

Petr Váňa

Artificial Intelligence Center Center for Robotics and Autonomous Systems

Czech Technical University in Prague

October 29, 2016

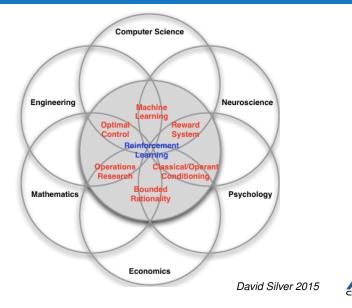
Petr Váňa

VPD, 2016

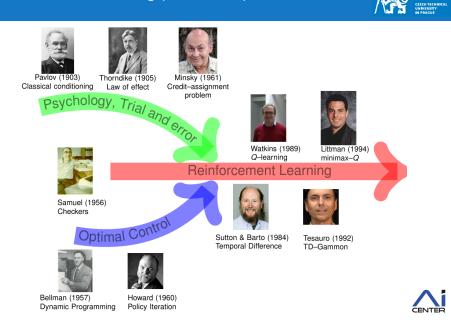
What is Reinforcement Learning?

- There is no supervisor, only a reward signal
- Agent-oriented learning learning by interacting with and environment to achieve a goal
 - more realistic and ambitious than oter kind of machine learning
- Learning by trial and error with delayed reward
 - most like natural learning
 - learning that can tell for itself when it is right or wrong

Reinforcement Learning (in robotics)



Reinforcement Learning (in robotics)



CTU

Reinforcement learning interface

- At each step *t* the agent:
 - Executes action a_t
 - Receives observation o_t
 - Receives scalar reward r_t

- The environment:
 - Receives action a_t
 - Emits observation o_t
 - Emits scalar reward r_t

Examples

- Defeat the world champion at Backgammon (Tesauro 1995)
- Learned acrobatic helicopter autopilots (Ng, Abbeel, Coates et al 2006+)
- Used to make strategic decisions in Jeopardy (IBM's Watson 2011)
- Play many different Atari games better than humans (Google Deepmind 2015)

Videos

The *k*-armed Bandit problem

On each of an infinite sequence of time steps t you choose and action A_t from k possibilities, and receiver a real-valued reward R_t

The reward depend only on the action taken:
 it is indentically, independently distributed (i.i.d.)
 q_{*}(a) ≐ E[R_t|A_t = a], ∀a ∈ {1,...,k}

- These true values are unknown. The distribution in unknown
- Nevertheless, you must maximize your total reward
- You must both try to learn their values (explore), and prefer those that apper best (exploit)

Exploration vs Exploitation Dilemma

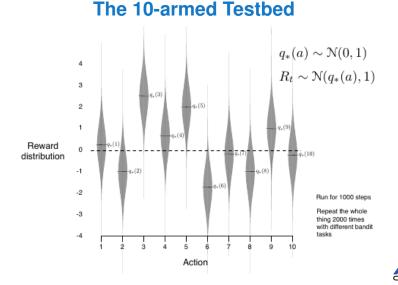
- Online decision making involves a fundamental choice:
 - **Exploitation** make the best decision given current information
 - **Exploration** gather more information, try unknown

ε -greedy Action Selection

In ε -greedy, you ar usually gready, but with probalitity ε you instad pick a random action

A simple bandit algorithm

```
 \begin{array}{l} \mbox{Initialize, for $a=1$ to $k$:}\\ Q(a) \leftarrow 0\\ N(a) \leftarrow 0 \end{array} \\ \mbox{Repeat forever:}\\ A \leftarrow \left\{ \begin{array}{l} \mbox{arg max}_a Q(a) & \mbox{with probability $1-\varepsilon$} & \mbox{(breaking ties randomly)}\\ \mbox{a random action} & \mbox{with probability $\varepsilon$} \\ R \leftarrow bandit(A)\\ N(A) \leftarrow N(A) + 1\\ Q(A) \leftarrow Q(A) + \frac{1}{N(A)} \left[ R - Q(A) \right] \end{array} \right. \end{array}
```

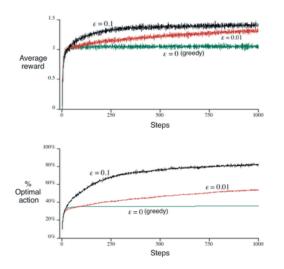
Petr Váňa

VPD, 2016

11/26

Reinforcement Learning (in robotics)

