more time spent in
research.

Formal Definition

x? = argminx f (x) x ∈ X (1)

Where f is a costly objective function, x is a single parameter
configuration from parameter space X . Value of the objective
function y = f (x) and y? = f (x?)

Formal Definition

Example

Problem:Classification of 8x8 digit images from
sklearn.datasets.digits

Costly objective function f (x) and parameter space X :

1 de f t r a i n n e two r k (params , x t r a i n , x t e s t . . .) :
2 net = a l g o r i t hm s .Momentum(params)
3 net . t r a i n (x t r a i n , y t r a i n , x t e s t , y t e s t . . .)
4 r e t u r n net . p r e d i c t i o n e r r o r (x t e s t , y t e s t)

param distr values
step size log-uniform x ∈ [0.01, 0.5]

batch size log-uniform-integer x ∈ [16, 512]

activ. f. Categorical x ∈ {Relu,PRelu, Sigmoid ...}
nhidden l. Categorical x ∈ {1, 2}

nunits in 1st l unif-integer x ∈ [50, 1000]
...

Existing Approaches

Overview

I Manual tuning

I Grid search

I Random search

I Bayesian model-based optimization

I Gradient based optimization

I Evolutionary optimization

Existing Approaches

Grid Search

I Define a set of parameter values, train model for all possible
parameter combinations and select the best one. For 5
parameters, 10 values each, 10 minutes time cost for objective
function:

105 · 10 ≈ 2 years (2)

I This method is a good choice only when model can train
quickly, which is not the case for typical neural networks.

Random Search

I Only use randomly selected subsets of parameters

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

100 points sampled from
uniform distribution

Figure 1: Two params ∈ [0, 1] uniform distr.

Parameter space not really covered, some configurations tests may
be redundant. We can improve with low-discrepancy sequences.

Random Search

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Random uniform

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Quasi-random Sobol sequence

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Quasi-random Hammersley set

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Quasi-random Halton sequence

Figure 2: Random uniform comparison with quasi-random sequences

Random Search

Review

I More effective than grid search.

I May not cover parameter space well.

I We can improve the ”coverage” of parameter space with quasi
random sequences.

I These techniques do not provide good results in higher
dimensions. E.g. Halton and Hammersley set do not work
well for dimensions higher than 10.

I Not suitable for optimization of large neural networks.

Hand Tuning

Example

Problem: 8x8 digits classification. Goal: Selecting the best number
of units in the hidden layer. nhidden ∈ [10, 1000]

0 50 100 150 200 250
Number of hidden units

0

20

40

60

80

100

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

 (%
)

Hyperparameter optimization, Iteration #1

Figure 3: Our initial param config is 10 hidden units. Accuracy 65%

Hand Tuning

Observing the result for 10 units. We make a decision to skip
many of the configurations and try 100.

0 50 100 150 200 250
Number of hidden units

0

20

40

60

80

100
Cl

as
sif

ica
tio

n
Ac

cu
ra

cy
 (%

)
Hyperparameter optimization, Iteration #2

Figure 4: Configuration 100 hidden units. Accuracy 82%

Hand Tuning

Can we automate this process?

0 50 100 150 200 250
Number of hidden units

0

20

40

60

80

100
Cl

as
sif

ica
tio

n
Ac

cu
ra

cy
 (%

)

Hyperparameter optimization, Iteration #3

Figure 5: Configuration 200 hidden units. Accuracy 84%

Bayesian Model-Based Optimization

Bayesian approaches keep track of past evaluation results which
they use to form a probabilistic model mapping hyperparameters to
a probability of a score on the objective function:

We build a model called “surrogate” for the objective function f :

P(score|hyperparameters) (3)

In literature often denoted as p(y |x).

Bayesian methods are derivative free, meaning we do not use the
derivate information. Hence these techniques can be effective in
practice even if the underlying function f being optimized is
stochastic, non-convex, or even non-continuous.

Bayesian Model-Based Optimization

The process can be explained as follows:

1. Build a surrogate probability model of the objective function

2. Find the hyperparameters that perform best on the surrogate

3. Update the surrogate model incorporating the new results

4. Repeat steps 2–4 until max iterations or time is reached

The aim of Bayesian reasoning is to become “less wrong” with
more data which these approaches do by continually updating the
surrogate probability model after each evaluation of the objective
function.

Typically, a probabilistic regression model is initialized using a set
of samples from the domain X . Following this initialization phase,
new locations within the domain are sequentially selected by
optimizing the acquisition function.

Visualization

Figure 6: Initial surrogate model is very inaccurate.

Figure 7: Evals of suggested configurations improve the surrogate m.

Sequential model-based optimization

SMBO methods are a formalization of Bayesian optimization. The
sequential refers to running trials one after another, each time
trying better hyperparameters by applying Bayesian reasoning and
updating a probability model referring to our surrogate model.
Five aspects of SMBO:

1. A domain of hyperparameters over which to search

2. An objective function which takes in hyperparameters and
outputs a score that we want to minimize (or maximize).

3. The surrogate model of the objective function.

4. A criteria, called the acquisition function, for evaluating which
hyperparameters to choose next from the surrogate model.

