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Abstract. In this paper, we provide theoretical analysis for a cubic regularization of Newton method as
applied to unconstrained minimization problem. For this scheme, we prove general local convergence results.
However, the main contribution of the paper is related to global worst-case complexity bounds for different
problem classes including some nonconvex cases. It is shown that the search direction can be computed by
standard linear algebra technique.
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1. Introduction

Motivation. Starting from seminal papers by Bennet [1] and Kantorovich [6], the
Newton method turned into an important tool for numerous applied problems. In the
simplest case of unconstrained minimization of a multivariate function,

min
x∈Rn

f (x),

the standard Newton scheme looks as follows:

xk+1 = xk − [f ′′(xk)]−1f ′(xk).

Despite to its very natural motivation, this scheme has several hidden drawbacks. First
of all, it may happen that at current test point the Hessian is degenerate; in this case
the method is not well-defined. Secondly, it may happen that this scheme diverges or
converges to a saddle point or even to a point of local maximum. In the last fifty years
the number of different suggestions for improving the scheme was extremely large. The
reader can consult a 1000-item bibliography in the recent exhaustive covering of the
field [2]. However, most of them combine in different ways the following ideas.
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– Levenberg-Marquardt regularization. As suggested in [7, 8], if f ′′(x) is not positive
definite, let us regularize it with a unit matrix. Namely, use −G−1f ′(x) with G =
f ′′(x)+ γ I � 0 in order to perform the step:

xk+1 = xk − [f ′′(xk)+ γ I ]−1f ′(xk).

This strategy sometimes is considered as a way to mix Newton’s method with the
gradient method.

– Line search. Since we are interested in a minimization, it looks reasonable to allow
a certain step size hk > 0:

xk+1 = xk − hk[f
′′(xk)]−1f ′(xk),

(this is a damped Newton method [12]). This can help to form a monotone sequence
of function values: f (xk+1) ≤ f (xk).

– Trust-region approach [5, 4, 3, 2]. In accordance to this approach, at point xk we have
to form its neighborhood, where the second-order approximation of the function is
reliable. This is a trust region �(xk), for instance �(xk) = {x : ||x − xk|| ≤ ε}
with some ε > 0. Then the next point xk+1 is chosen as a solution to the following
auxiliary problem:

min
x∈�(xk)

[〈f ′(xk), x − xk〉 + 1
2 〈f ′′(xk)(x − xk), x − xk〉

]
.

Note that for �(xk) ≡ Rn, this is exactly the standard Newton step.

We would encourage a reader to look in [2] for different combinations and imple-
mentations of the above ideas. Here we only mention that despite to a huge variety of
the results, there still exist open theoretical questions in this field. And, in our opinion,
the most important group of questions is related to the worst-case guarantees for global
behavior of the second-order schemes.

Indeed, as far as we know, up to now there are very few results on the global per-
formance of Newton method. One example is an easy class of smooth strongly convex
functions where we can get a rate of convergence for a damped Newton method [11,
10]. However the number of iterations required is hard to compare with that for the
gradient method. In fact, up to now the relations between the gradient method and the
Newton method have not been clarified. Of course, the requirements for the applicability
of these methods are different (e.g. smoothness assumptions are more strong for New-
ton’s method) as well as computational burden (necessity to compute second derivatives,
store matrices and solve linear equations at each iteration of Newton’s method). How-
ever, there exist numerous problems, where computation of the Hessian is not much
harder than computation of the gradient, and the iteration costs of both methods are
comparable. Quite often, one reads opinion that in such situations the Newton method
is good at the final stage of the minimization process, but it is better to use the gradient
method for the first iterations. Here we dispute this position: we show that theoretically,
a properly chosen Newton-type scheme outperforms the gradient scheme (taking into
account only the number of iterations) in all situations under consideration.
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In this paper we propose a modification of Newton method, which is constructed
in a similar way to well-known gradient mapping [9]. Assume that function f has a
Lipschitz continuous gradient:

‖f ′(x)− f ′(y)‖ ≤ D‖y − x‖, ∀x, y ∈ Rn.

Suppose we need to solve the problem

min
x∈Q

f (x),

whereQ is a closed convex set. Then we can choose the next point xk+1 in our sequence
as a solution of the following auxiliary problem:

min
y∈Q

ξ1,xk (y), ξ1,xk (y) = f (xk)+ 〈f ′(xk), y − xk〉 + 1
2D‖y − xk‖2. (1.1)

Convergence of this scheme follows from the fact that ξ1,xk (y) is an upper first-order
approximation of the objective function, that is ξ1,xk (y) ≥ f (y) ∀y ∈ Rn (see, for
example, [10], Section 2.2.4, for details). IfQ ≡ Rn, then the rule (1.1) results in a usual
gradient scheme:

xk+1 = xk − 1

D
f ′(xk).

Note that we can do similar thing with the second-order approximation. Indeed, assume
that the Hessian of our objective function is Lipschitz continuous:

‖f ′′(x)− f ′′(y)‖ ≤ L‖x − y‖, ∀x, y ∈ Rn.

Then, it is easy to see that the auxiliary function

ξ2,x(y) = f (x)+ 〈f ′(x), y − x〉 + 1
2 〈f ′′(x)(y − x), y − x〉 + L

6
‖y − x‖3

will be an upper second-order approximation for our objective function:

f (y) ≤ ξ2,x(y) ∀y ∈ Rn.

Thus, we can try to find the next point in our second-order scheme from the following
auxiliary minimization problem:

xk+1 ∈ Arg min
y

ξ2,xk (y) (1.2)

(here Argmin refers to a global minimizer). This is exactly the approach we analyze in
this paper; we call it cubic regularization of Newton’s method. Note that problem (1.2)
is non-convex and it can have local minima. However, our approach is implementable
since this problem is equivalent to minimizing an explicitly written convex function of
one variable.
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Contents. In Section 2 we introduce cubic regularization and present its main prop-
erties. In Section 3 we analyze the general convergence of the process. We prove that
under very mild assumptions all limit points of the process satisfy necessary second-
order optimality condition. In this general setting we get a rate of convergence for the
norms of the gradients, which is better than the rate ensured by the gradient scheme.
We prove also the local quadratic convergence of the process. In Section 4 we give
the global complexity results of our scheme for different problem classes. We show

that in all situations the global rate of convergence is surprisingly fast (like O
(

1
k2

)
for

star-convex functions, where k is the iteration counter). Moreover, under rather weak
non-degeneracy assumptions, we have local super-linear convergence either of the order
4
3 or 3

2 . We show that this happens even if the Hessian is degenerate at the solution set.
In Section 5 we show how to compute a solution to the cubic regularization problem and
discuss some efficient strategies for estimating the Lipschitz constant for the Hessian.
We conclude the paper by a short discussion presented in Section 6.

Notation. In what follows we denote by 〈·, ·〉 the standard inner product in Rn:

〈x, y〉 =
n∑

i=1

x(i)y(i), x, y ∈ Rn,

and by ‖x‖ the standard Euclidean norm:

‖x‖ = 〈x, x〉1/2.

For a symmetric n × n matrix H , its spectrum is denoted by {λi(H)}ni=1. We assume
that the eigenvalues are numbered in decreasing order:

λ1(H) ≥ . . . ≥ λn(H).

Hence, we write H � 0 if and only if λn(H) ≥ 0. In what follows, for a matrix A we
use the standard spectral matrix norm:

‖A‖ = λ1(AA
T )1/2.

Finally, I denotes a unit n× n matrix.

