
Deep Reinforcement Learning

Martin Matyášek

Artificial Intelligence Center
Czech Technical University in Prague

October 27, 2016

Martin Matyášek VPD, 2016 1 / 50

Deep Reinforcement Learning

Reinforcement Learning in a picture

R. S. Sutton and A. G. Barto 2015

learning what to do to maximize future reward
general-purpose framework extending sequential decision
making when the model of the environment is unknown

Martin Matyášek VPD, 2016 2 / 50

Deep Reinforcement Learning

RL background
let’s assume MDP 〈S,A,P,R, s0〉

RL deals with situation where the environment model P and R is
unknown
can be generalized to Stochastic Games 〈S,N,A,P,R〉

RL agent includes:

policy a = π(s) (deterministic), π(a | s) = P(a | s) (stochastic)

value function Qπ(a | s) = E[
∑∞

t=0 γ
t rt | s,a]

I Bellman Eq.: Qπ(a | s) = Es′,a′ [r + γQπ(a′ | s′) | s, a]

I opt. value funcions: Q∗(s, a) = Es′ [r + γmaxa′ Q∗(s′, a′) | s, a]

I opt. policy: π∗(s) = argmaxa Q∗(s, a)

model - learned proxy for environment

Martin Matyášek VPD, 2016 3 / 50

Deep Reinforcement Learning

RL Types

1. value-based RL
estimate the opt. value function Q∗(s,a)
max. value achievable under any policy

2. policy-based RL
search directly for the opt. policy π∗

i.e. policy yielding max. future reward

3. model-based RL
build a model of the environment
plan using this model

Martin Matyášek VPD, 2016 4 / 50

Deep Reinforcement Learning

Q-learning

Algorithm 1 Q-learning
1: initialize the Q-function and V values (arbitrarily)
2: repeat
3: observe the current state st
4: select action at and take it
5: observe the reward R(st ,at , st+1)
6: Qt+1(st ,at) ← (1 − αt)Qt (st ,at) + αt (R(st ,at , st+1) +

γVt (st+1))
7: Vt+1(s)← maxa Qt (s,a)
8: until convergence

Martin Matyášek VPD, 2016 5 / 50

Deep Reinforcement Learning

Q-learning

model-free method
temporal-difference version:

Q(s,a)← Q(s,a) + α(r + γmax
a′

Q(s′,a′)︸ ︷︷ ︸
value based on next state

−Q(s,a))

converges to Q∗, V ∗ iff 0 ≤ αt <∞,
∑∞

t=0 αt =∞ and∑∞
t=0 α

2
t <∞

zero-sum Stochastic Games:
cannot simply use Qπ

i : S × Ai → R but rather Qπ
i : S × A→ R

minimax-Q converges to NE
R-max: converge to ε− Nash with prob. (1− δ) in poly. # steps
(PAC learn)

Martin Matyášek VPD, 2016 6 / 50

Deep Reinforcement Learning

Q-Networks
Q∗(s,a) ≈ Q(s,a,w)

treat right hand side r + γmaxa′ Q(s′,a′,w) of Bellman’s Eq.
as target
minimize MSE loss l = (r + maxa′ Q(s′,a′,w)−Q(s,a,w))2

by stochastic gradient descent

David Silver, Google DeepMind

Martin Matyášek VPD, 2016 7 / 50

Deep Reinforcement Learning

Q-learning summary

+ converges to Q∗ using table lookup representation
− diverges using NN:

correlations between samples
non-stationary targets

! go deep

Martin Matyášek VPD, 2016 8 / 50

Deep Reinforcement Learning

Deep Q-Networks (DQN)

basic approach is called experience replay

idea: remove correlations by building data-set from agent’s
experience e = (s,a, r , s′)

sample experiences from Dt = {e1,e2, . . .et} and apply update

deal with non-stationarity by fixing w− in
l = (r + γmaxa′ Q(s′,a′,w−)−Q(s,a,w))2

