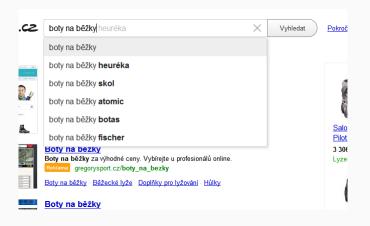
RECOMMENDER SYSTEMS

Petr Ryšavý

Thursday 8th December, 2016


IDA, Dept. of Computer Science, FEE, CTU

RECOMMENDER SYSTEMS

Recommender systems

- Goal is to predict "rating" or "preference".
- System propose to user items that the user will be likely interested in.
- Great development in past years.
- Goals: keep attention of user, get more profit, make users more happy with the service
- Many areas: sellers (Amazon), movies (Netflix), music (Pandora), news (NYT) and many others

In daily use

In daily use

Necelých půl roku po odchodu z Downing Street představila manželka...

Ježíškovy pošty speciálním ručním příležitostním razítkem. Autorkou...

Fischer RC5 SKATE 46

Koupit

3 899 Kč

NÁZORY

Američtí liberálové až po uši v depresi a apokalypse

Aby bylo jasno, chápu, že v Americe je pořád leckdo v šoku ze Trumpova zvolení. Chápu, že mnozí ještě lapají po dechu...

Jan Macháček

Temný a světlejší scénář pro Evropu Nejproblematičtější dopady zvolení Donalda

Fischer RC5 SKAT

Koupit

3 899 Kč

IDNES

Sudové víno Zásah je nut

Víno se nekonti lihové aféře. Je Hajda (ČSSD), l zkomplikuje pre

Octavia už s vyjde výhod Když v roce 20:

General setting

- Set of users C.
- Set of items S.
- Utility function $u : \mathbf{C} \times \mathbf{S} \mapsto \mathcal{R}$.
- \mathcal{R} is set of ratings (number of stars, liked/disliked).

	JOHN LE CARRÉ	ECARRÉ MARIAMAN.	JAMES BOND IAN FLEMING FROM RUSSIA. WITH LOVE	JAMES BOND IAN FLEMING DIAMONDS ARE FOREVER	FREDERICK FORSYTH THE DAY OF THE JACKAL	FREDERICK FORSYTH THE DOGS OF WAR
Alice	1			0.8	0.7	0.9
Bob	0.9		0.2		0.8	
Cecil						0.7
David			0.3	0.2	0.2	

Several challenges

- How to get ratings? ask users explicitly/watch their behavior
- Data are extremely sparse.
- Cold start.

Classification

- Demographic systems recommendations based on age, location, gender etc.
- Content-based systems find similar items to items favored by user
- Collaborative filtering recommended items preferred by similar users
- Hybrid systems combines two or more recommendation approaches

DEMOGRAPHIC SYSTEMS

Demographic systems

- \checkmark No need for history of user ratings
- \checkmark Only few observations needed
- Privacy issues
- Very stereotypical

CONTENT-BASED SYSTEMS

Content-based systems

- Recommend items similar to those that were rated recently by the user.
- Each item is assigned item profile.
- Metadata, content of newspaper articles, reviews by users, tags (artificial/manual), words in newspaper articles
- Normalization, proper scaling of numerical features, higher weight to more rare words

Evaluating similarity

Jaccard index

$$\frac{|A\cap B|}{|A\cup B|}$$

Cosine similarity

$$\frac{\mathbf{x}\mathbf{y}}{\|\mathbf{x}\|\|\mathbf{y}\|}.$$

- Should not depend on items that users have not rated or attributes that were not assigned to none of the items.
- Normalization of ratings.

	JOHN LE CARRÉ TENER TAULOR SOLDRE SITY	CARRE MANAGEMENT OF THE PARTY O	JAMES BOND IAN FLEMING FROM RUSSIA. WITH LOVE	JAMES BOND IAN FLEMING W DIAMONDS ARE FOREVER	FREDERICK FORSYTH THE DAY OF THE JACKAL	FREDERICK FORSYTH OOGS OF WAR
Alice	1			0.8	0.7	0.9
Bob	0.9		0.2		0.8	
Cecil						0.7
David			0.3	0.2	0.2	

User profiles

- Represent attributes that are favored by the users.
- Weighted average of rated item profiles.
- Classification can be applied to predict rating.
- For example decision trees/random forest/regression.

Content-based systems

- ✓ No need for data of other users.
- ✓ Can recommend to users which have unique taste.
- √ Avoids "first rater problem"
- Need to extract features (manually/by special algorithms)
- Cold start for new users.

COLLABORATIVE FILTERING

Collaborative filtering

• Predict rating based on actions of similar users.