2. Cubic regularization of quadratic approximation

Let F ⊆ Rn be a closed convex set with non-empty interior. Consider a twice differen-
tiable function f (x), x ∈ F . Let x0 ∈ int F be a starting point of our iterative schemes.
We assume that the set F is large enough: It contains at least the level set

L(f (x0)) ≡ {x ∈ Rn : f (x) ≤ f (x0)}

in its interior. Moreover, in this paper we always assume the following.
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Assumption 1 The Hessian of function f is Lipschitz continuous on F:

‖f ′′(x)− f ′′(y)‖ ≤ L‖x − y‖, ∀x, y ∈ F . (2.1)

for some L > 0.

For the sake of completeness, let us present the following trivial consequences of
our assumption (compare with [12, Section 3]).

Lemma 1. For any x and y from F we have

‖f ′(y)− f ′(x)− f ′′(x)(y − x)‖ ≤ 1
2L‖y − x‖2, (2.2)

|f (y)− f (x)− 〈f ′(x), y − x〉 − 1
2 〈f ′′(x)(y − x), y − x〉| ≤ L

6
‖y − x‖3. (2.3)

Proof. Indeed,

‖f ′(y)− f ′(x)− f ′′(x)(y − x)‖ = ‖
1∫

0

[f ′′(x + τ(y − x))− f ′′(x)](y − x)dτ‖

≤ L‖y − x‖2

1∫

0

τdτ = 1
2L‖y − x‖2.

Therefore,

|f (y)− f (x)− 〈f ′(x), y − x〉 − 1
2 〈f ′′(x)(y − x), y − x〉|

= |
1∫

0

〈f ′(x + λ(y − x))− f ′(x)− λf ′′(x)(y − x), y − x〉dλ|

≤ 1
2L‖y − x‖3

1∫

0

λ2dλ = L

6
‖y − x‖3.

�
Let M be a positive parameter. Define a modified Newton step using the following

cubic regularization of quadratic approximation of function f (x):

TM(x) ∈ Arg min
y

[
〈f ′(x), y−x〉+ 1

2 〈f ′′(x)(y−x), y−x〉+M
6

‖y−x‖3
]
, (2.4)

where “Arg” indicates that TM(x) is chosen from the set of global minima of corre-
sponding minimization problem. We postpone discussion of the complexity of finding
this point up to Section 5.1.



182 Y. Nesterov, B.T. Polyak

Note that point TM(x) satisfies the following system of nonlinear equations:

f ′(x)+ f ′′(x)(y − x)+ 1
2M‖y − x‖ · (y − x) = 0. (2.5)

Denote rM(x) = ‖x − TM(x)‖. Taking in (2.5) y = TM(x) and multiplying it by
TM(x)− x we get equation

〈f ′(x), TM(x)− x〉 + 〈f ′′(x)(TM(x)− x), TM(x)− x〉 + 1
2Mr

3
M(x) = 0. (2.6)

In our analysis of the process (3.3), we need the following fact.

Proposition 1. For any x ∈ F we have

f ′′(x)+ 1
2MrM(x)I � 0. (2.7)

This statement follows from Theorem 10, which will be proved later in Section 5.1. Now
let us present the main properties of the mapping TM(A).

Lemma 2. For any x ∈ F , f (x) ≤ f (x0), we have the following relation:

〈f ′(x), x − TM(x)〉 ≥ 0. (2.8)

If M ≥ 2
3L and x ∈ int F , then TM(x) ∈ L(f (x)) ⊆ F .

Proof. Indeed, multiplying (2.7) by x − TM(x) twice, we get

〈f ′′(x)(TM(x)− x), TM(x)− x〉 + 1
2Mr

3
M(x) ≥ 0.

Therefore (2.8) follows from (2.6).
Further, let M ≥ 2

3L. Assume that TM(x) �∈ F . Then rM(x) > 0. Consider the
following points:

yα = x + α(TM(x)− x), α ∈ [0, 1].

Since y(0) ∈ int F , the value

ᾱ : yᾱ ∈ ∂F
is well defined. In accordance to our assumption, ᾱ < 1 and yα ∈ F for all α ∈ [0, ᾱ].
Therefore, using (2.3), relation (2.6) and inequality (2.8), we get

f (yα) ≤ f (x)+ 〈f ′(x), yα − x〉 + 1
2 〈f ′′(x)(yα − x), yα − x〉 + α3L

6
r3
M(x)

≤ f (x)+ 〈f ′(x), yα − x〉 + 1
2 〈f ′′(x)(yα − x), yα − x〉 + α3M

4
r3
M(x)

= f (x)+ (α − α2

2
)〈f ′(x), TM(x)− x〉 − α2(1 − α)

4
Mr3

M(x)

≤ f (x)− α2(1 − α)

4
Mr3

M(x).

Thus, f (y(ᾱ)) < f (x). Therefore y(ᾱ) ∈ int L(f (x)) ⊆ int F . That is a contradiction.
Hence, TM(x) ∈ F and using the same arguments we prove that f (TM(x)) ≤ f (x). �
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Lemma 3. If TM(x) ∈ F , then

‖f ′(TM(x))‖ ≤ 1
2 (L+M)r2

M(x). (2.9)

Proof. From equation (2.5), we get

‖f ′(x)+ f ′′(x)(TM(x)− x)‖ = 1
2Mr

2
M(x).

On the other hand, in view of (2.2), we have

‖f ′(TM(x))− f ′(x)− f ′′(x)(TM(x)− x)‖ ≤ 1
2Lr

2
M(x).

Combining these two relations, we obtain inequality (2.9). �

Define

f̄M(x) = min
y

[
f (x)+ 〈f ′(x), y − x〉 + 1

2 〈f ′′(x)(y − x), y − x〉 + M

6
‖y − x‖3

]
.

Lemma 4. For any x ∈ F we have

f̄M(x) ≤ min
y∈F

[
f (y)+ L+M

6
‖y − x‖3

]
, (2.10)

f (x)− f̄M(x) ≥ M

12
r3
M(x). (2.11)

Moreover, if M ≥ L, then TM(x) ∈ F and

f (TM(x)) ≤ f̄M(x). (2.12)

Proof. Indeed, using the lower bound in (2.3), for any y ∈ F we have

f (x)+ 〈f ′(x), y − x〉 + 1
2 〈f ′′(x)(y − x), y − x〉 ≤ f (y)+ L

6
‖y − x‖3.

and inequality in (2.10) follows from the definition of f̄M(x).

Further, in view of definition of point T
def= TM(x), relation (2.6) and inequality

(2.8), we have

f (x)− f̄M(x) = 〈f ′(x), x − T 〉 − 1
2 〈f ′′(x)(T − x), T − x〉 − M

6
r3
M(x)

= 1
2 〈f ′(x), x − T 〉 + M

12
r3
M(x) ≥ M

12
r3
M(x).

Finally, if M ≥ L, then TM(x) ∈ F in view of Lemma 2. Therefore, we get inequality
(2.12) from the upper bound in (2.3). �
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3. General convergence results

In this paper the main problem of interest is:

min
x∈Rn

f (x), (3.1)

where the objective function f (x) satisfies Assumption 1. Recall that the necessary
conditions for a point x∗ to be a local solution to problem (3.1) are as follows:

f ′(x∗) = 0, f ′′(x∗) � 0. (3.2)

Therefore, for an arbitrary x ∈ F we can introduce the following measure of local
optimality:

µM(x) = max

{√
2

L+M
‖f ′(x)‖, − 2

2L+M
λn(f

′′(x))

}

,

whereM is a positive parameter. It is clear that for any x from F the measure µM(x) is
non-negative and it vanishes only at the points satisfying conditions (3.2). The analytical
form of this measure can be justified by the following result.

