Adversarial Machine Learning

with a focus on GANs

Maria Rigaki maria.rigaki@aic.fel.cvut.cz

Definition

- Learning in the face of adversaries
- Two entities with their own cost functions

Security of Machine Learning

- Not a new thing but revived the past few years
- Attacks against ML models
- During training or testing
- Black box vs white box attacks

Attacker's Goal

and the second		
system operation	system operation	learning model or its users
not compromise normal	compromise normal	confidential information on the
Misclassifications that do	Misclassifications that	Querying strategies that reveal

Attacker's Capability	Integrity	Availability	Privacy / Confidentiality
Test data	Evasion (a.k.a. adversarial examples)	-	Model extraction / stealing and model inversion (a.k.a. hill-climbing attacks)
Training data	Poisoning (to allow subsequent intrusions) – e.g., backdoors or neural network trojans	Poisoning (to maximize classification error)	-

(Carlini & Wagner, 2018)

Other topics

- Privacy (model leaks info about training data)
- Reinforcement Learning (Security, Self-play)
- Safety (self-driving cars, etc.)
- ...

Generative Adversarial Networks (GANs)

Motivation

Sample Generation

CelebA dataset

(Karras et al, 2017)

Definition

A game between two neural networks

http://guimperarnau.com/blog/2017/03/Fantastic-GANs-and-where-to-find-them

Mathematical Formulation

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})} [\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} [\log(1 - D(G(\boldsymbol{z})))]$$

- Training the two networks until "equilibrium"
- Wanted equilibrium is "Generator wins", i.e. the discriminator cannot tell apart the samples from *P*_{data} and *P*_{fake}
- Not necessarily log()

Loss Functions

Vanilla GAN:

Discriminator loss function:

$$J^{(D)}(\boldsymbol{\theta}^{(D)}, \boldsymbol{\theta}^{(G)}) = -\frac{1}{2} \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} \log D(\boldsymbol{x}) - \frac{1}{2} \mathbb{E}_{\boldsymbol{z}} \log \left(1 - D\left(G(\boldsymbol{z})\right)\right)$$

Generator loss function:

Training algorithm

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our experiments.

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \ldots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)} \right) + \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right) \right].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^m \log\left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right).$$

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

Code example (keras)

Training results

Least squares GAN (LSGAN):

$$J^{(D)} = \frac{1}{2m} \sum_{i=1}^{m} \left[\left(D(x^{(i)}) - 1 \right)^2 \right] + \frac{1}{2m} \sum_{i=1}^{m} \left[\left(D(G(z^{(i)})) \right)^2 \right]$$

$$J^{(G)} = \frac{1}{m} \sum_{i=1}^{m} \left[\left(D(G(z^{(i)})) - 1 \right)^2 \right]$$

Hinge Loss

$$\begin{split} V_D(\hat{G}, D) &= \mathop{\mathrm{E}}_{\boldsymbol{x} \sim q_{\text{data}}(\boldsymbol{x})} \left[\min\left(0, -1 + D(\boldsymbol{x})\right) \right] + \mathop{\mathrm{E}}_{\boldsymbol{z} \sim p(\boldsymbol{z})} \left[\min\left(0, -1 - D\left(\hat{G}(\boldsymbol{z})\right)\right) \right] \\ V_G(G, \hat{D}) &= -\mathop{\mathrm{E}}_{\boldsymbol{z} \sim p(\boldsymbol{z})} \left[\hat{D}\left(G(\boldsymbol{z})\right) \right], \end{split}$$

(Miyato et al 2017, Lim and Ye 2017, Tran et al 2017)

Conditional GAN

(Mizra et al. 2014)

cGAN (2)

A GAN explosion

Progress over time

2014

2017

(Brundage et al. 2017)

Odena et al 2016

Miyato et al 2017

Zhang et al 2018

How well do GANs work?

Convergence vs quality

- No correlation between quality and convergence (in most GANs)
- Frequently we observe oscillations between the two loss functions
- How do we measure the quality of the generated data?

