GRAPHICAL MARKOV MODELS (WS2018) 4. SEMINAR

Assignment 1. Consider the following probabilistic model for real valued sequences $\boldsymbol{x}=$ $\left(x_{1}, \ldots, x_{n}\right), x_{i} \in \mathbb{R}$ of fixed length n. Each sequence is a combination of a leading part $i \leqslant k$ and a trailing part $i>k$. The boundary $k=1, \ldots, n$ is random with some categorical distribution $\boldsymbol{\pi} \in \mathbb{R}_{+}^{n}, \sum_{k} \pi_{k}=1$. The values x_{i}, in the leading and trailing part are statistically independent and distributed with some probability density function $p_{1}(x)$ and $p_{2}(x)$ respectively. Altogether the distribution for pairs (\boldsymbol{x}, k) reads

$$
\begin{equation*}
p(\boldsymbol{x}, k)=\pi_{k} \prod_{i=1}^{k} p_{1}\left(x_{i}\right) \prod_{j=k+1}^{n} p_{2}\left(x_{j}\right) . \tag{1}
\end{equation*}
$$

The densities p_{1} and p_{2} are known. Given an i.i.d. sample of sequences $\mathcal{T}^{m}=\left\{\boldsymbol{x}^{\ell} \in \mathbb{R}^{n} \mid \ell=\right.$ $1, \ldots, m\}$, the task is to estimate the unknown boundary distribution $\boldsymbol{\pi}$ by the EM-algorithm. a) The E-step of the algorithm requires to compute the values of auxiliary variables $\alpha_{\ell}^{(t)}(k)=$ $p\left(k \mid \boldsymbol{x}^{\ell}\right)$ for each example \boldsymbol{x}^{ℓ} given the current estimate $\boldsymbol{\pi}^{(t)}$ of the boundary distribution. Give a formula for computing these values from model (1).
b) The M -step requires to solve the optimisation problem

$$
\frac{1}{m} \sum_{\ell=1}^{m} \sum_{k=1}^{n} \alpha_{\ell}^{(t)}(k) \log p\left(\boldsymbol{x}^{\ell}, k\right) \rightarrow \max _{\pi}
$$

Substitute the model (1) and solve the optimisation task.
Assignment 2. (breakpoint detection) Consider the following probabilistic model for real valued sequences $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right), x_{i} \in \mathbb{R}$ of fixed length n. Each sequence is a combination of a leading part $i \leqslant k$ and a trailing part $i>k$. The boundary $k=1, \ldots, n$ is random with some categorical distribution $\pi \in \mathbb{R}_{+}^{n}, \sum_{k} \pi_{k}=1$. The p.d.s for the leading and trailing parts of the sequence arise from two homogeneous HMM models:

$$
p\left(x_{1: k}\right)=\sum_{s_{1: k}} p_{1}\left(x_{1: k}, s_{1: k}\right) \text { and } p\left(x_{k+1: n}\right)=\sum_{s_{k+1: n}} p_{2}\left(x_{k+1: n}, s_{k+1: n}\right)
$$

The HMMs p_{1} and p_{2} and the distribution $\boldsymbol{\pi}$ are known. Find an algorithm for inferring the boundary k for a given sequence \boldsymbol{x}, assuming that the loss function is $\ell\left(k, k^{\prime}\right)=\left(k-k^{\prime}\right)^{2}$.

Assignment 3. Let $s=\left(s_{1}, \ldots, s_{n}\right)$, be a sequence of K-valued random variables. Suppose that $v_{i}\left(k, k^{\prime}\right), i=2, \ldots, n, k, k^{\prime} \in K$ is a system of pairwise probabilities associated with consecutive pairs s_{i-1}, s_{i}. Consider the set $\mathcal{P}(\boldsymbol{v})$ of all joint probability distributions $p(s)$, which have \boldsymbol{v} as pairwise marginals, i.e.

$$
\sum_{s \in K^{n}} p(s) \delta_{s_{i-1} k} \delta_{s_{i} k^{\prime}}=v_{i}\left(k, k^{\prime}\right) \quad \forall i=2, \ldots, n, \forall k, k^{\prime} \in K .
$$

We want to find the distribution with highest entropy

$$
H(p)=-\sum_{s \in K^{n}} p(s) \log p(s)
$$

in $\mathcal{P}(\boldsymbol{v})$. Prove that the unique maximiser is the Markov chain model defined by the pairwise marginals \boldsymbol{v}.
Hint: Formulate and solve the constrained optimisation task by using its Lagrange function.