Lemma 5. For any x ∈ F we have µM(TM(x)) ≤ rM(x).

Proof. The proof follows immediately from inequality (2.9) and relation (2.7) since

f ′′(TM(x)) ≥ f ′′(x)− LrM(x)I ≥ −( 1
2M + L)rM(x)I.

�
Let L0 ∈ (0, L] be a positive parameter. Consider the following regularized Newton

scheme.

Cubic regularization of Newton method

Initialization: Choose x0 ∈ Rn.

Iteration k, (k ≥ 0):

1. Find Mk ∈ [L0, 2L] such that
f (TMk

(xk)) ≤ f̄Mk
(xk).

2. Set xk+1 = TMk
(xk).

(3.3)

Since f̄M(x) ≤ f (x), this process is monotone:

f (xk+1) ≤ f (xk).

If the constantL is known, we can takeMk ≡ L in Step 1 of this scheme. In the opposite
case, it is possible to apply a simple search procedure; we will discuss its complexity
later in Section 5.2. Now let us make the following simple observation.
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Theorem 1. Let the sequence {xi} be generated by method (3.3). Assume that the objec-
tive function f (x) is bounded below:

f (x) ≥ f ∗ ∀x ∈ F .

Then
∞∑

i=0
r3
Mi
(xi) ≤ 12

L0
(f (x0)− f ∗). Moreover, lim

i→∞
µL(xi) = 0 and for any k ≥ 1 we

have

min
1≤ i≤ k

µL(xi) ≤ 8

3
·
(

3(f (x0)− f ∗)
2k · L0

)1/3

. (3.4)

Proof. In view of inequality (2.11), we have

f (x0)− f ∗ ≥
k−1∑

i=0

[f (xi)− f (xi+1) ≥
k−1∑

i=0

Mi

12
r3
Mi
(xi) ≥ L0

12
r3
Mi
(xi).

It remains to use the statement of Lemma 5 and the upper bound on Mk in (3.3):

rMi
(xi) ≥ µMi

(xi+1) ≥ 3

4
µL(xi+1).

�

Note that inequality (3.4) implies that

min
1≤ i≤ k

‖f ′(xi)‖ ≤ O(k−2/3).

It is well known that for gradient scheme a possible level of the right-hand side in this
inequality is of the order O

(
k−1/2

)
(see, for example, [10], inequality (1.2.13)).

Theorem 1 helps to get the convergence results in many different situations. We
mention only one of them.

Theorem 2. Let sequence {xi} be generated by method (3.3). For some i ≥ 0, assume
the set L(f (xi)) be bounded. Then there exists a limit

lim
i→∞

f (xi) = f ∗.

The setX∗ of the limit points of this sequence is non-empty. Moreover, this is a connected
set, such that for any x∗ ∈ X∗ we have

f (x∗) = f ∗, f ′(x∗) = 0, f ′′(x∗) � 0.

Proof. The proof of this theorem can be derived from Theorem 1 in a standard way. �

Let us describe now the behavior of the process (3.3) in a neighborhood of a non-
degenerate stationary point, which is not a point of local minimum.
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Lemma 6. Let x̄ ∈ int F be a non-degenerate saddle point or a point of local maximum
of function f (x):

f ′(x̄) = 0, λn(f
′′(x̄)) < 0.

Then there exist constants ε, δ > 0 such that whenever a point xi appears to be in a set
Q = {x : ‖x − x̄‖ ≤ ε, f (x) ≥ f (x̄)} (for instance, if xi = x̄), then the next point xi+1
leaves the set Q:

f (xi+1) ≤ f (x̄)− δ.

Proof. Let for some d with ‖d‖ = 1, and for some τ̄ > 0 we have

〈f ′′(x̄)d, d〉 ≡ −σ < 0, x̄ ± τ̄ d ∈ F .

Define ε = min
{
σ

2L, τ̄
}

and δ = σ
6 ε

2. Then, in view of inequality (2.10), upper bound
on Mi , and inequality (2.3), for |τ | ≤ τ̄ we get the following estimate

f (xi+1) ≤ f (x̄ + τd)+ L

2
‖x̄ + τd − xi‖3

≤ f (x̄)− στ 2 + L

6
|τ |3 + L

2

[
ε2 + 2τ 〈d, x̄ − xi〉 + τ 2

]3/2
.

Since we are free in the choice of the sign of τ , we can guarantee that

f (xi+1) ≤ f (x̄)− στ 2 + L

6
|τ |3 + L

2

[
ε2 + τ 2

]3/2
, |τ | ≤ τ̄ .

Let us choose τ = ε ≤ τ̄ . Then

f (xi+1) ≤ f (x̄)− στ 2 + 5L

3
τ 3 ≤ f (x̄)− στ 2 + 5L

3
· σ

2L
· τ 2 = f (x̄)− 1

6
στ 2.

Since the process (3.3) is monotone with respect to objective function, it will never come
again in Q. �

Consider now the behavior of the regularized Newton scheme (3.3) in a neighbor-
hood of a non-degenerate local minimum. It appears that in such a situation assumption
L0 > 0 is not necessary anymore. Let us analyze a relaxed version of (3.3):

xk+1 = TMk
(xk), k ≥ 0 (3.5)

where Mk ∈ (0, 2L]. Denote

δk = L‖f ′(xk)‖
λ2
n(f

′′(xk))
.
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Theorem 3. Let f ′′(x0) � 0 and δ0 ≤ 1
4 . Let points {xk} be generated by (3.5). Then:

1. For all k ≥ 0, the values δk are well defined and they converge quadratically to zero:

δk+1 ≤ 3

2

(
δk

1 − δk

)2

≤ 8

3
δ2
k ≤ 2

3
δk, k ≥ 0. (3.6)

2. Minimal eigenvalues of all Hessians f ′′(xk) lie within the following bounds:

e−1λn(f
′′(x0)) ≤ λn(f

′′(xk)) ≤ e3/4λn(f
′′(x0)). (3.7)

3. The whole sequence {xi} converges quadratically to a point x∗, which is a non-
degenerate local minimum of function f (x). In particular, for any k ≥ 1 we have

‖f ′(xk)‖ ≤ λ2
n(f

′′(x0))
9e3/2

16L

(
1

2

)2k

. (3.8)

Proof. Assume that for some k ≥ 0 we have f ′′(xk) � 0. Then the corresponding δk is
well defined. Assume that δk ≤ 1

4 . From equation (2.5) we have

rMk
(xk)=‖TMk

(xk)−xk‖=‖(f ′′(xk)+rMk
(xk)

Mk

2
I )−1f ′(xk)‖≤ ‖f ′(xk)‖

λn(f ′′(xk))
.(3.9)

Note also that f ′′(xk+1) � f ′′(xk)− rMk
(xk)LI . Therefore

λn(f
′′(xk+1) ≥ λn(f

′′(xk))− rMk
(xk)L

≥ λn(f
′′(xk))− L‖f ′(xk)‖

λn(f ′′(xk))
= (1 − δk)λn(f

′′(xk)).

Thus, f ′′(xk+1) is also positive definite. Moreover, using inequality (2.9) and the upper
bound for Mk we obtain

δk+1 = L‖f ′(xk+1)‖
λ2
n(f

′′(xk+1))
≤ 3L2r2

Mk
(xk)

2λ2
n(f

′′(xk+1))

≤ 3L2‖f ′(xk)‖2

2λ4
n(f

′′(xk))(1 − δk)2
= 3

2

(
δk

1 − δk

)2

≤ 8

3
δ2
k .