	JOHN LE CARRÉ TONGE TAILOR SCIENCE SIP	CARRE CONTROL OF THE PARTY OF T	JAMES BOND IAN FLEMING FROM RUSSIA. WITH LOVE	JAMES BOND IAN FLEMING DIAMONDS ARE FOREVER	FREDERICK FORSYTH THE CONTROL OF THE JACKAL	FREDERICK FORSYTH THE DOGS OF WAR
Alice	1			0.8	0.7	0.9
Bob	0.9		0.2		0.8	
Cecil						0.7
David			0.3	0.2	0.2	

- For similarity calculations we can use cosine similarity or Jaccard index.
- We need to normalize.

Clustering

- Way how to deal with sparsity allows us to estimate blanks.
- There is low probability that two users liked the same item of the same kind.
- Hierarchically cluster items and/or users.

Dimensionality reduction

- Another way to estimate blank fields in utility matrix.
- UV-decomposition

$$\mathbf{M} = \mathbf{U} \times \mathbf{V} = \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \\ \vdots & \vdots \\ u_{|U|1} & u_{|U|2} \end{bmatrix} \times \begin{bmatrix} v_{11} & v_{12} & \cdots & v_{1|S|} \\ v_{21} & v_{22} & \cdots & v_{2|S|} \end{bmatrix}.$$

• We minimize Root-Mean-Square-Error of non-blanks in utility matrix ${\bf M}$.

UV-decomposition

$$\mathbf{M} = \mathbf{U} \times \mathbf{V} = \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \\ \vdots & \vdots \\ u_{|U|1} & u_{|U|2} \end{bmatrix} \times \begin{bmatrix} v_{11} & v_{12} & \cdots & v_{1|S|} \\ v_{21} & v_{22} & \cdots & v_{2|S|} \end{bmatrix}.$$

- Gradient descent.
- Minimization of RMSE w.r.t. selected parameter u_{ij} or v_{ij} .
- Many local optima. Random restarts and different order of parameters selected for minimization used.

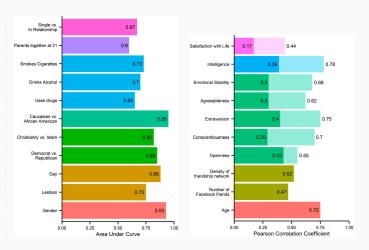
Collaborative filtering

- √ No need to represent items as list of features.
- ✓ Scaleable no human interaction.
- "first rater problem"
- X Cannot work for users with unique taste.
- Whole database needs to be processed.

HYBRID RECOMMENDER SYSTEMS

Hybrid recommender systems

- Combine two or more recommendation approaches.
- Most popular are combinations of content-based systems and collaborative filtering.
- Provide the best results.
- · Avoid weaknesses of individual approaches.


CONCLUSION

Netflix challenge

- In 2006 Netflix provided $100\mathrm{M}$ ratings that $480\mathrm{k}$ users gave to $18\mathrm{k}$ movies
- First team to provide algorithm $10\,\%$ more accurate (RMSE) than Netflix algorithm gets \$1M.
- Progress prizes.
- Most accurate algorithm in 2007 used ensembl of 107 different algorithmic appraches. (k-NN, Restricted Boltzman Machines, ...) [2]
- Awarded in September 2009. [7]
- \bullet Netflix algorithm only $3\,\%$ better than trivial baseline.
- 20k teams from 150 countries.
- Cancelled sequel due to a lawsuit against a Netflix user.

Privacy issues [4]

- Plenty of data publicitly available.
- For example major US retail network used customer shopping record to predict pregnancies of female customers.

THANK YOU FOR YOUR ATTENTION. TIME FOR QUESTIONS!

Bibliography I

Gediminas Adomavicius and Alexander Tuzhilin.

Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions.

IEEE transactions on knowledge and data engineering, 17(6):734-749, 2005.

Robert M Bell, Yehuda Koren, and Chris Volinsky.

The bellkor solution to the netflix prize, 2007.

Jesús Bobadilla, Fernando Ortega, Antonio Hernando, and Abraham Gutiérrez.

Recommender systems survey.

Knowledge-Based Systems, 46:109-132, 2013.

Michal Kosinski, David Stillwell, and Thore Graepel.

Private traits and attributes are predictable from digital records of human behavior.

Proceedings of the National Academy of Sciences, 110(15):5802–5805, 2013.

Bibliography II

Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman.

Mining of massive datasets.

Cambridge University Press, 2014.

RVVSV Prasad and V Valli Kumari.

A categorical review of recommender systems.

International Journal of Distributed and Parallel Systems, 3(5):73, 2012.

Andreas Töscher, Michael Jahrer, and Robert M Bell.

The bigchaos solution to the netflix grand prize.

Netflix prize documentation, pages 1-52, 2009.