Martin Matyášek VPD, 2016 9 / 50

Deep Reinforcement Learning

Algorithm 2 Deep Q-learning algorithm
1: init. replay memory D, init. Q with random weights
2: observe initial state s
3: repeat
4: with prob. ε select random a, select a = argmaxa′ Q(s,a′)
5: carry out a, observe (r , s′) and store (s,a, r , s′) in D
6: sample random transition (ss,aa, rr , ss′) from D
7: calculate target for each minibatch transition:
8: if ss′ is terminal state then
9: tt ← rr

10: else
11: tt ← rr + γmaxa′ Q(ss′,aa′)
12: end if
13: train the Q-network using (tt −Q(ss,aa))2 as loss
14: s ← s′

15: until convergence
Martin Matyášek VPD, 2016 10 / 50

Deep Reinforcement Learning

DQN in Atari

David Silver, Google DeepMind

Martin Matyášek VPD, 2016 11 / 50

Deep Reinforcement Learning

DQN in Atari - setting

state stack of raw pixels from last 4 frames
actions 18 joystick/button positions
reward delta in score

learn Q(s,a)

David Silver, Google DeepMind

Martin Matyášek VPD, 2016 12 / 50

Deep Reinforcement Learning

DQN in Atari - results

Martin Matyášek VPD, 2016 13 / 50

Deep Reinforcement Learning

DQN improvements

Double DQN removes bias caused by maxa Q(·)
current QN - w used to select actions
old QN - w− used to evaluate actions

Prioritized Replay weight experience according to DQN error
(stored in PQ)

Duelling Network split Q-Network into:
action-independent value function
action-dependent advantage function

Martin Matyášek VPD, 2016 14 / 50

Deep Reinforcement Learning

General Reinforcement Learning Architecture
(GORILA)

Martin Matyášek VPD, 2016 15 / 50

Deep Reinforcement Learning

Deep Policy Network

parametrize the policy π by a DNN and use SGD to optimize
weights u

π(a | s,u) or π(s,u)

maxu L(u) = E[
∑∞

t=0 γ
t rt | π(·,u)]

policy gradients:
∂L(u)
∂u = E[∂ logπ(a|s,u)

∂u Qπ(s,a)] for stochastic policy π(a | s,u)
∂L(u)
∂u = E[∂Qπ(s,a)

∂a
∂a
∂u] for deterministic policy a = π(s) where a is

cont. and Q diff.

variations: Actor-Critic alg., A3C, Fictitious Self-Play

Martin Matyášek VPD, 2016 16 / 50

Deep Reinforcement Learning

Game Theory 101

normal-form game G = (N ,A,u)

N = {1,2, . . . ,n} - players
A = ×i∈NAi - pure strategies (actions)

Π = ×i Πi = ×i ∆(Ai) - mixed stratedies

u = (u1, . . . ,un), ui : A → R - utilities
best response

BRi(π−i) = {πi ∈ Πi | ∀π′i 6= πi : ui(πi , π−i) ≥ ui(π
′
i , π−i)}

Nash equlibrium

NE(G) = {π ∈ Π | ∀i ∈ N : πi ∈ BRi(π−i)}

Martin Matyášek VPD, 2016 17 / 50

Deep Reinforcement Learning

Fictitious Self Play (FSP)

fictitious play (FP)
1. initialize beliefs about the opponent’s strategy
2. play a best response to the assessed strategy of the opponent
3. observe the opponent’s actual play and update beliefs

accordingly, goto 2

fictitious self play (FSP)
DQN with experience replay learns “BR” to opponent policies
policy network learns an average of BRs

∂l
∂w

=
∂ logπw(a | s)

∂w

actions a sample mix of policy network and best response

Martin Matyášek VPD, 2016 18 / 50

Deep Reinforcement Learning

Deep RL Summary

RL steps in when the model of the environment is unknown

NN employed when the state space is too large

RL sets the learning objective, NN then approximates:
value function V ∗ ≈ Vw, Q∗ ≈ Qw
policy π∗ ≈ πu

use DNN to deal with convergence and correlations

What about some applications?