Thus, δk+1 ≤ 1
4 and we prove (3.6) by induction. Note that we also get δk+1 ≤ 2

3δk .
Further, as we have already seen,

ln
λn(f

′′(xk))
λn(f ′′(x0))

≥
∞∑

i=0

ln(1 − δi) ≥ −
∞∑

i=0

δi

1 − δi
≥ − 1

1 − δ0

∞∑

i=0

δi ≥ −1.

In order to get an upper bound, note that f ′′(xk+1) � f ′′(xk)+ rMk
(xk)LI . Hence,

λn(f
′′(xk+1) ≤ λn(f

′′(xk))+ rMk
(xk)L ≤ (1 + δk)λn(f

′′(xk)).
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Therefore

ln
λn(f

′′(xk))
λn(f ′′(x0))

≤
∞∑

i=0

ln(1 + δi) ≤
∞∑

i=0

δi ≤ 3

4
.

It remains to prove Item 3 of the theorem. In view of inequalities (3.9) and (3.7), we
have

rMk
(xk) ≤ 1

L
λn(f

′′(xk))δk ≤ e3/4

L
λn(f

′′(x0))δk.

Thus, {xi} is a Cauchy sequence, which has a unique limit point x∗. Since the eigenvalues
of f ′′(x) are continuous functions of x, from (3.7) we conclude that f ′′(x∗) > 0.

Further, from inequality (3.6) we get

δk+1 ≤ δ2
k

(1 − δ0)2
≤ 16

9
δ2
k .

Denoting δ̂k = 16
9 δk , we get δ̂k+1 ≤ δ̂2

k . Thus, for any k ≥ 1 we have

δk = 9

16
δ̂k ≤ 9

16
δ̂2k

0 <
9

16

(
1

2

)2k

.

Using the upper bound in (3.7), we get (3.8). �

4. Global efficiency on specific problem classes

In the previous section, we have already seen that the modified Newton scheme can be
supported by a global efficiency estimate (3.4) on a general class of non-convex prob-
lems. The main goal of this section is to show that on more specific classes of non-convex
problems the global performance of the scheme (3.3) is much better. To the best of our
knowledge, the results of this section are the first global complexity results on a New-
ton-type scheme. The nice feature of the scheme (3.3) consists in its ability to adjust the
performance to a specific problem class automatically.

4.1. Star-convex functions

Let us start from a definition.

Definition 1. We call a function f (x) star-convex if its set of global minimums X∗ is
not empty and for any x∗ ∈ X∗ and any x ∈ Rn we have

f (αx∗ + (1 − α)x) ≤ αf (x∗)+ (1 − α)f (x) ∀x ∈ F, ∀α ∈ [0, 1]. (4.1)

A particular example of a star-convex function is a usual convex function. However, in
general, a star-convex function does not need to be convex, even for scalar case. For
instance, f (x) = |x|(1 − e−|x|), x ∈ R, is star-convex, but not convex. Star-convex
functions arise quite often in optimization problems related to sum of squares, e.g. the
function f (x, y) = x2y2 + x2 + y2 belongs to this class.
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Theorem 4. Assume that the objective function in (3.1) is star-convex and the set F is
bounded: diam F = D < ∞. Let sequence {xk} be generated by method (3.3).

1. If f (x0)− f ∗ ≥ 3
2LD

3, then f (x1)− f ∗ ≤ 1
2LD

3.
2. If f (x0)− f ∗ ≤ 3

2LD
3, then the rate of convergence of process (3.3) is as follows:

f (xk)− f (x∗) ≤ 3LD3

2(1 + 1
3k)

2
, k ≥ 0. (4.2)

Proof. Indeed, in view of inequality (2.10), upper bound on the parameters Mk and
definition (4.1), for any k ≥ 0 we have:

f (xk+1)− f (x∗)

≤ min
y

[
f (y)− f (x∗)+ L

2
‖y − xk‖3 : y = αx∗ + (1 − α)xk, α ∈ [0, 1]

]

≤ min
α∈[0,1]

[
f (xk)− f (x∗)− α(f (xk)− f (x∗))+ L

2
α3‖x∗ − xk‖3

]

≤ min
α∈[0,1]

[
f (xk)− f (x∗)− α(f (xk)− f (x∗))+ L

2
α3D3

]
.

The minimum of the objective function in the last minimization problem in α ≥ 0 is
achieved for

αk =
√

2(f (xk)− f (x∗))
3LD3 .

If αk ≥ 1, then the actual optimal value corresponds to α = 1. In this case

f (xk+1)− f (x∗) ≤ 1
2LD

3.

Since the process (3.3) is monotone, this can happen only at the first iteration of the
method.

Assume that αk ≤ 1. Then

f (xk+1)− f (x∗) ≤ f (xk)− f (x∗)−
[

2

3
(f (xk)− f (x∗))

]3/2 1√
LD3

.

Or, in a more convenient notation, that is α2
k+1 ≤ α2

k − 2
3α

3
k < α2

k . Therefore

1

αk+1
− 1

αk
= αk − αk+1

αkαk+1
= α2

k − α2
k+1

αkαk+1(αk + αk+1)
≥ α2

k − α2
k+1

2α3
k

≥ 1

3
.

Thus, 1
αk

≥ 1
α0

+ k
3 ≥ 1 + k

3 , and (4.2) follows. �
Let us introduce now a generalization of the notion of non-degenerate global

minimum.
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Definition 2. We say that the optimal setX∗ of function f (x) is globally non-degenerate
if there exists a constant γ > 0 such that for any x ∈ F we have

f (x)− f ∗ ≥ γ

2
ρ2(x,X∗), (4.3)

where f ∗ is the global minimal value of function f (x), and ρ(x,X∗) is the Euclidean
distance from x to X∗.

Of course, this property holds for strongly convex functions (in this case X∗ is a
singleton), however it can also hold for some non-convex functions. As an example,
consider f (x) = (‖x‖2 − 1)2, X∗ = {x : ‖x‖ = 1}. Moreover, if the set X∗ has a
connected non-trivial component, the Hessians of the objective function at these points
cannot be non-degenerate. However, as we will see, in this situation the modified Newton
scheme ensures a super-linear rate of convergence. Denote

ω̄ = 1

L2

(γ
2

)3
.

Theorem 5. Let function f (x) be star-convex. Assume that it has also a globally non-
degenerate optimal set. Then the performance of the scheme (3.3) on this problem is as
follows.

1. If f (x0) − f (x∗) ≥ 4
9 ω̄, then at the first phase of the process we get the following

rate of convergence:

f (xk)− f (x∗) ≤
[

(f (x0)− f (x∗))1/4 − k

6

√
2

3
ω̄1/4

]4

. (4.4)

This phase is terminated as soon as f (xk0)− f (x∗) ≤ 4
9 ω̄ for some k0 ≥ 0.

2. For k ≥ k0 the sequence converges superlinearly:

f (xk+1)− f (x∗) ≤ 1

2
(f (xk)− f (x∗))

√
f (xk)− f (x∗)

ω̄
. (4.5)

Proof. Denote by x∗
k the projection of the point xk onto the optimal set X∗. In view of

inequality (2.10), upper bound on the parametersMk and definitions (4.1), (4.3), for any
k ≥ 0 we have:

f (xk+1)− f (x∗)

≤ min
α∈[0,1]

[
f (xk)− f (x∗)− α(f (xk)− f (x∗))+ L

2
α3‖x∗

k − xk‖3
]

≤ min
α∈[0,1]

[

f (xk)− f (x∗)− α(f (xk)− f (x∗))+ L

2
α3

(
2

γ
(f (xk)− f (x∗))

)3/2
]

.

