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Introduction

m Deep learning based generative models have had huge success
producing highly realistic images, texts and sounds

m Examples for deep generative models are Generative
Adversarial Networks and Variational Autoencoders



Introduction




Introduction

m How can we perform efficient inference and learning in
directed probabilistic models, in the presence of continuous
latent variables with intractable posterior distributions, and
large datasets?

m Variational Bayes approach involves the optimization of an
approximation to the intractable posterior

m Allows to efficiently learn the model parameters, without the
need of expensive iterative inference schemes (such as
MCMC) per datapoint



Objective of VAEs

m Reduce dimensionality / find a latent representation of data

m Be able to sample from this latent distribution to generate
new unseen data

m Avoid very costly approaches usually used to perform this task



Basics for understanding VAEs

Dimensionality Reduction
Variational Bayes

Kullback Leibler-Divergence

Latent Variable Spaces



Dimensionality Reduction: PCA
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Dimensionality Reduction:
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Dimensionality Reduction
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Variational Bayes

First some basics
m Bayes Theorem
m Prior/Likelihood/Posterior

m Kullback-Leibler Divergence



Bayes Theorem

Likelihood _.\ -/P‘rrcr
P(A|B) = LBE{;;}M)

~

Posterior Evidence



Kullback-Leibler Divergence: An Example

Distribution P Distribution Q
Binomial withp=04 ,N=2 Uniform with p =1/3

0.4
0.4

0.2
0.2

0
0.0

X 0 1 2
Distribution P(x) | 0.36 | 0.48 | 0.16
Distribution Q(x) | 0.333 | 0.333 | 0.333



Kullback-Leibler Divergence: An Example
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Autoencoders

neural network neural network
encoder decoder

x=d(2)

loss = |[x-X|2= |[x-d(2)|? = ||x-de) ]|}



Variational Autoencoders

latent input
N input representation reconstruction
simple
autoencoders x z=e(x) d(z)
latent sampled latent input
. input distribution representation reconstruction
variational
autoencoders x plzlx) z~p(z|x) d(z)



VAE Architecture Example
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VAE Architecture Example

Output
Mp [0.1,1.2,0.2,0.8,...]
Output
o [0.2,0.5,0.8,1.3,...]
Intermediate [X 0 X X . X , ]
X 1~N(0.l, 0.29, 2~N[1.2‘ 0.52], 3~N(0.2, 0.8%, 4~N[0.B‘ 135000

¢ sample

Sampled  [0.28, 1.65, 0.92, 1.98,...]
vector



VAE Interpolation Potential

Classical music sample vector



VAE: Advantage of regularization

what can happen without regularisation x V what we want to obtain with regularisation



VAE: Advantage of regularization



Summary

m Dimensionality reduction is the process of reducing/combining
features that describe data

m Autoencoders are neural networks condense down the feature
space and reconstruct it again with minimal information loss
but are known to overfit

m VAE, in contrast, return a distribution given a sample (not a
point like normal AE) and hence are more robust