5. A history consisting of (score, hyperparameter config) pairs
used by the algorithm to update the surrogate model.

SMBO

SMBO methods differ in aspects 3–4. Differences come from how
we build the surrogate of the objective function and the criteria of
selecting the next hyperparameters.

Surrogate model can be modelled by:

I Gaussian Process (GP)

I Tree Parzen Estimator (TPE)

I Random Forest Regression

Selection function

Expected Improvement(EI)

EIy?(x) =

∫ y?

−∞
(y? − y)p(y |x)dy (4)

I y? is a threshold value of the objective. y the actual value

I x proposed set of hyperparams.

I p(y |x) is the surrogate probability model, the probability of y
given config. x

If the integral is positive, then it means that the hyperparameter
configuration x is expected to yield a better result than the
threshold value.

The aim is to maximize the Expected Improvement with respect to
possible hyperparameter configurations x ∈ X .

Gaussian Process

Multivariate Gaussian Distribution
Example of a bi-variate gaussian distribution. Defined by µ and Σ.

µ =
[
0.0 1.0

]
Σ =

[
1.0 0.7
0.7 2.5

]
(5)

2 1 0 1 2
Random variable #1

3

2

1

0

1

2

3

4

5

Ra
nd

om
 v

ar
ia

bl
e

#2

Sample
Mean

Figure 8: Bi-variate gaussian distribution example

Gaussian Process

Random variable #1 Random variable #2

3

2

1

0

1

2

3

4

5

Ra
nd

om
 v

ar
ia

bl
e

va
lu

e

Random variable #1 Random variable #2

4

2

0

2

4

6

Ra
nd

om
 v

ar
ia

bl
e

va
lu

e

Gaussian Process

Multivariate Gaussian Distribution
The more dimensions we add, the more it looks like a set of
functions sampled from a Gaussian Process. In case of GP, number
of dimensions is infinite. GP is uniquely defined by mean function
µ and Covariance(Kernel) function K . p(y |x) ∼ GP(µ,K)

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10
Random variable identifier

15

10

5

0

5

10

15

Ra
nd

om
 v

ar
ia

bl
e

va
lu

e

Figure 9: Random Multi-variate gaussian distribution example

Gaussian Process Regression

Number of hidden units example

Number of hidden units50

60

70

80

90

100
Cl

as
sif

ica
tio

n
Ac

cu
ra

cy
 (%

) Gaussian Process regression after 2 iterations

0 25 50 75 100 125 150 175 200
Number of hidden units

50

60

70

80

90

100

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

 (%
) Gaussian Process regression after 3 iterations

Figure 10: Gaussian Process regression on digits classification

Gaussian Process

Algorithm

1. Heuristically select some param configurations and evaluate
the real, costly objective function f .

2. Fit GP on existing (score, config) pairs.

3. Use GP to suggest new hyperparameter config, config should
maximize acquisition function.

4. Evaluate chosen configuration with real objective function.

5. Update GP with additional (score, config) pair.

6. Repeat 3-5

Gaussian Process

Acquisition function

When our surrogate model p(y |x) is gaussian process, we can
calculate the expected improvement with a closed form solution as
follows:

EIy?(x) = σx(u ·Θ(u) + Φ(u)) (6)

where u = y?−µx
σx

and Φ is probability function and Θ is
cummulative density function of the standard normal distribution.
It corresponds to the following simple utility function

U(x) = max{0, y? − y} (7)

Where again y? is the objective f (x) value of configuration x that
performed the best. The y is the expected value of the objective
function. That is, we receive a reward equal to the “improvement”
and no reward otherwise.

Gaussian Process

200 400 600 800 1000
Number of hidden units

0.075

0.100

0.125

0.150

0.175

Cr
os

s e
nt

ro
py

(th
e

sm
al

le
r t

he
 b

et
te

r)

Gaussian Process
after 2 iterations

Last step

200 400 600 800 1000
Number of hidden units

0.00

0.01

0.02

0.03

Expected Improvement
after 2 iterations

Next step

200 400 600 800 1000
Number of hidden units

0.100

0.125

0.150

0.175

Cr
os

s e
nt

ro
py

(th
e

sm
al

le
r t

he
 b

et
te

r)

Gaussian Process
after 3 iterations

Last step

200 400 600 800 1000
Number of hidden units

0.000

0.002

0.004

0.006

0.008

Expected Improvement
after 3 iterations

Next step

200 400 600 800 1000
Number of hidden units

0.05

0.10

0.15

0.20

Cr
os

s e
nt

ro
py

(th
e

sm
al

le
r t

he
 b

et
te

r)

Gaussian Process
after 4 iterations

Last step

200 400 600 800 1000
Number of hidden units

0.00

0.02

0.04

Expected Improvement
after 4 iterations

Next step

200 400 600 800 1000
Number of hidden units

0.10

0.15

0.20

Cr
os

s e
nt

ro
py

(th
e

sm
al

le
r t

he
 b

et
te

r)

Gaussian Process
after 5 iterations

Last step

200 400 600 800 1000
Number of hidden units

0.000

0.005

0.010

Expected Improvement
after 5 iterations

Next step

200 400 600 800 1000
Number of hidden units

0.1

0.2

0.3

0.4

Cr
os

s e
nt

ro
py

(th
e

sm
al

le
r t

he
 b

et
te

r)

Gaussian Process
after 6 iterations

Last step

200 400 600 800 1000
Number of hidden units

0.00

0.02

0.04

0.06

Expected Improvement
after 6 iterations

Next step

Figure 11: Probability distributions of l(x) and g(x)

Gaussian Process

Review

I Using GP as a surrogate model gives us the ability to reason
about the quality of experiments before they are run.