Denoting �k = (f (xk)− f (x∗))/ω̄, we get inequality

�k+1 ≤ min
α∈[0,1]

[
�k − α�k + 1

2α
3�

3/2
k

]
. (4.6)
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Note that the first order optimality condition for α ≥ 0 in this problem is

αk =
√

2

3
�

−1/2
k .

Therefore, if �k ≥ 4
9 , we get

�k+1 ≤ �k −
(

2

3

)3/2

�
3/4
k .

Denoting uk = 9
4�k we get a simpler relation:

uk+1 ≤ uk − 2

3
u

3/4
k ,

which is applicable if uk ≥ 1. Since the right-hand side of this inequality is increasing
for uk ≥ 1

16 , let us prove by induction that

uk ≤
[
u

1/4
0 − k

6

]4

.

Indeed, inequality
[
u

1/4
0 − k + 1

6

]4

≥
[
u

1/4
0 − k

6

]4

− 2

3

[
u

1/4
0 − k

6

]3

clearly is equivalent to

2

3

[
u

1/4
0 − k

6

]3

≥
[
u

1/4
0 − k

6

]4

−
[
u

1/4
0 − k + 1

6

]4

= 1

6

[[
u

1/4
0 − k

6

]3

+
[
u

1/4
0 − k

6

]2 [
u

1/4
0 − k + 1

6

]

+
[
u

1/4
0 − k

6

] [
u

1/4
0 − k + 1

6

]2

+
[
u

1/4
0 − k + 1

6

]3
]

,

which is obviously true.
Finally, if uk ≤ 1, then the optimal value for α in (4.6) is one and we get (4.5). �

4.2. Gradient-dominated functions

Let us study now another interesting class of problems.

Definition 3. A function f (x) is called gradient dominated of degree p ∈ [1, 2] if it
attains a global minimum at some point x∗ and for any x ∈ F we have

f (x)− f (x∗) ≤ τf ‖f ′(x)‖p, (4.7)

where τf is a positive constant. The parameter p is called the degree of domination.
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Note that we do not assume that the global minimum of function f is unique. For p = 2,
this class of functions has been introduced in [13].

Let us give several examples of gradient dominated functions.

Example 1. Convex functions. Let f be convex on Rn. Assume it achieves its minimum
at point x∗. Then, for any x ∈ Rn, ‖x − x∗‖ ≤ R, we have

f (x)− f (x∗) ≤ 〈f ′(x), x − x∗〉 ≤ ‖f ′(x)‖ · R.
Thus, on the set F = {x : ‖x − x∗‖ ≤ R}, function f is a gradient dominated function
of degree one with τf = R. �
Example 2. Strongly convex functions. Let f be differentiable and strongly convex on
Rn. This means that there exists a constant γ > 0 such that

f (y) ≥ f (x)+ 〈f ′(x), y − x〉 + 1
2γ ‖y − x‖2, (4.8)

for all x, y ∈ Rn. Then, (see, for example, [10], inequality (2.1.19)),

f (x)− f (x∗) ≤ 1

2γ
‖f ′(x)‖2 ∀x ∈ Rn.

Thus, on the set F = Rn, function f is a gradient dominated function of degree two
with τf = 1

2γ . �
Example 3. Sum of squares. Consider a system of non-linear equations:

g(x) = 0 (4.9)

where g(x) = (g1(x), . . . , gm(x))
T : Rn → Rm is a differentiable function. We assume

thatm ≤ n and that there exists a solution x∗ to (4.9). Let us assume in addition that the
Jacobian

J (x) = (g′
1(x), . . . , g

′
m(x))

is uniformly non-degenerate on a certain convex set F containing x∗. This means that
the value

σ ≡ inf
x∈F

λn

(
J T (x)J (x)

)

is positive. Consider the function

f (x) = 1
2

m∑

i=1

g2
i (x).

Clearly, f (x∗) = 0. Note that f ′(x) = J (x)g(x). Therefore

‖f ′(x)‖2 =
〈(
J T (x)J (x)

)
g(x), g(x)

〉
≥ σ‖g(x)‖2 = 2σ(f (x)− f (x∗)).

Thus, f is a gradient dominated function on F of degree two with τf = 1
2σ . Note that,

for m < n, the set of solutions to (4.9) is not a singleton and therefore the Hessians of
function f are necessarily degenerate at the solutions. �
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In order to study the complexity of minimization of the gradient dominated functions,
we need one auxiliary result.

Lemma 7. At each step of method (3.3) we can guarantee the following decrease of the
objective function:

f (xk)− f (xk+1) ≥ L0 · ‖f ′(xk+1)‖3/2

3
√

2 · (L+ L0)3/2
, k ≥ 0. (4.10)

Proof. In view of inequalities (2.11) and (2.9) we get

f (xk)− f (xk+1) ≥ Mk

12
r3
Mk
(xk) ≥ Mk

12

(
2‖f ′(xk+1)‖
L+Mk

)3/2

= Mk‖f ′(xk+1)‖3/2

3
√

2 · (L+Mk)3/2
.

It remains to note that the right-hand side of this inequality is increasing in Mk ≤ 2L.
Thus, we can replace Mk by its lower bound L0. �

Let us start from the analysis of the gradient dominated functions of degree one. The
following theorem states that the process can be partitioned into two phases. The initial
phase (with large values of the objective function) terminates fast enough, while at the
second phase we have O(1/k2) rate of convergence.

Theorem 6. Let us apply method (3.3) to minimization of a gradient dominated function
f (x) of degree p = 1.

1. If the initial value of the objective function is large enough:

f (x0)− f (x∗) ≥ ω̂ ≡ 18

L2
0

τ 3
f · (L+ L0)

3,

then the process converges to the region L(ω̂) superlinearly:

ln

(
1

ω̂
(f (xk)− f (x∗)

)
≤
(

2

3

)k
ln

(
1

ω̂
(f (x0)− f (x∗)

)
. (4.11)

2. If f (x0)− f (x∗) ≤ γ 2ω̂ for some γ > 1, then we have the following estimate for the
rate of convergence:

f (xk)− f (x∗) ≤ ω̂ · γ 2
(
2 + 3

2γ
)2

(
2 + (

k + 3
2

) · γ )2 , k ≥ 0. (4.12)

Proof. Using inequalities (4.10) and (4.7) with p = 1, we get

f (xk)− f (xk+1) ≥ L0 · (f (xk+1)− f (x∗))3/2

3
√

2 · (L+ L0)3/2 · τ 3/2
f

= ω̂−1/2(f (xk+1)− f (x∗))3/2.

Denoting δk = (f (xk)− f (x∗))/ω̂, we obtain

δk − δk+1 ≥ δ
3/2
k+1. (4.13)



194 Y. Nesterov, B.T. Polyak

Hence, as far as δk ≥ 1, we get

ln δk ≤
(

2

3

)k
ln δ0,

and that is (4.11).
Let us prove now inequality (4.12). Using inequality (4.13), we have

1√
δk+1

− 1√
δk

≥ 1√
δk+1

− 1
√
δk+1 + δ

3/2
k+1

=
√
δk+1 + δ

3/2
k+1 − √

δk+1

√
δk+1

√
δk+1 + δ

3/2
k+1

= 1
√

1 + √
δk+1 ·

(
1 +

√
1 + √

δk+1

) = 1

1 + √
δk+1 +

√
1 + √

δk+1

≥ 1

2 + 3
2

√
δk+1

≥ 1

2 + 3
2

√
δ0
.

