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1 Notation

H . . . the empty set [1]
expU . . . the set of all subsets of set U [1]
U ˆ V . . . Cartesian product of sets U and V [1]
Z . . . whole numbers [1]
Zě0 . . . non-negative integers [2]
(i.e. 0, 1, 2, . . .) Q . . . rational numbers [3]
R . . . real numbers [3]
i . . . imaginary unit [3]
pS,`, q . . . space of geometric scalars
A . . . affine space (space of geometric vectors)
pAo,‘,dq . . . space of geometric vectors bound to point o
pV,‘,dq . . . space of free vectors
A2 . . . real affine plane
A3 . . . three-dimensional real affine space
P2 . . . real projective plane
P3 . . . three-dimensional real projective space
~x . . . vector
A . . . matrix
Aij . . . ij element of A
AJ . . . transpose of A
A: . . . conjugate transpose of A
|A| . . . determinant of A
I . . . identity matrix
R . . . rotation matrix
b . . . Kronecker product of matrices

β “ r~b1,~b2,~b3s . . . basis (an ordered triple of independent generator vectors)
β‹, β̄ . . . the dual basis to basis β
~xβ . . . column matrix of coordinates of ~x w.r.t. the basis β
~x ¨ ~y . . . Euclidean scalar product of ~x and ~y (~x ¨ ~y “ ~xJ

β ~yβ in an

orthonormal basis β)
~x ˆ ~y . . . cross (vector) product of ~x and ~y

r~xsˆ . . . the matrix such that r~xsˆ ~y “ ~x ˆ ~y

}~x} . . . Euclidean norm of ~x (}~x} “
?
~x ¨ ~x)

orthogonal vectors . . . mutually perpendicular and all of equal length
orthonormal vectors . . . unit orthogonal vectors
P ˝ l . . . point P is incident to line l

P _ Q . . . line(s) incident to points P and Q

k ^ l . . . point(s) incident to lines k and l
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2 Linear algebra

We rely on linear algebra [4, 5, 6, 7, 8, 9]. We recommend excellent text books [7, 4] for acquiring
basic as well as more advanced elements of the topic. Monograph [5] provides a number of
examples and applications and provides a link to numerical and computational aspects of linear
algebra. We will next review the most crucial topics needed in this text.

2.1 Change of coordinates induced by the change of basis

Let us discuss the relationship between the coordinates of a vector in a linear space, which is
induced by passing from one basis to another. We shall derive the relationship between the
coordinates in a three-dimensional linear space over real numbers, which is the most important
when modeling the geometry around us. The formulas for all other n-dimensional spaces are
obtained by passing from 3 to n.

§ 1 Coordinates Let us consider an ordered basis β “
”

~b1 ~b2 ~b3

ı

of a three-dimensional

vector space V 3 over scalars R. A vector ~v P V 3 is uniquely expressed as a linear combination
of basic vectors of V 3 by its coordinates x, y, z P R, i.e. ~v “ x ~b1 ` y ~b2 ` z~b3, and can be

represented as an ordered triple of coordinates, i.e. as ~vβ “
“

x y z
‰J

.
We see that an ordered triple of scalars can be understood as a triple of coordinates of a vector

in V 3 w.r.t. a basis of V 3. However, at the same time, the set of ordered triples
“

x y z
‰J

is also

a three-dimensional coordinate linear space R3 over R with
“

x1 y1 z1
‰J `

“

x2 y2 z2
‰J “

“

x1 ` x2 y1 ` y2 z1 ` z2
‰J

and s
“

x y z
‰J “

“

s x s y s z
‰J

for s P R. Moreover, the
ordered triple of the following three particular coordinate vectors

σ “

»

–

»

–

1
0
0

fi

fl

»

–

0
1
0

fi

fl

»

–

0
0
1

fi

fl

fi

fl (2.1)

forms an ordered basis of R3, the standard basis, and therefore a vector ~v “
“

x y z
‰J

is

represented by ~vσ “
“

x y z
‰J

w.r.t. the standard basis in R3. It is noticeable that the vector
~v and the coordinate vector ~vσ of its coordinates w.r.t. the standard basis of R3, are identical.

