

Martin Matyášek

Artificial Intelligence Center

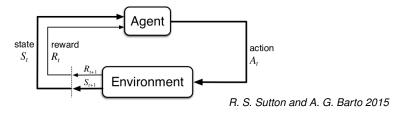
Czech Technical University in Prague

October 27, 2016

Martin Matyášek

VPD, 2016

Reinforcement Learning in a picture



- learning what to do to maximize *future* reward
- general-purpose framework extending sequential decision making when the model of the environment is unknown

RL background

- let's assume MDP $\langle S, A, P, R, s_0 \rangle$
 - RL deals with situation where the environment model P and R is unknown
 - can be generalized to *Stochastic Games* $\langle S, N, A, P, R \rangle$
- RL agent includes:
 - **policy** $a = \pi(s)$ (deterministic), $\pi(a \mid s) = \mathbb{P}(a \mid s)$ (stochastic)
 - value function $Q^{\pi}(a \mid s) = \mathbb{E}[\sum_{t=0}^{\infty} \gamma^{t} r_{t} \mid s, a]$
 - ► Bellman Eq.: $Q^{\pi}(a \mid s) = \mathbb{E}_{s',a'}[r + \gamma Q^{\pi}(a' \mid s') \mid s, a]$
 - opt. value functions: $Q^*(s, a) = \mathbb{E}_{s'}[r + \gamma \max_{a'} Q^*(s', a') \mid s, a]$
 - opt. policy: $\pi^*(s) = \operatorname{argmax}_a Q^*(s, a)$
 - model learned proxy for environment

RL Types

1. value-based RL

- estimate the opt. value function $Q^*(s, a)$
- max. value achievable under any policy

2. policy-based RL

- search directly for the opt. policy π^*
- i.e. policy yielding max. future reward

3. model-based RL

- build a model of the environment
- plan using this model

Q-learning

Algorithm 1 Q-learning

1: initialize the Q-function and V values (arbitrarily)

2: repeat

- 3: observe the current state s_t
- 4: select action a_t and take it
- 5: observe the reward $R(s_t, a_t, s_{t+1})$
- 6: $Q_{t+1}(s_t, a_t) \leftarrow (1 \alpha_t)Q_t(s_t, a_t) + \alpha_t(R(s_t, a_t, s_{t+1}) + \gamma V_t(s_{t+1}))$
- 7: $V_{t+1}(s) \leftarrow \max_a Q_t(s, a)$
- 8: until convergence

Q-learning

- model-free method
- *temporal-difference* version:

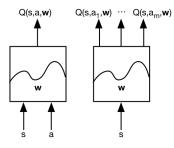
$$Q(s,a) \leftarrow Q(s,a) + \alpha(r + \gamma \max_{a'} Q(s',a') - Q(s,a))$$

value based on next state

- converges to Q^* , V^* iff $0 \le \alpha_t < \infty$, $\sum_{t=0}^{\infty} \alpha_t = \infty$ and $\sum_{t=0}^{\infty} \alpha_t^2 < \infty$
- zero-sum Stochastic Games:
 - cannot simply use $Q_i^{\pi} : S \times A_i \to \mathbb{R}$ but rather $Q_i^{\pi} : S \times A \to \mathbb{R}$
 - minimax-Q converges to NE
 - **R-max**: converge to ϵ Nash with prob. (1δ) in poly. # steps (*PAC learn*)

Q-Networks

- $\square Q^*(s,a) \approx Q(s,a,\mathbf{w})$
- treat right hand side r + γ max_a Q(s', a', w) of Bellman's Eq. as target
- minimize MSE loss $I = (r + \max_{a'} Q(s', a', \mathbf{w}) Q(s, a, \mathbf{w}))^2$ by stochastic gradient descent



David Silver, Google DeepMind

Q-learning summary

- + converges to Q^* using table lookup representation
- diverges using NN:
 - correlations between samples
 - non-stationary targets

go deep

Deep Q-Networks (DQN)