Martin Matyášek VPD, 2016 19 / 50

Deep Reinforcement Learning

MvM History

Man vs Machine:
1992 backgammon Tesauro very close to top human experts
1996 chess Kasparov loses 2.5-3.5 vs Deep Blue
1997 othello Logistello vs Murakami 6-0
2007 checkers solved
2008 poker Polaris wins vs poker pros

2015 - Heads-up limit Texas hold’em solved

Martin Matyášek VPD, 2016 20 / 50

Deep Reinforcement Learning

Go

Martin Matyášek VPD, 2016 21 / 50

Deep Reinforcement Learning

The Rules of Go

(a) capture (b) territory

start empty board
move place one stone (of your color)
goal surround
win control more than half of the board

Martin Matyášek VPD, 2016 22 / 50

Deep Reinforcement Learning

Go in Theory

2-players (just me and the opponent)
zero-sum game (win for me = loss for opponent)
perfect information
finite (the game rules ensure this)

NE exists and we can search for it:
minimax
alpha-beta
negascout

Martin Matyášek VPD, 2016 23 / 50

Deep Reinforcement Learning

Go in Reality

there is O(bd) game states where b ≈ 250 and d ≈ 150

Martin Matyášek VPD, 2016 24 / 50

Deep Reinforcement Learning

Alternative to Exhaustive Search

Monte Carlo Tree Search (MCTS):
popular heuristic search algorithm for game play
Monte Carlo rollouts to estimate v(s) ≈ v∗(s) (reduces d)
sampling actions from p(a | s) reduces b

MC rollouts search to max. depth without branching at all

Martin Matyášek VPD, 2016 25 / 50

Deep Reinforcement Learning

MCTS

Martin Matyášek VPD, 2016 26 / 50

Deep Reinforcement Learning

t ≤ 2015

the strongest Go programs are based on MCTS

enhanced by policies that are trained to predict human expert
moves

early rules hand-made
later ML based on simple features (lin. comb. of inputs)

knowledge learned:
(i) fast (simple) knowledge used for move selection in simulation

(rollout policy)
(ii) slower (better) knowledge used for move ordering in tree search

(SL policy)

Martin Matyášek VPD, 2016 27 / 50

Deep Reinforcement Learning

2016: Lee Sedol vs. AlphaGo

Martin Matyášek VPD, 2016 28 / 50

Deep Reinforcement Learning

March 9-15, 2016

name Lee Sedol AlphaGo
age 33 2
rank 9 dan prof. none
titles 18 0

power 1 brain 1200 CPU and 200 GPU
results loss, loss, loss, win, loss win, win, win, loss, win

experience c · 1k games c · 1M self-play games

Martin Matyášek VPD, 2016 29 / 50

Deep Reinforcement Learning

How?

Martin Matyášek VPD, 2016 30 / 50

Deep Reinforcement Learning

Science

Martin Matyášek VPD, 2016 31 / 50

Deep Reinforcement Learning

AlphaGo Design

normal search - MCTS
simulation (rollout) policy - relatively normal
supervised learning (SL) policy from master games - improved
in details, more data
RL from self-play for value network
RL from self-play for policy network

Martin Matyášek VPD, 2016 32 / 50

Deep Reinforcement Learning

Convolutional Neural Network

Martin Matyášek VPD, 2016 33 / 50

Deep Reinforcement Learning

Value Network

Martin Matyášek VPD, 2016 34 / 50

Deep Reinforcement Learning

Policy Network

Martin Matyášek VPD, 2016 35 / 50

Deep Reinforcement Learning

Reducing d with Value Network

Martin Matyášek VPD, 2016 36 / 50

Deep Reinforcement Learning

Reducing d with Value Network

Martin Matyášek VPD, 2016 37 / 50

Deep Reinforcement Learning

Reducing b with Policy Network

Martin Matyášek VPD, 2016 38 / 50

Deep Reinforcement Learning

Deep RL in AlphaGo

Martin Matyášek VPD, 2016 39 / 50

Deep Reinforcement Learning

SL of Policy Networks
network 12 layer convolutional NN

training data 30M position from human experts (KGS 5+ dan)
training alg. max. likelihood by SGD

