Learning to Rank

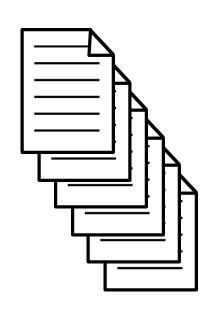
Karel Horák

Introduction to Ranking

What is ranking?

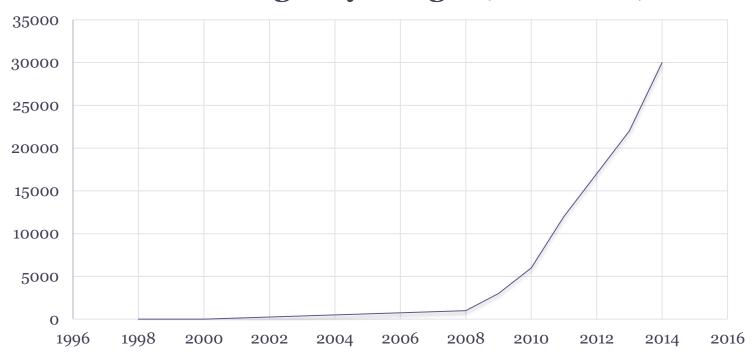
Information Retrieval
 → WEB SEARCH





Web Search Statistics

Indexed Pages by Google (in billions)



(http://www.statisticbrain.com/total-number-of-pages-indexed-by-google/)

Conventional Ranking Methods

- Assign score to each document and sort
- Query-dependent models
 - e.g. TF-IDF
- Query-independent models
 - PageRank

Query-Dependent Models

- Boolean Model
 - Are keywords present in the document?

Query-Dependent Models

- Vector Space Model
 - Relative term frequencies used
 - Cosine similarity

Query: the information retrieval

Term - t	Term frequency - TF(t)
The	0.33
Information	0.33
Retrieval	0.33

Similarity: (0.18+0.02+0.005)/3=0.0683

Document

Term – t	Term frequency – TF(t)
The	0.18
Be	0.08
•••	
Information	0.02
Retrieval	0.005

Query-Dependent Models

- TF-IDF
 - Weight each component of product by importance

$$IDF(t) = \log \frac{N}{n(t)}$$

$$TFIDF(d,q) = \sum_{t \in q} TF(t) \cdot IDF(t)$$

Query-Independent Models

- PageRank
 - Probability of reaching a page by random walk

$$PR(d) = \sum_{d'} \frac{PR(d')}{U(d')}$$

Learning to Rank

Learning to Rank

- Commercial attention (web search engines)
- Lots of training data (click-through data)
- Hot topics involved
 - Big data
 - Online learning
 - Deep learning
 - ...

Training/Test Sets

- Queries and associated documents
- Features extracted for each query-document pair
 - e.g. using conventional methods
- Target ranking
 - Relevance degree
 - Preference relation
 - Full ranking

Goal

- Get close to the human-assigned ranking (on previously unseen queries)
- Evaluation measures:
 - MAP (Mean Average Precision)

$$AP(q) = \frac{\sum_{k=1}^{m} P@k(q) \cdot l_k}{\#(\text{relevant docs})}$$

- NDCG (Normalized Discounted Cumulative Gain)
 - Gain for ranking a document at given position
 - Later ranked documents have lower contribution

True Story

- Hard to optimize for "evaluation measures"
 - Non-continuous
 - Non-differentiable
- Reality
 - Another objective is typically used
 (the correspondence to the original measure is limited)

Basic Approaches

- Pointwise
 - Documents treated separately
- Pairwise
 - Pairwise preference relation
- Listwise
 - Whole ranking considered

Pointwise Approach

- Goal: Predict relevance degree of a document
- Input space: Document features (query-based)
- Output space: Relevance degrees
- Loss function: regression/classification error
- Techniques
 - Regression
 - Classification

Pointwise Approach

- + Straightforward
- + Standard ML algorithms directly applicable
- Cannot use information about rank position
- Queries with many results dominate
- Forgets about the ranking goal

Pairwise Approach

- Goal: Learn pairwise preference
- Input: Document pairs (and their query-based features)
- Output: Preferred document from the pair
- Issue: Total order needed
 - rank aggregation NP-hard problem

Pairwise Approach - RankNet

- Algorithm was used in practice (Microsoft)
- Learns scoring function f
- Preference defined as:

$$P_{u,v}(f) = \frac{\exp(f(x_u) - f(x_v))}{1 + \exp(f(x_u) - f(x_v))}$$

Neural network used

Pairwise Approach - RankNet

Loss function: cross entropy

$$L(f, x_u, x_v, y_{u,v})$$

$$= -\overline{P}_{u,v} \log P_{u,v}(f) - \left(1 - \overline{P}_{u,v}\right) \log\left(1 - P_{u,v}(f)\right)$$

- + Easy to optimize (convex)
- Unbounded (hard cases dominate)
- Always positive
 - → FRank better results but harder optimization (non-convex)

Pairwise Approach

- + Ordering matters
- + Easy application of ML techniques (..., SVM, Boosting, ...)
- Position information not used
- Queries with many results still dominate
 - → even worse! Quadratic number of pairs

Listwise Approach

- Use the whole ranking
- Input: Set of document features
- Output: Ranking
- Objective:
 - Optimize the evaluation measure directly
 - Optimize consistency with desired ranking

Listwise Approach

- Direct optimization hard problem
 - Non-continuous and non-differentiable objective
 - Options:
 - Genetic algorithms: RankGP
 - Smooth the objective: SoftRank
 - •

Listwise Approach - ListMLE

- Idea: Probabilistic distribution over rankings
 - □ Induced by ranking scores s
- Luce model of permutation probability

$$P(\pi|s) = \prod_{i=1}^{m} \frac{\varphi(s_{\pi^{-1}(i)})}{\sum_{j=i}^{m} \varphi(s_{\pi^{-1}(j)})}$$

• Loss function $(f: X \to \mathbb{R} \text{ is the scoring function})$:

$$L(f, x, \pi_y) = -\log P(\pi_y|f)$$

Listwise Approach

- + Empirically best performance
- + Evaluation measures taken into account

Cons depend on the exact algorithm:

- Complexity of training process
- Often no positional discounting

Query-Dependent Ranking

Where is the problem?

- One model for all queries
 - Golden mean, but still suboptimal
- Example (Broder's taxonomy)
 - Navigational queries locate a specific webpage
 - Informational queries find information on a topic
 - Transactional queries

Options

- Train model based on the most similar queries
 - e.g. k-NN search
 - Questionable efficiency (learning in query phase)
 - Solution:
 - Pretrain finite number of models
 - Use the one with greatest overlap with nearest neighbors

Options

- Two-Layer approach
 - Make the ranking model depend on the query
 - Idea: Infinite number of models trained

$$\min_{v} \sum_{i=1}^{n} L(\hat{\mathbf{y}}^{(i)}, \mathbf{y}^{(i)}),$$
s.t.
$$\hat{\mathbf{y}}^{(i)} = \text{sort} \circ f(w^{(i)}, \mathbf{x}^{(i)}),$$

$$w^{(i)} = g(v, z^{(i)}),$$

References

• Liu, Tie-Yan. Learning to rank for information retrieval. Springer Science & Business Media, 2011.

Thank you for your attention