Concentration inequalities of U-statistics for sampling without replacement

AiJianhang 2020.01.24

Contents

- 1. Concentration inequalities
- 2. Hoeffding's inequality
- 3. An example in Machine learning

Concentration inequalities

Chebyshev's inequality

If X is a random variable with variance:

$$Var(X) = E[(X - E(X))^2]$$

Then we have

$$\Pr\{|X - EX| > t\} \le \frac{Var(X)}{t^2}$$

Concentration inequalities

Law of large numbers

If X_1, X_2, \ldots, X_n are i.i.d variables, and

$$\bar{X}_n = \frac{X_1 + X_2 + \dots + X_n}{n}$$
 $E[\bar{X}_n] = \mu$

Then we have

$$\Pr\{\lim_{n\to\infty} \bar{X}_n = \mu\} = 1$$

Concentration inequalities

Generalization

If X_1, X_2, \dots, X_n are *independent* variables taking values in some set \mathcal{X} . Let $Z:\mathcal{X}^n \to \mathbb{R}$

$$Z = f(X_1, \ldots X_n)$$

How large are typical deviation of Z from E[Z]? In particular, we seek upper bound for, t>0 ,

$$\Pr\{Z > E[Z] - t\} \quad \Pr\{Z < E[Z] - t\}$$

Classcial version

If $\mathcal{X}=\{x_1,\dots,x_N\}$, X_1,X_2,\dots,X_n are random variables sampled from it with replace, independent to each other. Then we have

$$\Pr\{\bar{X}-E[\bar{X}]\geq t\}\leq \exp\{-\frac{2nt^2}{(b-a)^2}\}$$
 where
$$\bar{X}=\frac{X_1+\cdots+X_n}{n}$$

$$a=\min_{1\leq i\leq N}x_i \qquad b=\max_{1\leq i\leq N}x_i$$

U-statistics

Consider the function of X_1, X_2, \ldots, X_n ,

$$U = \frac{1}{n^{(r)}} \sum_{n,r} g(X_{i_1}, \dots, X_{i_r})$$

where $n^{(r)}=n(n-1)\cdots(n-r+1)$ and the sum $\sum_{n,r}$ is taken over all r-tuples i_1,\cdots,i_r of distinct positive integers not exceeding n.

U-statistics version

$$\Pr\{U-EU\geq t\}\leq \exp\{-\frac{-2kt^2}{(b-a)^2}\}$$
 where $k=\lceil n/r \rceil$.

U-statisitc order	Sampling with replacement	Sampling without replacement
r=1	$\sqrt{_{[1]}}$	\checkmark
r>1	$\sqrt{_{[1]}}$?

Original version^[1]

Sample without replacement, all other conditions are the

same
$$\Pr{\{\bar{X} - E[\bar{X}] \ge t\}} \le \exp{\{-\frac{2nt^2}{(b-a)^2}\}}$$

Improved version^[2]

$$\Pr\{\bar{X} - E[\bar{X}] \ge t\} \le \exp\{-\frac{2nt^2}{(1 - f_n^*)(b - a)^2}\}$$

where
$$f_n^* = \frac{n-1}{N}$$

Hoeffding-Serffling version^[3]

$$\Pr(\max_{n \le k \le N-1} \frac{\sum_{j=1}^{k} (X_j - \mu)}{k} \ge t) \le \exp\{-\frac{2nt^2}{(b-a)^2} \frac{1}{(1-\frac{n}{N})(1+\frac{1}{n})}\}$$

Question:

Will this three version of bounds still hold when the U-statistics order bigger than 1?

Still open

For some $h \in \mathcal{H}$

- $g \approx f$ inside \mathcal{D} : Yes
- $g \approx f$ outside \mathcal{D} : We hope so, how to guarantee it?

Question

The probability of blue balls μ ?

Answer

Sample, approximate it with the fraction of blue balls ν

Sample size n, random variables X_i are independent,

 $X_i = 1$, when it is blue;

$$i = 1, \dots, n$$

 $X_i = 0$, when it is white;

Then with Hoeffding's inequality, we have

$$\Pr[|\nu - \mu| > t] \le 2\exp(-2nt^2)$$

We say $u = \mu$ is probably approximately correct(PAC)

Translate the "Marine balls" example to Machine learning

For some fixed $h \in \mathcal{H}$

$$h(\mathbf{x}) \neq f(\mathbf{x})$$

$$\longrightarrow h(\mathbf{x}) = f(\mathbf{x})$$

Sample $X_i \longrightarrow \mathcal{D}: (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)$

 $\mu \longrightarrow \text{Probability } h(\mathbf{x}) \neq f(\mathbf{x}) (E_{out}(h) \text{ errors outside sample)}$

$$\nu \rightarrow$$
 Fraction $h(\mathbf{x}_n) = y_n$ ($E_{in}(h)$ errors inside sample)

$$\Pr[|E_{out}(h) - E_{in}(h)| > t] \le 2\exp(-2nt^2)$$

Multiple h, $|\mathcal{H}| = M$

Bad sample: for some h, E_{in} and E_{out} is far away

$$\Pr[BAD \ \mathcal{D}]$$

= $\Pr[\mathcal{D} \text{ is bad for } h_1 \text{ or } \dots \text{ or } \mathcal{D} \text{ is bad for } h_M]$

 $\leq \Pr[\mathcal{D} \text{ is bad for } h_1] + \cdots + \Pr[\mathcal{D} \text{ is bad for } h_M]$

 $\leq 2M \exp\left(-2t^2n\right)$

Now, when $|\mathcal{H}| = M$ is finite, n sample size is big enough, for whatever g picked by \mathcal{A} , $E_{out}(g) \approx E_{in}(g)$.

If \mathcal{A} find one g with $E_{in}(g) \approx 0$, PAC guarantee for $E_{out}(g) \approx 0 \implies \underline{Question~answered}$

Question:

What if we lost the independent condition? What if we build more complicated models?

Other new version of concentration inequalites

Thank you