Mode Collapse

Sometimes a Generator generates data from a limited subset of the distribution

Do GANs actually learn the distribution? (Arora et al. 2017)

- Suppose the generator wins. What does that say about whether or not P_{data} is close to P_{fake} ?
- Original belief: "All is well if the nets, the training data and the training time are large" Ian Goodfellow
- Unfortunately: if **D** has size **N**, then *J G* that generates a distribution supported by O(NlogN) images and still wins against all possible discriminators
- In other words: GANs training objective not guaranteed to avoid mode-collapse (generator can "win" using distributions of low support)

Interesting applications of GANs

CycleGAN (unpaired image-to-image translation)

CycleGAN architecture

Cycle GAN architecture (2)

Failure case

(Paired) Image to image translation

Labels to Street Scene

(Isola et al. 2017)

And more...

- Music generation
- Text to image
- Super resolution images

original

Figure 3. Example result of the melodies (of 8 bars) generated by different implementations of MidiNet.

Figure 2: From left to right: bicubic interpolation, deep residual network optimized for MSE, deep residual generative adversarial network optimized for a loss more sensitive to human perception, original HR image. Corresponding PSNR and SSIM are shown in brackets. [4× upscaling]

Interesting links

GAN zoo - https://github.com/hindupuravinash/the-gan-zoo

GAN implementations in keras - <u>https://github.com/eriklindernoren/Keras-GAN</u>

Off the convex path blog - <u>http://www.offconvex.org</u> (Arora et al.)

GAN playground - https://reiinakano.github.io/gan-playground/

References

Arora, S., Ge, R., Liang, Y., Ma, T. and Zhang, Y., 2017. Generalization and equilibrium in generative adversarial nets (gans). *arXiv* preprint arXiv:1703.00573.

Athalye, A. and Sutskever, I., 2017. Synthesizing robust adversarial examples. *arXiv preprint arXiv*:1707.07397.

Brundage, M., Avin, S., Clark, J., Toner, H., Eckersley, P., Garfinkel, B., Dafoe, A., Scharre, P., Zeitzoff, T., Filar, B. and Anderson, H., 2018. The malicious use of artificial intelligence: Forecasting, prevention, and mitigation. *arXiv preprint arXiv*:1802.07228.

Carlini, N.and Wagner, D., 2018. Audio Adversarial Examples: Targeted Attacks on Speech-to-Text. In *IEEE Security and Privacy Workshops (SPW)*, San Francisco, CA, (pp. 1-7).

Evtimov, I., Eykholt, K., Fernandes, E., Kohno, T., Li, B., Prakash, A., Rahmati, A. and Song, D., 2017. Robust physical-world attacks on machine learning models. *arXiv preprint arXiv*:1707.08945.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A. and Bengio, Y., 2014. Generative adversarial nets. In *Advances in neural information processing systems* (pp. 2672-2680).

References (2)

Isola, P., Zhu, J.Y., Zhou, T. and Efros, A.A., 2017. Image-to-image translation with conditional adversarial networks. arXiv preprint.

Karras, T., Aila, T., Laine, S. and Lehtinen, J., 2017. Progressive growing of gans for improved quality, stability, and variation. *arXiv* preprint arXiv:1710.10196.

Kurakin, A., Goodfellow, I. and Bengio, S., 2016. Adversarial examples in the physical world. arXiv preprint arXiv:1607.02533.

Mirza, M. and Osindero, S., 2014. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784.

Sharif, M., Bhagavatula, S., Bauer, L. and Reiter, M.K., 2016, October. Accessorize to a crime: Real and stealthy attacks on state-of-the-art face recognition. In *Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security* (pp. 1528-1540). ACM.

Zhu, J.Y., Park, T., Isola, P. and Efros, A.A., 2017. Unpaired image-to-image translation using cycle-consistent adversarial networks. *arXiv preprint*.