Thus, 1
δk

≥ 1
γ

+ k

2+ 3
2 γ

, and this is (4.12). �

The reader should not be confused by the superlinear rate of convergence established
by (4.11). It is valid only for the first stage of the process and describes a convergence to
the set L(ω̂). For example, the first stage of the process discussed in Theorem 4 is even
shorter: it takes a single iteration.

Let us look now at the gradient dominated functions of degree two. Here two phases
of the process can be indicated as well.

Theorem 7. Let us apply method (3.3) to minimization of a gradient dominated function
f (x) of degree p = 2.

1. If the initial value of the objective function is large enough:

f (x0)− f (x∗) ≥ ω̃ ≡ L4
0

324(L+ L0)6 τ
3
f

, (4.14)

then at its first phase the process converges as follows:

f (xk)− f (x∗) ≤ (f (x0)− f (x∗)) · e−k·σ , (4.15)

where σ = ω̃1/4

ω̃1/4 + (f (x0)− f (x∗))1/4 . This phase ends on the first iteration k0, for which
(4.14) does not hold.

2. For k ≥ k0 the rate of convergence is super-linear:

f (xk+1)− f (x∗) ≤ ω̃ ·
(
f (xk)− f (x∗)

ω̃

)4/3

. (4.16)
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Proof. Using inequalities (4.10) and (4.7) with p = 2, we get

f (xk)− f (xk+1) ≥ L0 · (f (xk+1)− f (x∗))3/4

3
√

2 · (L+ L0)3/2 · τ 3/4
f

= ω̃1/4(f (xk+1)− f (x∗))3/4.

Denoting δk = (f (xk)− f (x∗))/ω̃, we obtain

δk ≥ δk+1 + δ
3/4
k+1. (4.17)

Hence,

δk

δk+1
≥ 1 + δ

−1/4
k ≥ 1 + δ

−1/4
0 = 1

1 − σ
≥ eσ ,

and we get (4.15). Finally, from (4.17) we have δk+1 ≤ δ
4/3
k , and that is (4.16). �

Comparing the statement of Theorem 7 with other theorems of this section we see a
significant difference: this is the first time when the initial gap f (x0)−f (x∗) enters the
complexity estimate of the first phase of the process in a polynomial way; in all other
cases the dependence on this gap is much weaker.

Note that it is possible to embed the gradient dominated functions of degree one into
the class of gradient dominated functions of degree two. However, the reader can check
that this only spoils the efficiency estimates established by Theorem 7.

4.3. Nonlinear transformations of convex functions

Let u(x) : Rn → Rn be a non-degenerate operator. Denote by v(u) its inverse:

v(u) : Rn → Rn, v(u(x)) ≡ x.

Consider the following function:

f (x) = φ(u(x)),

where φ(u) is a convex function with bounded level sets. Such classes are typical for
minimization problems with composite objective functions. Denote by x∗ ≡ v(u∗) its
minimum. Let us fix some x0 ∈ Rn. Denote

σ = max
u

{‖v′(u)‖ : φ(u) ≤ f (x0)},

D = max
u

{‖u− u∗‖ : φ(u) ≤ f (x0)}.

The following result is straightforward.

Lemma 8. For any x, y ∈ L(f (x0)) we have

‖x − y‖ ≤ σ‖u(x)− u(y)‖. (4.18)
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Proof. Indeed, for x, y ∈ L(f (x0)), we have φ(u(x)) ≤ f (x0) and φ(u(y)) ≤ f (x0).
Consider the trajectory x(t) = v(tu(y)+ (1 − t)u(x)), t ∈ [0, 1]. Then

y − x =
1∫

0

x′(t)dt =



1∫

0

v′(tu(y)+ (1 − t)u(x))dt



 · (u(y)− u(x)),

and (4.18) follows. �
The following result is very similar to Theorem 4.

Theorem 8. Assume that functionf has Lipschitz continuous Hessian onF ⊇ L(f (x0))

with Lipschitz constant L. And let the sequence {xk} be generated by method (3.3).

1. If f (x0)− f ∗ ≥ 3
2L(σD)

3, then f (x1)− f ∗ ≤ 1
2L(σD)

3.
2. If f (x0) − f ∗ ≤ 3

2L(σD)
3, then the rate of convergence of the process (3.3) is as

follows:

f (xk)− f (x∗) ≤ 3L(σD)3

2(1 + 1
3k)

2
, k ≥ 0. (4.19)

Proof. Indeed, in view of inequality (2.10), upper bound on the parameters Mk and
definition (4.1), for any k ≥ 0 we have:

f (xk+1)− f (x∗) ≤ min
y

[
f (y)− f (x∗)+ L

2
‖y − xk‖3 :

y = v(αu∗ + (1 − α)u(xk)), α ∈ [0, 1]

]
.

By definition of points y in the above minimization problem and (4.18), we have

f (y)− f (x∗) = φ(αu∗ + (1 − α)u(xk))− φ(u∗) ≤ (1 − α)(f (xk)− f (x∗)),

‖y − xk‖ ≤ ασ‖u(xk)− u∗‖ ≤ ασD.

This means that the reasoning of Theorem 4 goes through with replacement D by σD.
�

Let us prove a statement on strongly convex φ. Denote ω̌ = 1
L2

(
γ

2σ 2

)3
.

Theorem 9. Let function φ be strongly convex with convexity parameter γ > 0. Then,
under assumptions of Theorem 8, the performance of the scheme (3.3) is as follows.

1. If f (x0) − f (x∗) ≥ 4
9 ω̌, then at the first phase of the process we get the following

rate of convergence:

f (xk)− f (x∗) ≤
[

(f (x0)− f (x∗))1/4 − k

6

√
2

3
ω̌1/4

]4

. (4.20)

This phase is terminated as soon as f (xk0)− f (x∗) ≤ 4
9 ω̌ for some k0 ≥ 0.
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2. For k ≥ k0 the sequence converges superlinearly:

f (xk+1)− f (x∗) ≤ 1

2
(f (xk)− f (x∗))

√
f (xk)− f (x∗)

ω̌
. (4.21)

Proof. Indeed, in view of inequality (2.10), upper bound on the parameters Mk and
definition (4.1), for any k ≥ 0 we have:

f (xk+1)− f (x∗) ≤ min
y

[ f (y)− f (x∗)+ L
2 ‖y − xk‖3 :

y = v(αu∗ + (1 − α)u(xk)), α ∈ [0, 1] ].

By definition of points y in the above minimization problem and (4.18), we have

f (y)− f (x∗) = φ(αu∗ + (1 − α)u(xk))− φ(u∗) ≤ (1 − α)(f (xk)− f (x∗)),

‖y − xk‖ ≤ ασ‖u(xk)− u∗‖ ≤ ασ
√

2
γ
(f (x0)− f (x∗)).

This means that the reasoning of Theorem 5 goes through with replacement L by σ 3L.
�

Note that the functions discussed in this section are often used as test functions for
non-convex optimization algorithms.

5. Implementation issues

5.1. Solving the cubic regularization

Note that the auxiliary minimization problem (2.4), which we need to solve in order to
compute the mapping TM(x), namely,

min
h∈Rn

[
〈g, h〉 + 1

2 〈Hh, h〉 + M

6
‖h‖3

]
, (5.1)

is substantially nonconvex. It can have isolated strict local minima, while we need to find
a global one. Nevertheless, as we will show in this section, this problem is equivalent to
a convex one-dimensional optimization problem.

