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Definition

● Learning in the face 
of adversaries

● Two entities with 
their own cost 
functions



Security of 
Machine Learning

● Not a new thing but 
revived the past few 
years

● Attacks against ML 
models

● During training or 
testing

● Black box vs white 
box attacks



(Kurakin et al., 2014)

(Carlini & Wagner, 2018)



Physical Security

(Athalye, A. and Sutskever, I., 2017)

(Sharif et al. 2016) 

(Evtimov et al. 2017)



Other topics

● Privacy (model leaks info about training data)
● Reinforcement Learning (Security, Self-play)
● Safety (self-driving cars, etc.)
● ...



Generative Adversarial 
Networks (GANs)



Motivation

Sample Generation

CelebA dataset (Karras et al, 2017)



Definition

A game between 
two neural 
networks

http://guimperarnau.com/blog/2017/03/Fantastic-GANs-and-where-to-find-them



Mathematical Formulation

● Training the two networks until “equilibrium”
● Wanted equilibrium is “Generator wins”, i.e. the discriminator cannot tell 

apart the samples from Pdata and Pfake 
● Not necessarily log()



Loss Functions

Vanilla GAN:

Discriminator loss function:

 

Generator loss function:
In practice:



Training algorithm



Code example (keras)

Define discriminator

Define generator

Define stacked combined model
but freeze the discriminator 
parameters



Training results



LSGAN

Least squares GAN (LSGAN): 



Hinge Loss

(Miyato et al 2017, Lim and Ye 2017, Tran et al 2017)



Conditional GAN 

(Mizra et al. 2014)



cGAN (2)



A GAN explosion



Progress over time

(Brundage et al. 2017)



How well do GANs work?



Convergence vs quality

● No correlation between quality and convergence (in most 
GANs)

● Frequently we observe oscillations between the two loss 
functions

● How do we measure the quality of the generated data?



Mode Collapse

Sometimes a Generator 
generates data from a 
limited subset of the 
distribution



Do GANs actually learn the distribution?

● Suppose the generator wins. What does that say about whether or not Pdata 
is close to Pfake  ? 

● Original belief: “All is well if the nets, the training data and the training time are 
large” - Ian Goodfellow

● Unfortunately: if D has size N, then ∃ G that generates a distribution 
supported by O(NlogN) images and still wins against all possible 
discriminators

● In other words: GANs training objective not guaranteed to avoid 
mode-collapse (generator can “win” using distributions of low support)

(Arora et al. 2017)



Diversity vs Size of D



Interesting applications of GANs



CycleGAN (unpaired image-to-image translation)



CycleGAN architecture



Cycle GAN architecture (2)



Failure case



(Paired) Image to image translation

(Isola et al. 2017)



And more...

● Music generation

● Text to image 

● Super resolution 

images



Interesting links

GAN zoo - https://github.com/hindupuravinash/the-gan-zoo

GAN implementations in keras - https://github.com/eriklindernoren/Keras-GAN

Off the convex path blog - http://www.offconvex.org (Arora et al.)

GAN playground - https://reiinakano.github.io/gan-playground/

https://github.com/hindupuravinash/the-gan-zoo
https://github.com/eriklindernoren/Keras-GAN
http://www.offconvex.org
https://reiinakano.github.io/gan-playground/
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