The 10-armed Testbed



Petr Váňa

VPD, 2016

Tracking a Non-stationary Problem

- Suppose the true action values change slowly over time
- In this case, samples averages are not a good idea
- Better is an "exponential, recency-weighted average"

$$\mathcal{Q}_{n+1} = \mathcal{Q}_n + \alpha \left[\mathcal{R}_n - \mathcal{Q}_n \right]$$

where α is a constant, step-size parameter, $0 < \alpha \leq 1$

Markov Decision Processes (MDPs)

- Markov Decision Processed formally describe an environment for reinforcement learning
- The environment is fully observable
 - the current state completely characterizes the process
- Almost all RL problems can be formalized as MDPs
 - Optimal control primarily deals with continuous MDPs
 - Partially observable problems can be converted into MDPs

Markov Assumption

Definition

A stochastic process X_t is said to be Markovian if and only if

$$\mathbb{P}(X_{t+1} = j | X_t = i, X_{t-1} = k_{t-1}, \dots, S_1 = k_1, X_0 = k_0) = \mathbb{P}(X_{t+1} = j | X_t = i)$$

- The state captures all the information from history
- Once the state is known, the history may be thrown away
- The state is sufficient statistic for the future
- The conditional probabilities are transition probabilities

Policy Evaluation

For a given policy π , compute teh state-value function V^{π}

State-value function for policy π :

$$V^{\pi}(s) = \mathbb{E}\left\{\sum_{t=0}^{\infty} \gamma^{t} r_{t} | s_{0} = s
ight\}$$

Bellman equation for V^{π} :

$$V^{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left[R(s,a) + \gamma \sum_{s' \in \mathcal{S}} P(s'|s,a) V^{\pi}(s') \right]$$

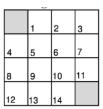
Solution in matrix notation:

$$V^{\pi} = (I - \gamma P^{\pi})^{-1} R^{\pi}$$

Petr Váňa

VPD, 2016

Gridworld Example



r = -1on all transitions

Gridworld - Iterative evaluation

	V_k for the Random Policy	Greedy Policy w.r.t. V_k	
k = 0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		random policy
<i>k</i> = 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} \leftarrow & \leftarrow \downarrow \downarrow$	
<i>k</i> = 2	0.0 -1.7 -2.0 -2.0 -1.7 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -1.7 -2.0 -2.0 -1.7 0.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

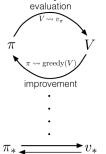
Dynamic programming-based methods

Policy iteration

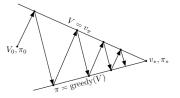
- policy evaluation
- policy improvement

Bootstrapping: updating estimates based on other estimates

Generaliyed Policy Iteration (GPI):

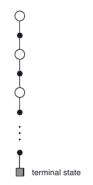


A geometric metaphor for convergence of GPI:



Monte Carlo methods

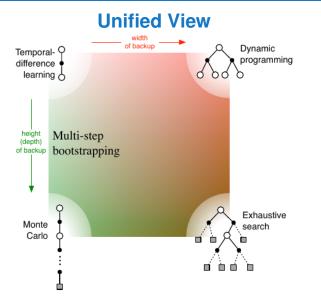
- Monte Carlo methods are learning methods Experience » values, policy
- MC methods can be used in two ways:
 - Model-free: No model necessary and still attains optimality
 - Simulated: Needs only a simulation, not a full model
- MC does not bootstrap from successor states's values (unlike DP)



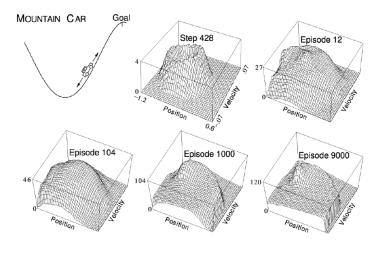
Temporal difference methods

- These methods bootstrap and sample, combining aspects of DP and MC methods
- If the world is truly Markov, then TD methods will learn faster than MC methods
- Extend prediction to control byt emlploying some form of GPI
 - On-policy control: Sarsa, Expected Sarsa
 - Off-policy control: Q-learning, Expected Sarsa

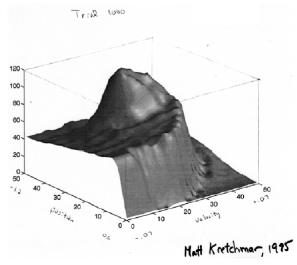
Reinforcement Learning (in robotics)



Linear SARSA for Mountain Car



Linear SARSA for Mountain Car



VPD, 2016

Challenges in robot reinforcement learning

- Curse of dimensionality
- Curse of real-world samples
- Curse of under-modelling and model uncertainty
- Curse of goal specification

Thank You!

vanapet1@fel.cvut.cz

26/26

Petr Váňa

VPD, 2016