Before we present an “algorithmic” proof of this fact, let us provide it with a general
explanation. Introduce the following objects:

ξ1(h) = 〈g, h〉 + 1
2 〈Hh, h〉, ξ2(h) = ‖h‖2,

Q =
{
ξ = (ξ (1), ξ (2))T : ξ (1) = ξ1(h), ξ

(2) = ξ2(h), h ∈ Rn
}

⊂ R2,

ϕ(ξ) = ξ (1) + M

6

(
ξ (2)

)3/2

+
.
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where (a)+ = max{a, 0}. Then

min
h∈Rn

[
〈g, h〉 + 1

2 〈Hh, h〉 + M

6
‖h‖3

]
≡ min

h∈Rn

[
ξ1(h)+ M

6
ξ

3/2
2 (h)

]

= min
ξ∈Q

ϕ(ξ).

Theorem 2.2 in [14] guarantees that for n ≥ 2 the setQ is convex and closed. Thus, we
have reduced the initial nonconvex minimization problem inRn to a convex constrained
minimization problem in R2. Up to this moment, this reduction is not constructive,
becauseQ is given in implicit form. However, the next statement shows that the descrip-
tion of this set is quite simple.

Denote

vu(h) = 〈g, h〉 + 1
2 〈Hh, h〉 + M

6
‖h‖3, h ∈ Rn,

and

vl(r) = − 1
2 〈
(
H + Mr

2
I

)−1

g, g〉 − M

12
r3.

For the first function sometimes we use the notation vu(g;h). Denote

D = {r ∈ R : H + M

2
rI � 0, r ≥ 0}.

Theorem 10. For any M > 0 we have the following relation:

min
h∈Rn

vu(h) = sup
r∈D

vl(r). (5.2)

For any r ∈ D, direction h(r) = − (
H + Mr

2 I
)−1

g satisfies equation

0 ≤ vu(h(r))− vl(r)=M

12
(r+2‖h(r)‖)(‖h(r)‖ − r)2 = 4

3M
· r+2‖h(r)‖
(r+‖h(r)‖)2 ·v′

l (r)
2.

(5.3)

Proof. Denote the left-hand side of relation (5.2) by v∗
u, and its right-hand side by v∗

l .
Let us show that v∗

u ≥ v∗
l . Indeed,

v∗
u = min

h∈Rn

[
〈g, h〉 + 1

2 〈Hh, h〉 + M

6
‖h‖3

]

= min
h∈Rn,
τ=‖h‖2

[
〈g, h〉 + 1

2 〈Hh, h〉 + M

6
(τ )

3/2
+

]

= min
h∈Rn,
τ∈R

sup
r∈R

[
〈g, h〉 + 1

2 〈Hh, h〉 + M

6
(τ )

3/2
+ + M

4
r
(
‖h‖2 − τ

)]

≥ sup
r∈D

min
h∈Rn,
τ∈R

[
〈g, h〉 + 1

2 〈Hh, h〉 + M

6
(τ )

3/2
+ + M

4
r
(
‖h‖2 − τ

)]
≡ v∗

l .
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Consider now an arbitrary r ∈ D. Then

g = −Hh(r)− M

2
rh(r).

Therefore

vu(h(r)) = 〈g, h(r)〉 + 1
2 〈Hh(r), h(r)〉 + M

6
‖h(r)‖3

= − 1
2 〈Hh(r), h(r)〉 − M

2
r‖h(r)‖2 + M

6
‖h(r)‖3

= − 1
2 〈
(
H + Mr

2
I

)
h(r), h(r)〉 − M

4
r‖h(r)‖2 + M

6
‖h(r)‖3

= vl(r)+ M

12
r3 − M

4
r‖h(r)‖2 + M

6
‖h(r)‖3

= vl(r)+ M

12
(r + 2‖h(r)‖) · (‖h(r)‖ − r)2.

Thus, relation (5.3) is proved.
Note that

v′
l (r) = M

4
(‖h(r)‖2 − r2).

Therefore, if the optimal value v∗
l is attained at some r∗ > 0 from D, then v′

l (r
∗) = 0

and by (5.3) we conclude that v∗
r = v∗

l . If r∗ = 2
M
(−λn(H))+, then equality (5.2) can

be justified by continuity arguments (since v∗
u ≡ v∗

u(g) is a concave function in g ∈ Rn;
see also the discussion below). �

Note that Proposition 1 follows from the definition of set D.
Theorem 10 demonstrates that in non-degenerate situation the solution of problem

(5.2) can be found from one-dimensional equation

r = ‖
(
H + Mr

2
I

)−1

g‖, r ≥ 2

M
(−λn(H))+. (5.4)

A technique for solving such equations is very well developed for the needs of trust region
methods (see [2], Chapter 7, for exhaustive expositions of the different approaches). As
compared with (5.4), the equation arising in trust region schemes has a constant left-
hand side. But of course, all possible difficulties in this equation are due to the non-linear
(convex) right-hand side.

For completeness of presentation, let us briefly discuss the structure of equation
(5.4). In the basis of eigenvectors of matrix H this equation can be written as

r2 =
n∑

i=1

g̃2
i

(λi + M
2 r)

2
, r ≥ 2

M
(−λn)+, (5.5)
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where λi are eigenvalues of matrixH and g̃i are coordinates of vector g in the new basis.
If g̃n �= 0, then the solution r∗ of equation (5.5) is in the interior of the domain:

r >
2

M
(−λn)+,

and we can compute the displacement h(r∗) by the explicit expression:

h(g; r∗) = −
(
H + Mr∗

2
I

)−1

g.

If g̃n = 0 then this formula does not work and we have to consider different cases. In
order to avoid all these complications, let us mention the following simple result.

Lemma 9. Let g̃n = 0. Define g(ε) = g̃ + εen, where en is the nth coordinate vector.
Denote by r∗(ε) the solution of equation (5.5) with g̃ = g(ε). Then any limit point of
the trajectory

h(g(ε); r∗(ε)), ε → 0,

is a global minimum in h of function vu(g;h).
Proof. Indeed, function v∗

u(g) is concave for g ∈ Rn. Therefore it is continuous. Hence,

v∗
u(g) = lim

ε→0
v∗
u(g(ε)) = lim

ε→0
vu(g(ε);h(g(ε); r∗(ε))).

It remains to note that the function vu(g;h) is continuous in both arguments. �
In order to illustrate the difficulties arising in the dual problem, let us look at an

example.

Example 4. Let n = 2 and

g̃ =
(−1

0

)
, λ1 = 0, λ2 = −1, M = 1.

Thus, our primal problem is as follows:

min
h∈R2

{

ψ(h) ≡ −h(1) − 1
2

(
h(2)

)2 + 1

6

[√(
h(1)

)2 + (
h(2)

)2
]3
}

.

Following to (2.5), we have to solve the following system of non-linear equations:

h(1)

2

√(
h(1)

)2 + (
h(2)

)2 = 1,

h(2)

2

√(
h(1)

)2 + (
h(2)

)2 = h(2).

Thus, we have three candidate solutions:

h∗
1 =

(√
2
0

)
, h∗

2 =
(

1√
3

)
, h∗

3 =
(

1
−√

3

)
.
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By direct substitution we can see that

ψ(h∗
1) = −2

√
2

3
> −7

6
= ψ(h∗

2) = ψ(h∗
3).

Thus, both h∗
2 and h∗

3 are our global solutions.
Let us look at the dual problem:

sup
r

[

φ(r) ≡ − r
3

12
− 1

2
· 1

0 + 1
2 r

= − r
3

12
− 1

r
: −1 + 1

2
r > 0

]

.

Note that φ′(r) = − r2

4 + 1
r2 . Thus, φ′(2) = − 3

4 < 0 and we conclude that

r∗ = 2, φ∗ = −7

6
.