§ 2 Two bases Having two ordered bases β “
”

~b1 ~b2 ~b3

ı

and β1 “
”

~b 1
1

~b 1
2

~b 1
3

ı

leads to

expressing one vector ~x in two ways as ~x “ x ~b1 ` y ~b2 ` z ~b3 and ~x “ x1~b 1
1

` y1~b 1
2

` z1~b 1
3
.

The vectors of the basis β can also be expressed in the basis β1 using their coordinates. Let us
introduce

~b1 “ a11~b
1
1 ` a21~b

1
2 ` a31~b

1
3

~b2 “ a12~b
1
1 ` a22~b

1
2 ` a32~b

1
3 (2.2)

~b3 “ a13~b
1
1 ` a23~b

1
2 ` a33~b

1
3

2
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§ 3 Change of coordinates We will next use the above equations to relate the coordinates of
~x w.r.t. the basis β to the coordinates of ~x w.r.t. the basis β1

~x “ x ~b1 ` y ~b2 ` z ~b3

“ x pa11~b 1
1 ` a21~b

1
2 ` a31~b

1
3q ` y pa12~b 1

1 ` a22~b
1
2 ` a32~b

1
3q ` z pa13~b 1

1 ` a23~b
1
2 ` a33~b

1
3q

“ pa11 x ` a12 y ` a13 zq~b 1
1 ` pa21 x ` a22 y ` a23 zq~b 1

2 ` pa31 x ` a32 y ` a33 zq~b 1
3

“ x1~b 1
1 ` y1~b 1

2 ` z1~b 1
3 (2.3)

Since coordinates are unique, we get

x1 “ a11 x ` a12 y ` a13 z (2.4)

y1 “ a21 x ` a22 y ` a23 z (2.5)

z1 “ a31 x ` a32 y ` a33 z (2.6)

Coordinate vectors ~xβ and ~xβ 1 are thus related by the following matrix multiplication
»

–

x1

y1

z1

fi

fl “

»

–

a11 a12 a13
a21 a22 a23
a31 a32 a33

fi

fl

»

–

x

y

z

fi

fl (2.7)

which we concisely write as

~xβ1 “ A ~xβ (2.8)

The columns of matrix A can be viewed as vectors of coordinates of basic vectors, ~b1,~b2,~b3 of β
in the basis β1

A “

»

–

| | |
~b1β1

~b2β1
~b3β1

| | |

fi

fl (2.9)

and the matrix multiplication can be interpreted as a linear combination of the columns of A by
coordinates of ~x w.r.t. β

~xβ1 “ x~b1β1 ` y~b2β1 ` z~b3β1 (2.10)

Matrix A plays such an important role here that it deserves its own name. Matrix A is very
often called the change of basis matrix from basis β to β1 or the transition matrix from basis β

to basis β1 [5, 10] since it can be used to pass from coordinates w.r.t. β to coordinates w.r.t. β1

by Equation 2.8.
However, literature [6, 11] calls A the change of basis matrix from basis β1 to β, i.e. it (seemingly

illogically) swaps the bases. This choice is motivated by the fact that A relates vectors of β and
vectors of β1 by Equation 2.2 as

”

~b1 ~b2 ~b3

ı

“
”

a11~b
1
1 ` a21~b

1
2 ` a31~b

1
3 a12~b

1
1 ` a22~b

1
2 ` a32~b

1
3

a13~b
1
1 ` a23~b

1
2 ` a33~b

1
3

ı

(2.11)

”

~b1 ~b2 ~b3

ı

“
”

~b 1
1

~b 1
2

~b 1
3

ı

»

–

a11 a12 a13
a21 a22 a23
a31 a32 a33

fi

fl (2.12)

3
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and therefore giving
”

~b1 ~b2 ~b3

ı

“
”

~b 1
1

~b 1
2

~b 1
3

ı

A (2.13)

or equivalently
”

~b 1
1

~b 1
2

~b 1
3

ı

“
”

~b1 ~b2 ~b3

ı

A´1 (2.14)

where the multiplication of a row of column vectors by a matrix from the right in Equation 2.13
has the meaning given by Equation 2.11 above. Yet another variation of the naming appeared
in [8, 9] where A´1 was named the change of basis matrix from basis β to β1.
We have to conclude that the meaning associated with the change of basis matrix varies in

the literature and hence we will avoid this confusing name and talk about A as about the matrix
transforming coordinates of a vector from basis β to basis β1.
There is the following interesting variation of Equation 2.13

»

—

–

~b 1
1

~b 1
2

~b 1
3

fi

ffi

fl
“ A´J

»

—

–

~b1
~b2
~b3

fi

ffi

fl
(2.15)

where the basic vectors of β and β1 are understood as elements of column vectors. For instance,
vector ~b 1

1
is obtained as

~b 1
1 “ a‹

11
~b1 ` a‹

12
~b2 ` a‹

13
~b3 (2.16)

where ra‹
11
, a‹

12
, a‹

13
s is the first row of A´J.