∆σ ∝ ∂ log pσ(a | s)

∂σ

training time 4 weeks on 50 GPUs (Google Cloud)
results 57% accuracy on held out test data

state-of-the art was 44%

Martin Matyášek VPD, 2016 40 / 50

Deep Reinforcement Learning

RL of Policy Networks
network 12 layer convolutional NN

training data games of self-play between policy networks
training alg. max. wins z by policy gradient RL

∆ρ ∝ ∂ log pρ(a | s)

∂ρ
z

training time 1 week on 50 GPUs (Google Cloud)
results 80% vs. SL network pσ

raw network ∼ 3 amateur dan

Martin Matyášek VPD, 2016 41 / 50

Deep Reinforcement Learning

RL of Value Networks
network 12 layer convolutional NN

training data 30M games of self-play
idea

vp(s) = E[zt | st = s,at ,...,T ∼ p]

vθ(s) ≈ vpρ(s) ≈ v∗(s)

training alg. min. MSE by SGD

∆θ ∝ ∂vθ(s)

∂θ
(z − vθ(s))

training time 1 week on 50 GPUs (Google Cloud)
results first strong position eval. function

Martin Matyášek VPD, 2016 42 / 50

Deep Reinforcement Learning

MCTS in AlphaGo
each edge stores:
action value Q(s,a)

visit count N(s,a)
prior prob. P(s,a) (initialized to P(s,a) = pσ(a | s))

at each step t we select in state st :

at = argmaxa(Q(st ,a) + u(st ,a))

u(s,a) ∝ P(s,a)
1+N(s,a) decays with repeated visits (encourages

exploration)
leaf node sL is evaluated in two different ways:
V (sL) = (1− λ)vθ(sL) + λzL
1. by value network vθ(sL)
2. by outcome zL ∼∗ pπ

Martin Matyášek VPD, 2016 43 / 50

Deep Reinforcement Learning

MCTS in AlphaGo: selection

Martin Matyášek VPD, 2016 44 / 50

Deep Reinforcement Learning

MCTS in AlphaGo: expansion

Martin Matyášek VPD, 2016 45 / 50

Deep Reinforcement Learning

MCTS in AlphaGo: evaluation

Martin Matyášek VPD, 2016 46 / 50

Deep Reinforcement Learning

MCTS in AlphaGo: rollout

Martin Matyášek VPD, 2016 47 / 50

Deep Reinforcement Learning

MCTS in AlphaGo: backup

Martin Matyášek VPD, 2016 48 / 50

Deep Reinforcement Learning

AlphaGo: results

Martin Matyášek VPD, 2016 49 / 50

Deep Reinforcement Learning

References
Sutton, Richard S and Barto, Andrew G. Reinforcement
learning: An introduction. MIT press Cambridge, 1998.

Silver, David and Huang, Aja and Maddison, Chris J and
others. Mastering the game of Go with deep neural
networks and tree search. Nature Publishing Group, 2016.

Shoham, Yoav and Leyton-Brown, Kevin. Multiagent
systems: Algorithmic, game-theoretic, and logical
foundations. Cambridge University Press, 2008.

Silver, David. Tutorial: Deep Reinforcement Learning.
http://icml.cc/2016/tutorials/deep_rl_tutorial.pdf

Silver, David. AlphaGo slides.
http://www0.cs.ucl.ac.uk/staff/d.silver/web/

Resources_files/AlphaGo_IJCAI.pdf
Martin Matyášek VPD, 2016 50 / 50

http://icml.cc/2016/tutorials/deep_rl_tutorial.pdf
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Resources_files/AlphaGo_IJCAI.pdf
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Resources_files/AlphaGo_IJCAI.pdf