However, r∗ does not satisfy the equation φ′(r) = 0 and the object h(r∗) is not defined.
�

Let us conclude this section with a precise description of the solution of primal prob-
lem in (5.2) in terms of the eigenvalues of matrix H . Denote by {si}ni=1 an orthonormal

basis of eigenvectors of H , and let k̂ satisfy the conditions

g̃(i) �= 0 for i < k̂,

g̃(i) = 0 for i ≥ k̂.

Assume that r∗ is the solution to the dual problem in (5.2). Then the solution of the
primal problem is given by the vector

h∗ = −
k̂−1∑

i=1

g̃(i)si

λi + M
2 r

∗ + σsn,

where σ is chosen in accordance to the condition ‖h∗‖ = r∗. Note that this rule works
also for k̂ = 1 or k̂ = n+ 1.

We leave justification of above rule as an exercise for the reader. As far as we know,
a technique for finding h∗ without computation of the basis of eigenvalues is not known
yet.

5.2. Line search strategies

Let us discuss the possible computational cost of Step 1 in the method (3.3), which
consists of finding Mk ∈ [L0, 2L] satisfying the equation:

f (TMk
(x)) ≤ f̄Mk

(xk).

Note that for Mk ≥ L this inequality holds. Consider now the strategy

while f (TMk
(x)) > f (xk) do Mk := 2Mk; Mk+1 := Mk. (5.6)

It is clear that if we start the process (3.3) with any M0 ∈ [L0, 2L], then the above
procedure, as applied at each iteration of the method, has the following advantages:
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– Mk ≤ 2L.
– The total amount of additional computations of the mappings TMk

(x) during the
whole process (3.3) is bounded by

log2
2L

L0
.

This amount does not depend on the number of iterations in the main process.

However, it may be that the rule (5.6) is too conservative. Indeed, we can only increase
our estimate for the constant L and never come back. This may force the method to take
only the short steps. A more reasonable strategy looks as follows:

while f (TMk
(x)) > f (xk) do Mk := 2Mk;

xk+1 := TMk
(xk); Mk+1 := max{ 1

2Mk,L0}.
(5.7)

Then it is easy to prove by induction that Nk , the total number of computations of
mappings TM(x) made by (5.7) during the first k iterations, is bounded as follows:

Nk ≤ 2k + log2
Mk

L0
.

Thus, if N is the number of iterations in this process, then we compute at most

2N + log2
2L

L0

mappings TM(x). That seems to be a reasonable price to pay for the possibility to go by
long steps.

6. Discussion

Let us compare the results presented in this paper with some known facts on global
efficiency of other minimization schemes. Since there is almost no such results for non-
convex case, let us look at a simple class of convex problems.

Assume that function f (x) is strongly convex onRn with convexity parameter γ > 0
(see (4.8)). In this case there exists its unique minimum x∗ and condition (4.3) holds for
all x ∈ Rn (see, for example, [10], Section 2.1.3). Assume also that Hessian of f (x) is
Lipschitz continuous:

‖f ′′(x)− f ′′(y)‖ ≤ L‖x − y‖, ∀x, y ∈ Rn.

For such functions, let us obtain the complexity bounds of method (3.3) using the results
of Theorems 4 and 5.

Let us fix some x0 ∈ Rn. Denote by D the radius of its level set:

D = max
x

{‖x − x∗‖ : f (x) ≤ f (x0)}.
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From (4.3) we get

D ≤
[

2

γ
(f (x0)− f (x∗))

]1/2

.

We will see that it is natural to measure the quality of starting point x0 by the following
characteristic:

κ ≡ κ(x0) = LD

γ
.

Let us introduce three switching values

ω0 = γ 3

18L2 ≡ 4

9
ω̄, ω1 = 3

2
γD2, ω2 = 3

2
LD3.

In view of Theorem 4, we can reach the level f (x0)− f (x∗) ≤ 1
2LD

3 in one additional
iteration. Therefore without loss of generality we assume that

f (x1)− f (x∗) ≤ ω2.

Assume also that we are interested in a very high accuracy of the solution. Note that the
case κ ≤ 1 is very easy since the first iteration of method (3.3) comes very close to the
region of super-linear convergence (see Item 2 of Theorem 5).

Consider the case κ ≥ 1. Then ω0 ≤ ω1 ≤ ω2. Let us estimate the duration of the
following phases:

Phase 1: ω1 ≤ f (xi) ≤ ω2,

Phase 2: ω0 ≤ f (xi) ≤ ω1,

Phase 3: ε ≤ f (xi) ≤ ω0.

In view of Theorem 4, the duration k1 of the first phase is bounded as follows:

ω1 ≤ 3LD3

2(1 + 1
3k1)2

.

Thus, k1 ≤ 3
√
κ . Further, in view of Item 1 of Theorem 5, we can bound the duration

k2 of the second phase:

ω
1/4
0 ≤ (f (xk1+1)− f (x∗))1/4 − k2

6
ω

1/4
0 ≤ ( 1

2γD
2)1/4 − k2

6
ω

1/4
0 .

This gives the following bound: k2 ≤ 33/4 21/2√κ ≤ 3.25
√
κ .

Finally, denote δk = 1
4ω0
(f (xk)− f (x∗)). In view of inequality (4.5) we have:

δk+1 ≤ δ
3/2
k , k ≥ k̄ ≡ k1 + k2 + 1.
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At the same time f (xk̄)− f (x∗) ≤ ω0. Thus, δk̄ ≤ 1
4 , and the bound on the duration k3

of the last phase can be found from inequality

4

(
3
2

)k3
≤ 4ω0

ε
.

That is k3 ≤ log 3
2

log4
2γ 3

9εL2 . Putting all bounds together, we obtain that the total number
of steps N in (3.3) is bounded as follows:

N ≤ 6.25

√
LD

γ
+ log 3

2

(
log4

1

ε
+ log4

2γ 3

9L2

)
. (6.1)

It is interesting that in estimate (6.1) the parameters of our problem interact with
accuracy in an additive way. Recall that usually such an interaction is multiplicative.
Let us estimate, for example, the complexity of our problem for so called “optimal first-
order method” for strongly convex functions with Lipschitz continuous gradient (see
[10], Section 2.2.1). Denote by L̂ the largest eigenvalue of matrix f ′′(x∗). Then can
guarantee that

γ I ≤ f ′′(x) ≤ (L̂+ LD)I ∀x, ‖x − x∗‖ ≤ D.

Thus, the complexity bound for the optimal method is of the order

O





√
L̂+ LD

γ
ln
(L̂+ LD)D2

ε





iterations. For gradient method it is much worse:

O

(
L̂+ LD

γ
ln
(L̂+ LD)D2

ε

)

.

Thus, we conclude that the global complexity estimates of the modified Newton
scheme (3.3) are incomparably better than the estimates of the gradient schemes. At the
same time, we should remember, of course, about the difference in the computational
cost of each iteration.

Note that the similar bounds can be obtained for other classes of non-convex prob-
lems. For example, for nonlinear transformations of convex functions (see Section 4.3),
the complexity bound is as follows:

N ≤ 6.25
√
σ

γ
LD + log 3

2

(
log4

1

ε
+ log4

2γ 3

9σ 6L2

)
. (6.2)

To conclude, note that in scheme (3.3) it is possible to find elements of Levenberg-
Marquardt approach (see relation (2.7)), or a trust-region approach (see Theorem 10 and
related discussion), or a line-search technique (see the rule of Step 1 in (3.3)). However,
all these facts are consequences of the main idea of the scheme, that is the choice of
the next test point as a global minimizer of the upper second-order approximation of
objective function.
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