§ 4 Example We demonstrate the relationship between vectors and bases on a concrete ex-
ample. Consider two bases α and β represented by coordinate vectors, which we write into
matrices

α “
“

~a1 ~a2 ~a3
‰

“

»

–

1 1 0
0 1 1
0 0 1

fi

fl (2.17)

β “
”

~b1 ~b2 ~b3

ı

“

»

–

1 1 1
0 0 1
0 1 1

fi

fl , (2.18)

and a vector ~x with coordinates w.r.t. the basis α

~xα “

»

–

1
1
1

fi

fl (2.19)

We see that basic vectors of α can be obtained as the following linear combinations of basic
vectors of β

~a1 “ `1~b1 ` 0~b2 ` 0~b3 (2.20)

~a2 “ `1~b1 ´ 1~b2 ` 1~b3 (2.21)

~a3 “ ´1~b1 ` 0~b2 ` 1~b3 (2.22)

4
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or equivalently

“

~a1 ~a2 ~a3
‰

“
”

~b1 ~b2 ~b3

ı

»

–

1 1 ´1
0 ´1 0
0 1 1

fi

fl “
”

~b1 ~b2 ~b3

ı

A (2.23)

Coordinates of ~x w.r.t. β are hence obtained as

~xβ “ A ~xα, A “

»

–

1 1 ´1
0 ´1 0
0 1 1

fi

fl (2.24)

»

–

1
´1
2

fi

fl “

»

–

1 1 ´1
0 ´1 0
0 1 1

fi

fl

»

–

1
1
1

fi

fl (2.25)

We see that

α “ β A (2.26)
»

–

1 1 0
0 1 1
0 0 1

fi

fl “

»

–

1 1 1
0 0 1
0 1 1

fi

fl

»

–

1 1 ´1
0 ´1 0
0 1 1

fi

fl (2.27)

The following questions arises: When are the coordinates of a vector ~x (Equation 2.8) and the
basic vectors themselves (Equation 2.15) transformed in the same way? In other words, when
A “ A´J. We shall give the answer to this question later in paragraph 2.4.

2.2 Determinant

Determinat [4] of a matrix A, denoted by |A|, is a very interesting and useful concept. It can be,
for instance, used to check the linear independence of a set of vectors or to define an orientation
of the space.

2.2.1 Permutation

A permutation [4] π on the set rns“ t1, . . . , nu of integers is a one-to-one function from rns onto
rns. The identity permutation will be denoted by ǫ, i.e. ǫpiq “ i for all i P rns .

§ 1 Composition of permutations Let σ and π be two permutations on rns. Then, their
composition, i.e. πpσq, is also a permutation on rns since a composition of two one-to-one onto
functions is a one-to-one onto function.

§ 2 Sign of a permutation We will now introduce another important concept related to per-
mutations. Sign, sgnpπq, of a permutation π is defined as

sgnpπq “ p´1qNpπq (2.28)

where Npπq is equal to the number of inversions in π, i.e. the number of pairs ri, js such that
i, j P rns, i ă j and πpiq ą πpjq.

5
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2.2.2 Determinant

Let Sn be the set of all permutations on rns and A be an n ˆ n matrix. Then, determinant |A|
of A is defined by the formula

|A| “
ÿ

πPSn

sgnpπq A1,πp1q A2,πp2q ¨ ¨ ¨ An,πpnq (2.29)

Notice that for every π P Sn and for j P rns there is exactly one i P rns such that j “ πpiq. Hence

tr1, πp1qs, r2, πp2qs, . . . , rn, πpnqsu “
 

rπ´1p1q, 1s, rπ´1p2q, 2s, . . . , rπ´1pnq, ns
(

(2.30)

and since the multiplication of elements of A is commutative we get

|A| “
ÿ

πPSn

sgnpπq Aπ´1p1q,1 Aπ´1p2q,2 ¨ ¨ ¨ Aπ´1pnq,n (2.31)