I It doesn’t work well for categorical parameters.

I It produces the best results for continuous parameter spaces.

I It can be difficult to select right hyperparameters for Gaussian
Process. Gaussian Process has lots of different kernel types.
In addition you can construct more complicated kernels using
simple kernels as a building block... Sq. Exponential: Char.
Landscape l , σf , σn

I It works slower when number of hyperparameters increases.

Tree Structured Parzen Estimator
The methods of SMBO differ in how they construct the surrogate
model p(y |x). The Tree-structured Parzen Estimator(TPE) builds
a model by applying Bayes rule. Instead of directly representing
p(y |x), it uses the following notoriously known rule:

p(y |x) =
p(x |y) · p(y)

p(x)
(8)

p(x |y), which is the probability of the hyperparameters given the
score of the objective function, in turn is expressed:

p(x |y) =

{
l(x) if y < y?

g(x) if y ≥ y?
(9)

We make two different distributions for the hyperparameters:

I Distribution l(x) of parameter configurations which are ”likely
to improve the score”, one where the value of the objective
function is less than the threshold.

I Distribution g(x) of the other configurations

TPE

0 2 4 6 8 10 12 14 16
Hyperparameter value

1.0

0.5

0.0

0.5

1.0

Sc
or

e
(th

e
lo

we
r t

he
 b

et
te

r)
20% best observations
(group #1)
other observations
(group #2)

Figure 12: l(x) the improvement group red, g(x) all other configurations,
blue

TPE

We can then ”simplify” the EI as follows:

EIy?(x) =
γy?l(x)− l(x)

∫ y?

−∞ p(y)d(y)

γl(x) + (1− γ)g(x)
∝ (γ +

g(x)

l(x)
(1− γ))−1

(10)
where gamma is a percentage parameter. E.g. ”Use 20% of the
best observations to estimate the next set of parameters”

I The expected improvement criteria allows the model to
balance exploration versus exploitation.

I l(x) is a distribution and not a single value which means that
the hyperparameters drawn are likely close but not exactly at
the maximum of the expected improvement.

I The surrogate is just an estimate of the objective function,
the selected hyperparameters may not actually yield an
improvement when evaluated and the surrogate model will
have to be updated.

TPE

3 2 1 0 1 2 3 4 5
Hyperparameter

0.0

0.1

0.2

0.3

0.4

0.5

Pr
ob

ab
ilit

y

Probability distribution for group #1
Probability distribution for group #2
Candidate

3 2 1 0 1 2 3 4 5
Hyperparameter

10

20

Ex
pe

ct
ed

 Im
pr

ov
em

en
t

(th
e

bi
gg

er
 th

e
be

tte
r)

Observation
Observation that gives highest
expected improvement

Figure 13: Caption goes here.

TPE

Review

I Based on acquisition function an the surrogate model
algorithm proposes a new set of candidate hyperparameters,

I It evaluates them with the actual objective function and
records the result in a pair (score, parameters).

I These records form a history. The algorithm builds
distributions l(x) and g(x) using the history to come up with
a probability model of the objective function(surrogate) that
improves with each iteration.

TPE vs Random Search for NNs

Figure 14: Image classification(NN) validation error with random search
in grey and TPE in green.

TPE vs GP for DBNs on convex

Figure 15: TPE vs GP on convex dataset.

TPE vs GP for DBNs on MRBI

Figure 16: TPE vs GP on MRBI dataset.

Conclusion

I At a high-level, Bayesian optimization methods are efficient
because they choose the next hyperparameters in an informed
manner.

I The central idea is: spend a little more time selecting the
next hyperparameters in order to make fewer calls to the
costly objective function.

I In practice, the time spent selecting the next hyperparameters
is inconsequential compared to the time spent in the objective
function.

I Bayesian methods can find better model settings than random
search in fewer iterations because they reason about the best
set of hyperparameters to evaluate based on past trials.

Experiment

Classification

I Iris plants database

I Number of instances: 150 (50 in each of the three classes)

I Number of attributes: 4 numeric: sepal-length, sepal-width,
petal-length, petal-width in cm

I Number of classes: 3: Iris-Setosa, Iris-Versicolour,
Iris-Virginica

	Introduction
	Why?
	Formal Definition

	Existing Approaches
	Overview
	Grid Search
	Random Search
	Manual Tuning

	Bayesian methods
	SMBO
	Gaussian Process
	Tree Structured Parzen Estimator

	Conclusion
	Experiment

