
(Deep) Reinforcement Learning

Martin Matyášek

Artificial Intelligence Center
Czech Technical University in Prague

October 27, 2016

Martin Matyášek VPD, 2016 1 / 17



(Deep) Reinforcement Learning

Reinforcement Learning in a picture

R. S. Sutton and A. G. Barto 2015

learning what to do to maximize future reward
general-purpose framework extending sequential decision
making when the model of the environment is unknown

Martin Matyášek VPD, 2016 2 / 17



(Deep) Reinforcement Learning

RL background
let’s assume MDP 〈S,A,P,R, s0〉

RL deals with situation where the environment model P and R is
unknown
can be generalized to Stochastic Games 〈S,N,A,P,R〉

RL agent includes:

policy a = π(s) (deterministic), π(a | s) = P(a | s) (stochastic)

value function Qπ(a | s) = E[
∑∞

t=0 γ
t rt | s,a]

I Bellman Eq.: Qπ(a | s) = Es′,a′ [r + γQπ(a′ | s′) | s, a]

I opt. value funcions: Q∗(s, a) = Es′ [r + γmaxa′ Q∗(s′, a′) | s, a]

I opt. policy: π∗(s) = argmaxa Q∗(s, a)

model - learned proxy for environment

Martin Matyášek VPD, 2016 3 / 17



(Deep) Reinforcement Learning

RL Types

1. value-based RL
estimate the opt. value function Q∗(s,a)
max. value achievable under any policy

2. policy-based RL
search directly for the opt. policy π∗

i.e. policy yielding max. future reward

3. model-based RL
build a model of the environment
plan using this model

Martin Matyášek VPD, 2016 4 / 17



(Deep) Reinforcement Learning

Q-learning

Algorithm 1 Q-learning
1: initialize the Q-function and V values (arbitrarily)
2: repeat
3: observe the current state st
4: select action at and take it
5: observe the reward R(st ,at , st+1)
6: Qt+1(st ,at) ← (1 − αt)Qt(st ,at) + αt(R(st ,at , st+1) +

γVt(st+1))
7: Vt+1(s)← maxa Qt(s,a)
8: until convergence

Martin Matyášek VPD, 2016 5 / 17



(Deep) Reinforcement Learning

Q-learning

model-free method
temporal-difference version:

Q(s,a)← Q(s,a) + α(r + γmax
a′

Q(s′,a′)︸ ︷︷ ︸
value based on next state

−Q(s,a))

converges to Q∗, V ∗ iff 0 ≤ αt <∞,
∑∞

t=0 αt =∞ and∑∞
t=0 α

2
t <∞

zero-sum Stochastic Games:
cannot simply use Qπ

i : S × Ai → R but rather Qπ
i : S × A→ R

minimax-Q converges to NE
R-max: converge to ε− Nash with prob. (1− δ) in poly. # steps
(PAC learn)

Martin Matyášek VPD, 2016 6 / 17



(Deep) Reinforcement Learning

Q-Networks
Q∗(s,a) ≈ Q(s,a,w)

treat right hand side r + γmaxa′ Q(s′,a′,w) of Bellman’s Eq.
as target
minimize MSE loss l = (r + maxa′ Q(s′,a′,w)−Q(s,a,w))2

by stochastic gradient descent

David Silver, Google DeepMind

Martin Matyášek VPD, 2016 7 / 17



(Deep) Reinforcement Learning

Q-learning summary

+ converges to Q∗ using table lookup representation
− diverges using NN:

correlations between samples
non-stationary targets

! go deep

Martin Matyášek VPD, 2016 8 / 17



(Deep) Reinforcement Learning

Deep Q-Networks (DQN)

basic approach is called experience replay

idea: remove correlations by building data-set from agent’s
experience e = (s,a, r , s′)

sample experiences from Dt = {e1,e2, . . .et} and apply update

deal with non-stationarity by fixing w− in
l = (r + γmaxa′ Q(s′,a′,w−)−Q(s,a,w))2

Martin Matyášek VPD, 2016 9 / 17



(Deep) Reinforcement Learning

Algorithm 2 Deep Q-learning algorithm
1: init. replay memory D, init. Q with random weights
2: observe initial state s
3: repeat
4: with prob. ε select random a, select a = argmaxa′ Q(s,a′)
5: carry out a, observe (r , s′) and store (s,a, r , s′) in D
6: sample random transition (ss,aa, rr , ss′) from D
7: calculate target for each minibatch transition:
8: if ss′ is terminal state then
9: tt ← rr

10: else
11: tt ← rr + γmaxa′ Q(ss′,aa′)
12: end if
13: train the Q-network using (tt −Q(ss,aa))2 as loss
14: s ← s′

15: until convergence
Martin Matyášek VPD, 2016 10 / 17



(Deep) Reinforcement Learning

DQN in Atari

David Silver, Google DeepMind

Martin Matyášek VPD, 2016 11 / 17



(Deep) Reinforcement Learning

DQN in Atari - setting

state stack of raw pixels from last 4 frames
actions 18 joystick/button positions
reward delta in score

learn Q(s,a)

David Silver, Google DeepMind

Martin Matyášek VPD, 2016 12 / 17



(Deep) Reinforcement Learning

DQN in Atari - results

Martin Matyášek VPD, 2016 13 / 17



(Deep) Reinforcement Learning

DQN improvements

Double DQN removes bias caused by maxa Q(·)
current QN - w used to select actions
old QN - w− used to evaluate actions

Prioritized Replay weight experience according to DQN error
(stored in PQ)

Duelling Network split Q-Network into:
action-independent value function
action-dependent advantage function

Martin Matyášek VPD, 2016 14 / 17



(Deep) Reinforcement Learning

General Reinforcement Learning Architecture
(GORILA)

Martin Matyášek VPD, 2016 15 / 17



(Deep) Reinforcement Learning

Deep Policy Network

parametrize the policy π by a DNN and use SGD to optimize
weights u

π(a | s,u) or π(s,u)
maxu L(u) = E[

∑∞
t=0 γ

t rt | π(·,u)]

policy gradients:
∂L(u)
∂u = E[∂ logπ(a|s,u)

∂u Qπ(s,a)] for stochastic policy π(a | s,u)
∂L(u)
∂u = E[∂Qπ(s,a)

∂a
∂a
∂u ] for deterministic policy a = π(s) where a is

cont. and Q diff.

Martin Matyášek VPD, 2016 16 / 17



(Deep) Reinforcement Learning

Next time..
cont. policy-based deep RL: Actor-Critic alg., A3C
Fictitious Self-Play
model-based deep RL

Martin Matyášek VPD, 2016 17 / 17