Let us next define a submatrix of A and find its determinant. Consider k ď n and two one-to-
one monotonic functions ρ, ν : rks Ñ rns, i ă j ñ ρpiq ă ρpjq, νpiq ă νpjq. We define k ˆ k

submatrix Aρ,ν of an n ˆ n matrix A by

A
ρ,ν
i,j “ Aρpiq,νpjq for i, j P rks (2.32)

We get the determinant of Aρ,ν as follows

|Aρ,ν | “
ÿ

πPSk

sgnpπq Aρ,ν
1,πp1q A

ρ,ν

2,πp2q ¨ ¨ ¨ Aρ,ν
k,πpkq (2.33)

“
ÿ

πPSk

sgnpπq Aρp1q,νpπp1qq Aρp2q,νpπp2qq ¨ ¨ ¨ Aρpkq,νpπpkqq (2.34)

Let us next split the rows of the matrix A into two groups of k and m rows and find the
relationship between |A| and the determinants of certain k ˆ k and m ˆ m submatrices of A.
Take 1 ď k,m ď n such that k ` m “ n and define a one-to-one function ρ : rms Ñ rk ` 1, ns “
tk ` 1, . . . , nu, by ρpiq “ k ` i. Next, let Ω Ď exp rns be the set of all subsets of rns of size k.
Let ω P Ω. Then, there is exactly one one-to-one monotonic function ϕω from rks onto ω since
rks and ω are finite sets of integers of the same size. Let ω “ rnszω. Then, there is exactly
one one-to-one monotonic function ϕω from rk ` 1, ns onto ω. Let further there be πk P Sk and
πm P Sm. With the notation introduced above, we are getting a version of the generalized
Laplace expansion of the determinant [12, 13]

|A| “
ÿ

ωPΩ

¨

˝

ź

iPrks,jPrk`1,ns

sgnpϕωpjq ´ ϕωpiqq

˛

‚|Aǫ,ϕω |
ˇ

ˇ

ˇ
Aρ,ϕωpρq

ˇ

ˇ

ˇ
(2.35)

2.3 Vector product

Let us look at an interesting mapping from R3 ˆ R3 to R3, the vector product in R3 [7] (which
it also often called the cross product [5]). Vector product has interesting geometrical properties
but we shall motivate it by its connection to systems of linear equations.

6
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§ 1 Vector product Assume two linearly independent coordinate vectors

~x “
“

x1 x2 x3
‰J

and ~y “
“

y1 y2 y3
‰J

in R3. The following system of linear equations

„

x1 x2 x3
y1 y2 y3



~z “ 0 (2.36)

has a one-dimensional subspace V of solutions in R3. The solutions can be written as multiples
of one non-zero vector ~w, the basis of V , i.e.

~z “ λ ~w, λ P R (2.37)

Let us see how we can construct ~w in a convenient way from vectors ~x, ~y.
Consider determinants of two matrices constructed from the matrix of the system (2.36) by

adjoining its first, resp. second, row to the matrix of the system (2.36)

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

–

x1 x2 x3
y1 y2 y3
x1 x2 x3

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

–

x1 x2 x3
y1 y2 y3
y1 y2 y3

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ 0 (2.38)

which gives

x1 px2 y3 ´ x3 y2q ` x2 px3 y1 ´ x1 y3q ` x3 px1 y2 ´ x2 y1q “ 0 (2.39)

y1 px2 y3 ´ x3 y2q ` y2 px3 y1 ´ x1 y3q ` y3 px1 y2 ´ x2 y1q “ 0 (2.40)

and can be rewritten as
„

x1 x2 x3
y1 y2 y3



»

–

x2 y3 ´ x3 y2
´x1 y3 ` x3 y1
x1 y2 ´ x2 y1

fi

fl “ 0 (2.41)

We see that vector

~w “

»

–

x2 y3 ´ x3 y2
´x1 y3 ` x3 y1
x1 y2 ´ x2 y1

fi

fl (2.42)

solves Equation 2.36.
Notice that elements of ~w are the three two by two minors of the matrix of the system (2.36).

The rank of the matrix is two, which means that at least one of the minors is non-zero, and
hence ~w is also non-zero. We see that ~w is a basic vector of V . Formula 2.42 is known as the
vector product in R3 and ~w is also often denoted by ~x ˆ ~y.

