
Learning to Rank
Karel Horák



Introduction to Ranking



What is ranking?

• Information Retrieval
 WEB SEARCH



Web Search Statistics

0

5000

10000

15000

20000

25000

30000

35000

1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

Indexed Pages by Google (in billions)

(http://www.statisticbrain.com/total-number-of-pages-indexed-by-google/)

http://www.statisticbrain.com/total-number-of-pages-indexed-by-google/


Conventional Ranking Methods

• Assign score to each document and sort

• Query-dependent models

▫ e.g. TF-IDF

• Query-independent models

▫ PageRank



Query-Dependent Models

• Boolean Model

▫ Are keywords present in the document?



Query-Dependent Models

• Vector Space Model

▫ Relative term frequencies used

▫ Cosine similarity

Term - t Term frequency -
TF(t)

The 0.33

Information 0.33

Retrieval 0.33

Term – t Term frequency –
TF(t)

The 0.18

Be 0.08

…

Information 0.02

Retrieval 0.005

Query: the information retrieval Document

Similarity: (0.18+0.02+0.005)/3=0.0683



Query-Dependent Models

• TF-IDF

▫ Weight each component of product by importance

𝐼𝐷𝐹 𝑡 = log
𝑁

𝑛(𝑡)

𝑇𝐹𝐼𝐷𝐹 𝑑, 𝑞 = 

𝑡 ∈𝑞

𝑇𝐹 𝑡 ∙ 𝐼𝐷𝐹(𝑡)



Query-Independent Models

• PageRank

▫ Probability of reaching a page by random walk

𝑃𝑅 𝑑 = 

𝑑′

𝑃𝑅(𝑑′)

𝑈(𝑑′)



Learning to Rank



Learning to Rank

• Commercial attention (web search engines)

• Lots of training data (click-through data)

• Hot topics involved

▫ Big data

▫ Online learning

▫ Deep learning

▫ …



Training/Test Sets

• Queries and associated documents

• Features extracted for each query-document pair

▫ e.g. using conventional methods

• Target ranking

▫ Relevance degree

▫ Preference relation

▫ Full ranking



Goal

• Get close to the human-assigned ranking
(on previously unseen queries)

• Evaluation measures:
▫ MAP (Mean Average Precision)

𝐴𝑃 𝑞 =
σ𝑘=1
𝑚 𝑃@𝑘 𝑞 ∙ 𝑙𝑘

#(relevant docs)
▫ NDCG (Normalized Discounted Cumulative Gain)

 Gain for ranking a document at given position
 Later ranked documents have lower contribution



True Story

• Hard to optimize for “evaluation measures”

▫ Non-continuous

▫ Non-differentiable

• Reality

▫ Another objective is typically used
(the correspondence to the original measure is limited)



Basic Approaches

• Pointwise

▫ Documents treated separately

• Pairwise

▫ Pairwise preference relation

• Listwise

▫ Whole ranking considered



Pointwise Approach

• Goal: Predict relevance degree of a document

• Input space: Document features (query-based)

• Output space: Relevance degrees

• Loss function: regression/classification error

• Techniques

▫ Regression

▫ Classification



Pointwise Approach

+ Straightforward

+ Standard ML algorithms directly applicable

- Cannot use information about rank position

- Queries with many results dominate

- Forgets about the ranking goal



Pairwise Approach

• Goal: Learn pairwise preference

• Input: Document pairs (and their query-based 
features)

• Output: Preferred document from the pair

• Issue: Total order needed

▫ rank aggregation – NP-hard problem



Pairwise Approach - RankNet

• Algorithm was used in practice (Microsoft)

• Learns scoring function f

• Preference defined as:

𝑃𝑢,𝑣 𝑓 =
exp(f(𝑥𝑢) − f(𝑥𝑣))

1 + exp(f(𝑥𝑢) − f(𝑥𝑣))

• Neural network used



Pairwise Approach - RankNet

• Loss function: cross entropy

𝐿 𝑓, 𝑥𝑢, 𝑥𝑣, 𝑦𝑢,𝑣

= −ത𝑃𝑢,𝑣 log 𝑃𝑢,𝑣 𝑓 − 1 − ത𝑃𝑢,𝑣 log 1 − 𝑃𝑢,𝑣 𝑓

+ Easy to optimize (convex)

- Unbounded (hard cases dominate)

- Always positive

 FRank – better results but harder optimization (non-convex)



Pairwise Approach

+ Ordering matters

+ Easy application of ML techniques
(…, SVM, Boosting, …)

- Position information not used

- Queries with many results still dominate
 even worse! Quadratic number of pairs



Listwise Approach

• Use the whole ranking

• Input: Set of document features

• Output: Ranking

• Objective:

▫ Optimize the evaluation measure directly

▫ Optimize consistency with desired ranking



Listwise Approach

• Direct optimization – hard problem

▫ Non-continuous and non-differentiable objective

▫ Options:

 Genetic algorithms: RankGP

 Smooth the objective: SoftRank

 …



Listwise Approach - ListMLE

• Idea: Probabilistic distribution over rankings

▫ Induced by ranking scores – s

• Luce model of permutation probability

𝑃 𝜋 𝑠 =ෑ

𝑖=1

𝑚 𝜑(𝑠𝜋−1 𝑖 )

σ𝑗=𝑖
𝑚 𝜑(𝑠𝜋−1(𝑗))

• Loss function (𝑓: 𝑋 → ℝ is the scoring function):

𝐿 𝑓, 𝑥, 𝜋𝑦 = − log 𝑃(𝜋𝑦|𝑓)



Listwise Approach

+ Empirically best performance

+ Evaluation measures taken into account

Cons depend on the exact algorithm:

- Complexity of training process

- Often no positional discounting



Query-Dependent Ranking



Where is the problem?

• One model for all queries

▫ Golden mean, but still suboptimal

• Example (Broder’s taxonomy)
▫ Navigational queries – locate a specific webpage

▫ Informational queries – find information on a topic

▫ Transactional queries



Options

• Train model based on the most similar queries

▫ e.g. k-NN search

▫ Questionable efficiency (learning in query phase)

▫ Solution:

 Pretrain finite number of models

 Use the one with greatest overlap with nearest 
neighbors



Options

• Two-Layer approach

▫ Make the ranking model depend on the query

▫ Idea: Infinite number of models trained



References

• Liu, Tie-Yan. Learning to rank for information 
retrieval. Springer Science & Business Media, 
2011.



Thank you for your attention


