Selected Topics in Data-Mining

Variational Autoencoder

Dominik Seitz

November 13, 2019

Table of Content

- 1 Introduction
- 2 Dimensionality Reduction
- **3** Variational Inference
- 4 Autoencoders
- 5 Variational Autoencoders
- **6** Summarized Keypoints

Introduction

- Deep learning based generative models have had huge success producing highly realistic images, texts and sounds
- Examples for deep generative models are Generative Adversarial Networks and Variational Autoencoders

Introduction

Introduction

- How can we perform efficient inference and learning in directed probabilistic models, in the presence of continuous latent variables with intractable posterior distributions, and large datasets?
- Variational Bayes approach involves the optimization of an approximation to the intractable posterior
- Allows to efficiently learn the model parameters, without the need of expensive iterative inference schemes (such as MCMC) per datapoint

- Reduce dimensionality / find a latent representation of data
- Be able to sample from this latent distribution to generate new unseen data
- Avoid very costly approaches usually used to perform this task

Basics for understanding VAEs

- Dimensionality Reduction
- Variational Bayes
- Kullback Leibler-Divergence
- Latent Variable Spaces

Dimensionality Reduction: PCA

Dimensionality Reduction: PCA

Dimensionality Reduction

Variational Bayes

First some basics

- Bayes Theorem
- Prior/Likelihood/Posterior
- Kullback-Leibler Divergence

Bayes Theorem

Kullback-Leibler Divergence: An Example

Distribution P Distribution Q Binomial with p = 0.4, N = 2Uniform with p = 1/30.4 0.4 0.2 0.2 0.0 0.0 2 0 1 0 1 2

x	0	1	2
Distribution P(x)	0.36	0.48	0.16
Distribution Q(x)	0.333	0.333	0.333

Kullback-Leibler Divergence: An Example

$$\begin{split} D_{\mathrm{KL}}(P \parallel Q) &= \sum_{x \in \mathcal{X}} P(x) \ln \left(\frac{P(x)}{Q(x)} \right) \\ &= 0.36 \ln \left(\frac{0.36}{0.333} \right) + 0.48 \ln \left(\frac{0.48}{0.333} \right) + 0.16 \ln \left(\frac{0.16}{0.333} \right) \\ &= 0.0852996 \\ D_{\mathrm{KL}}(Q \parallel P) &= \sum_{x \in \mathcal{X}} Q(x) \ln \left(\frac{Q(x)}{P(x)} \right) \\ &= 0.333 \ln \left(\frac{0.333}{0.36} \right) + 0.333 \ln \left(\frac{0.333}{0.48} \right) + 0.333 \ln \left(\frac{0.333}{0.16} \right) \\ &= 0.097455 \end{split}$$

Basic Autoencoder

Autoencoders

loss = $||\mathbf{x} - \hat{\mathbf{x}}||^2 = ||\mathbf{x} - \mathbf{d}(\mathbf{z})||^2 = ||\mathbf{x} - \mathbf{d}(\mathbf{e}(\mathbf{x}))||^2$

Variational Autoencoders

VAE Architecture Example

VAE Interpolation Potential

Classical music sample vector

VAE: Advantage of regularization

VAE: Advantage of regularization

- Dimensionality reduction is the process of reducing/combining features that describe data
- Autoencoders are neural networks condense down the feature space and reconstruct it again with minimal information loss but are known to overfit
- VAE, in contrast, return a distribution given a sample (not a point like normal AE) and hence are more robust