§ 2 Vector product under the change of basis Let us next study the behavior of the vector
product under the change of basis in R3. Let us have two bases β, β 1 in R3 and two vectors

~x, ~y with coordinates ~xβ “
“

x1 x2 x3
‰J

, ~yβ “
“

y1 y2 y3
‰J

and ~xβ 1 “
“

x 1
1

x 1
2

x 1
3

‰J
,

~yβ “
“

y 1
1

y 1
2

y 1
3

‰J
. We introduce

~xβ ˆ ~yβ “

»

–

x2 y3 ´ x3 y2
´x1 y3 ` x3 y1
x1 y2 ´ x2 y1

fi

fl ~xβ 1 ˆ ~yβ 1 “

»

–

x 1
2
y 1
3

´ x 1
3
y 1
2

´x 1
1
y 1
3

` x 1
3
y 1
1

x 1
1
y 1
2

´ x 1
2
y 1
1

fi

fl (2.43)
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To find the relationship between ~xβ ˆ ~yβ and ~xβ 1 ˆ ~yβ 1 , we will use the following fact. For every

three vectors ~x “
“

x1 x2 x3
‰J

, ~y “
“

y1 y2 y3
‰J

, ~z “
“

z1 z2 z3
‰J

in R3 there holds

~zJp~x ˆ ~yq “
“

z1 z2 z3
‰

»

–

x2 y3 ´ x3 y2
´x1 y3 ` x3 y1
x1 y2 ´ x2 y1

fi

fl “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

–

x1 x2 x3
y1 y2 y3
z1 z2 z3

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

–

~xJ

~yJ

~zJ

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(2.44)

We can write

~xβ 1 ˆ ~yβ 1 “

»

–

r1 0 0s p~xβ 1 ˆ ~yβ 1q
r0 1 0s p~xβ 1 ˆ ~yβ 1q
r0 0 1s p~xβ 1 ˆ ~yβ 1q

fi

fl “

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

–

~xJ
β 1

~yJ
β 1

1 0 0

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

–

~xJ
β 1

~yJ
β 1

0 1 0

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

–

~xJ
β 1

~yJ
β 1

0 0 1

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

fi

fl

J

“

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

–

~xJ
β A

J

~yJ
β A

J

1 0 0

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

–

~xJ
β A

J

~yJ
β A

J

0 1 0

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

–

~xJ
β A

J

~yJ
β A

J

0 0 1

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

fi

fl

J

“

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

–

~xJ
β

~yJ
β

r1 0 0s A´J

fi

fl AJ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

–

~xJ
β

~yJ
β

r0 1 0s A´J

fi

fl AJ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

–

~xJ
β

~yJ
β

r0 0 1s A´J

fi

fl AJ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

fi

fl

J

“

»

–

r1 0 0s A´Jp~xβ ˆ ~yβq
r0 1 0s A´Jp~xβ ˆ ~yβq
r0 0 1s A´Jp~xβ ˆ ~yβq

fi

fl

ˇ

ˇAJ
ˇ

ˇ

“ A´J

|A´J| p~xβ ˆ ~yβq (2.45)

§ 3 Vector product as a linear mapping It is interesting to see that for all ~x, ~y P R3 there
holds

~x ˆ ~y “

»

–

x2 y3 ´ x3 y2
´x1 y3 ` x3 y1
x1 y2 ´ x2 y1

fi

fl “

»

–

0 ´x3 x2
x3 0 ´x1

´x2 x1 0

fi

fl

»

–

y1
y2
y3

fi

fl (2.46)

and thus we can introduce matrix

r~xsˆ “

»

–

0 ´x3 x2
x3 0 ´x1

´x2 x1 0

fi

fl (2.47)

and write
~x ˆ ~y “ r~xsˆ ~y (2.48)

Notice also that r~xsJ
ˆ “ ´ r~xsˆ and therefore

p~x ˆ ~yqJ “ pr~xsˆ ~yqJ “ ´~yJ r~xsˆ (2.49)

The result of § 2 can also be written in the formalism of this paragraph. We can write for every
~x, ~y P R3

rA ~xβsˆ A ~yβ “ pA ~xβq ˆ pA ~yβq “ A´J

|A´J| p~xβ ˆ ~yβq “ A´J

|A´J| r~xβsˆ ~yβ (2.50)

