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What is dimensionality reduction about?

“...transformation of high-dimensional data into a meaningful representation of reduced
dimensionality”’

e intrinsic dimensions of data (~ manifold)
o smaller dimension, own geometry
e mitigates the curse of dimensionality
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e classification, visualization, and compression




PCA - the queen of dimensionality reduction

“PCA transforms (possibly correlated) data linearly into new properties that are not correlated”

Properties of transformation:

e Preserves variance

o Axis are directions of greatest variance

e properties are uncorrelated
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The elegance of PCA

“PCA transforms possibly correlated data linearly into new properties that are not correlated”
cov(X) = Cx = XTX is a covariance matrix
We want to find the projection P to uncorralated space, s.t.:

XP=T

where the uncorrelateness is expressed in the fact. that Ct is diagonal



The elegance of PCA

PCA transforms possibly correlated data linearly into new properties that are not correlated with each other
cov(X)=Cx = X7TX is a covariance matrix
We want to find the projection P to uncorralated space, s.t.:

XPp=T

where the uncorrelateness is expressed in the fact. that Ct is diagonal

The covariance matrix of T can be expressed_as:
[Cr]= T'T = (XP)'XP =P (X'X)P :

We know. that Cx is a symetric matrix.
The fine property of symetrix matrices, that their eigenvectors are orthogonal and:
[Cx = EDET]whc-rc D is diagonal matrix

Now the magic: what if P is said to be E?



The elegance of PCA

Cr = PTCxP
Cx = EDE’

If P is said to be E. then
Cr=P'cxP =P (EDE")P = PT(PDPT)P =D

Choosing the projection matrix to be
eigenvectors of the covariance matrix of X
gives us the projection we want:

e uncorrelated properties (diagonal C.)

e no loss of information (P is orthogonal)




Kernel PCA

e Some data linearly inseparable

cov(X) — K(X)

KR A e R
¥ 12 i", . .-‘ » ‘. ;"I.A,i: = A [_x‘, X |
s iy f . b
; “ - : =il v‘_'A < l.'. £ i ¢
:,,~ o U s Transformation matrix is again the eigenmatrix of K
.‘ .n Y ~.‘
0y o -‘::‘_;“.‘
: 05 " < == 1
Yiapg 1 1 05

Vapnik—Chervonenkis theory - projection into a higher dimensional space may provide
us with better classification power.

e Kernel trick, a method to project original data into higher dimension without
sacrificing too much computational time



Focusing on local patches of manifold

ISOMAP

e Close points in original space don’t need to be close on manifold

Steps:
1. Construct a neighbourhood graph (B)
2. Compute shortest paths between points in the graph (B)
3. Embed points with knowledge shortest paths in lower dimension
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Focusing on local patches of manifold (t-SNE)

Key koncept: {-SNE maps distances to probabilities i D “:v
Each point in original space forms a Gaussian around itself
- - - e L A A

On lower dimension, place points randomly at first
n iterations

Each point in lower dim. forms a t-distribution around itself

. x - \ P
Minimize entropy: (' = E pij log .
ij o

pij...probability distance in original space

gi;...probability distance in reduced space



t-SNE in practice

ISOMAP
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Taxonomy of techniques

MDS (Multidimensional scaling)
o “Fabricating” coordinate system based
on similarity/distances
o 3rd step of ISOMAP

MVU (Maximum Variance Unfolding)
o Learning kernel function for kernel PCA
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Taxonomy of techniques
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COIL20 20 seconds 7 seconds

MNIST 22 minutes 98 seconds
SO LISE 15 minutes 78 seconds

ST 4.5 hours 14 minutes






Algorithm 2 Constructing a local fuzzy simplicial set

function LocarFuzzySiMpLICIALSET(X, x, n)
knn, knn-dists <~ APPROXNEARESTNEIGHBORS(.X, , 1)
p + knn-dists[1] © Distance to nearest neighbor
o ¢ SMoOTHKNNDIsT(knn-dists, n, p) > Smooth approximator to
knn-distance
fs-sety + X
fs-set; « {([z.3].0) | y € X}
for all y € knn do
dzy + max{0, dist(z,y) — p}/o
fs-set; « fs-set; U ([z, y],exp(—d.y))

return fs-set

Algorithm 3 Compute the normalizing factor for distances o
function SMmooTHKNNDIsT(knn-dists, n, p)
Binary search for o such that } " | exp(—(knn-dists; — p) /o) = log,(n)
return o
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“..converting the [set of] metric spaces into fuzzy simplicial sets”
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e Membership function y: A — [0, 1] G
Example:

u(x) for x € A to be the membership strength of x to the set A.



UMAP - cost function

Optimizes fuzzy set cross entropy:

Vij 1= o >
o= ZUU log ( ij ) +1(1 = vy) log (—ZJ) vij...membership strenght of j to fuzzy set of 7 in orig. space

ishy Wij 1 — wj; wij...membership strenght of j to fuzzy set of 7 in red. space

Z Pij log '&»’_ Algorithm 5 Optimizing the embedding

i function OpTiMIZEEMBEDDING(top-rep, Y, min-dist, n-epochs)

a+ 1.0
pij...probability distance in original space Fit @ from ¥ defined by min-dist
¢;j...probability distance in reduced space fore « 1..... n-epochs do
for all ([a.b]. p) € top-rep, do
if RanpoMm( ) < p then - Sample simplex with probability p
| ¥a ¢ ya + o V(log(®))(a: 1)
forz+ 1., n-neg-samples do

¢ + random sample from Y
(Yo  va + @ - V(log(1 - ©))(va. uc)
a 4+ 1.0 — ¢/n-epochs

return Y
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