- basic approach is called experience replay
- *idea*: remove correlations by building data-set from agent's experience e = (s, a, r, s')
 - sample experiences from $D_t = \{e_1, e_2, \dots, e_t\}$ and apply update
- deal with non-stationarity by fixing \mathbf{w}^- in $I = (r + \gamma \max_{a'} Q(s', a', \mathbf{w}^-) - Q(s, a, \mathbf{w}))^2$

Algorithm 2 Deep Q-learning algorithm

- 1: init. replay memory D, init. Q with random weights
- 2: observe initial state s
- 3: repeat
- 4: with prob. ϵ select random a, select $a = \operatorname{argmax}_{a'} Q(s, a')$
- 5: carry out *a*, observe (r, s') and store (s, a, r, s') in *D*
- 6: sample random transition (*ss*, *aa*, *rr*, *ss*') from *D*
- 7: calculate target for each minibatch transition:
- 8: if ss' is terminal state then

9:
$$tt \leftarrow rr$$

10: **else**

11:
$$tt \leftarrow rr + \gamma \max_{a'} Q(ss', aa')$$

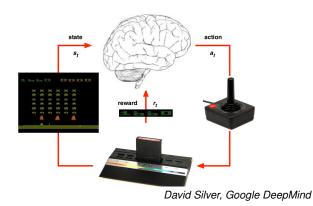
- 12: end if
- 13: train the Q-network using $(tt Q(ss, aa))^2$ as loss

14:
$$\boldsymbol{s} \leftarrow \boldsymbol{s}'$$

15: until convergence

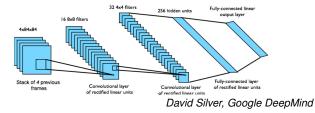
10/17

DQN in Atari

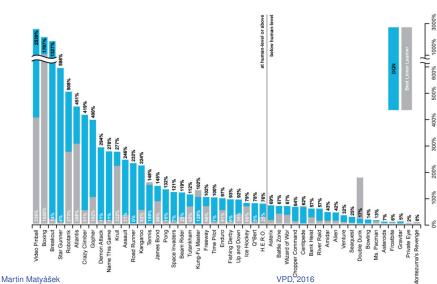


DQN in Atari - setting

state stack of raw pixels from last 4 frames actions 18 joystick/button positions reward delta in score learn Q(s, a)



Martin Matyášek



(Deep) Reinforcement Learning

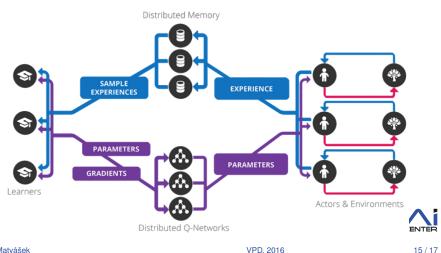
DQN in Atari - results

DQN improvements

Double DQN removes bias caused by $\max_a Q(\cdot)$

- current QN w used to select actions
- old QN w⁻ used to evaluate actions
- Prioritized Replay weight experience according to DQN error (stored in PQ)
- **Duelling Network** split Q-Network into:
 - action-independent value function
 - action-dependent advantage function

General Reinforcement Learning Architecture (GORILA)



Martin Matvášek

VPD, 2016

Deep Policy Network

- parametrize the policy π by a DNN and use SGD to optimize weights u
 - π(a | s, u) or π(s, u)
 - $max_{\mathbf{u}} L(\mathbf{u}) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r_{t} \mid \pi(\cdot, \mathbf{u})\right]$
- policy gradients:
 - ^{∂L(u)}/_{∂u} = E[^{∂ log π(a|s,u)}/_{∂u}Q^π(s, a)] for stochastic policy π(a | s, u)

 ^{∂L(u)}/_{∂u} = E[^{∂Q^π(s,a)}/_{∂a} ^{∂a}/_{∂u}] for deterministic policy a = π(s) where a is cont. and Q diff.

Next time..

- cont. policy-based deep RL: Actor-Critic alg., A3C
- Fictitious Self-Play
- model-based deep RL

17/17

Martin Matyášek