8
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and hence we get for every ~x P R3

rA ~xβsˆ A “ A´J

|A´J| r~xβsˆ (2.51)

2.4 Dual space and dual basis

Let us start with a three-dimensional linear space L over scalars S and consider the set L‹ of
all linear functions f : L Ñ S, i.e. the functions on L for which the following holds true

fpa ~x ` b ~yq “ a fp~xq ` b fp~yq (2.52)

for all a, b P S and all ~x, ~y P L.
Let us next define the addition `‹ : L‹ ˆ L‹ Ñ L‹ of linear functions f, g P L‹ and the

multiplication ¨‹ : S ˆ L‹ Ñ L‹ of a linear function f P L‹ by a scalar a P S such that

pf `‹ gqp~xq “ fp~xq ` gp~xq (2.53)

pa ¨‹ fqp~xq “ a fp~xq (2.54)

holds true for all a P S and for all ~x P L. One can verify that pL‹,`‹, ¨‹q over pS,`, q is itself
a linear space [4, 7, 6]. It makes therefore a good sense to use arrows above symbols for linear
functions, e.g. ~f instead of f .
The linear space L‹ is derived from, and naturally connected to, the linear space L and hence

deserves a special name. Linear space L‹ is called [4] the dual (linear) space to L.
Now, consider a basis β “ r~b1,~b2,~b3s of L. We will construct a basis β‹ of L‹, in a certain

natural and useful way. Let us take three linear functions ~b‹
1
,~b‹

2
,~b‹

3
P L‹ such that

~b‹
1
p~b1q “ 1 ~b‹

1
p~b2q “ 0 ~b‹

1
p~b3q “ 0

~b‹
2
p~b1q “ 0 ~b‹

2
p~b2q “ 1 ~b‹

2
p~b3q “ 0

~b‹
3
p~b1q “ 0 ~b‹

3
p~b2q “ 0 ~b‹

3
p~b3q “ 1

(2.55)

where 0 and 1 are the zero and the unit element of S, respectively. First of all, one has to
verify [4] that such an assignment is possible with linear functions over L. Secondly one can
show [4] that functions ~b‹

1
,~b‹

2
,~b‹

3
are determined by this assignment uniquely on all vectors of L.

Finally, one can observe [4] that the triple β‹ “ r~b‹
1
,~b‹

2
,~b‹

3
s forms an (ordered) basis of ~L. The

basis β‹ is called the dual basis of L‹, i.e. it is the basis of L‹, which is related in a special (dual)
way to the basis β of L.

§ 1 Evaluating linear functions Consider a vector ~x P L with coordinates ~xβ “ rx1, x2, x3sJ

w.r.t. a basis β “ r~b1,~b2,~b3s and a linear function ~h P L‹ with coordinates ~hβ‹ “ rh1, h2, h3sJ

w.r.t. the dual basis β‹ “ r~b‹
1
,~b‹

2
,~b‹

3
s. The value ~hp~xq P S is obtained from the coordinates ~xβ

9
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and ~hβ‹ as

~hp~xq “ ~hpx1~b1 ` x2~b2 ` x3~b3q (2.56)

“ ph1~b‹
1 ` h2~b

‹
2 ` h3~b

‹
3qpx1~b1 ` x2~b2 ` x3~b3q (2.57)

“ h1~b
‹
1p~b1qx1 ` h1~b

‹
1p~b2qx2 ` h1~b

‹
1p~b3qx3

`h2~b
‹
2p~b1qx1 ` h2~b

‹
2p~b2qx2 ` h2~b

‹
2p~b3qx3 (2.58)

`h3~b
‹
3p~b1qx1 ` h3~b

‹
3p~b2qx2 ` h3~b

‹
3p~b3qx3

“
“

h1 h2 h3
‰

»

—

–

~b‹
1
p~b1q ~b‹

1
p~b2q ~b‹

1
p~b3q

~b‹
2
p~b1q ~b‹

2
p~b2q ~b‹

2
p~b3q

~b‹
3
p~b1q ~b‹

3
p~b2q ~b‹

3
p~b3q

fi

ffi

fl

»

–

x1
x2
x3

fi

fl (2.59)

“
“

h1 h2 h3
‰

»

–

1 0 0
0 1 0
0 0 1

fi

fl

»

–

x1
x2
x3

fi

fl (2.60)

“
“

h1, h2, h3
‰

»

–

x1
x2
x3

fi

fl (2.61)

“ ~h
J
β‹ ~xβ (2.62)

The value of ~h P L‹ on ~x P L is obtained by multiplying ~xβ by the transpose of ~hβ‹ from the
left.
Notice that the middle matrix on the right in Equation 2.59 evaluates into the identity.

This is the consequence of using the pair of a basis and its dual basis. The formula 2.62 can be
generalized to the situation when bases are not dual by evaluating the middle matrix accordingly.
In general

~hp~xq “ ~h
J
β̄

r~̄bip~bjqs ~xβ (2.63)

where matrix r~̄bip~bjqs is constructed from the respective bases β, β̄ of L and L‹.

§ 2 Changing the basis in a linear space and in its dual Let us now look at what happens
with coordinates of vectors of L‹ when passing from the dual basis β‹ to the dual basis β 1‹

induced by passing from a basis β to a basis β 1 in L. Consider vector ~x P L and a linear function
~h P L‹ and their coordinates ~xβ , ~xβ 1 and ~hβ‹ , ~hβ 1‹ w.r.t. the respective bases. Introduce further
matrix A transforming coordinates of vectors in L as

~xβ 1 “ A ~xβ (2.64)

when passing from β to β 1.
Basis β‹ is the dual basis to β and basis β 1‹ is the dual basis to β 1 and therefore

~h
J
β‹ ~xβ “ ~hp~xq “ ~h

J
β 1‹ ~xβ 1 (2.65)

for all ~x P L and all ~h P L‹. Hence

~h
J
β‹ ~xβ “ ~h

J
β 1‹ A ~xβ (2.66)

10
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for all ~x P L and therefore
~h

J
β‹ “ ~h

J
β 1‹ A (2.67)

or equivalently
~hβ‹ “ AJ~hβ 1‹ (2.68)

Let us now see what is the meaning of the rows of matrix A. It becomes clear from Equation 2.67
that the columns of matrix AJ can be viewed as vectors of coordinates of basic vectors of
β 1‹ “ r~b 1

1
‹,~b 1

2
‹,~b 1

3
‹s in the basis β‹ “ r~b‹

1
,~b‹

2
,~b‹

3
s and therefore

A “

»

—

–

~b 1
1

‹
β‹

J

~b 1
2

‹
β‹

J

~b 1
3

‹
β‹

J

fi

ffi

fl
(2.69)

which means that the rows of A are coordinates of the dual basis of the primed dual space in
the dual basis of the non-primed dual space.
Finally notice that we can also write

~hβ 1‹ “ A´J~hβ‹ (2.70)

which is formally identical with Equation 2.15.

§ 3 When do coordinates transform the same way in a basis and in its dual basis It is
natural to ask when it happens that the coordinates of linear functions in L‹ w.r.t. the dual
basis β‹ transform the same way as the coordinates of vectors of L w.r.t. the original basis β,
i.e.

~xβ 1 “ A ~xβ (2.71)

~hβ 1‹ “ A~hβ‹ (2.72)

for all ~x P L and all ~h P L‹. Considering Equation 2.70, we get

A “ A´J (2.73)

AJA “ I (2.74)

Notice that this is, for instance, satisfied when A is a rotation [5]. In such a case, one often does
not anymore distinguish between vectors of L and L‹ because they behave the same way and it
is hence possible to represent linear functions from L‹ by vectors of L.

§ 4 Coordinates of the basis dual to a general basis We denote the standard basis in R3

by σ and its dual (standard) basis in R3‹
by σ‹. Now, we can further establish another basis

γ “
“

~c1 ~c2 ~c3
‰

in R3 and its dual basis γ‹ “
“

~c ‹
1

~c ‹
2

~c ‹
3

‰

in R3‹
. We would like to find

the coordinates γ‹
σ‹ “

“

~c ‹
1σ‹ ~c ‹

2σ‹ ~c ‹
3σ‹

‰

of vectors of γ‹ w.r.t. σ‹ as a function of coordinates
γσ “

“

~c1σ ~c2σ ~c3σ
‰

of vectors of γ w.r.t. σ.
Considering Equations 2.55 and 2.62, we are getting

~c i
‹
σ‹

J
~cjσ “

"

1 if i “ j

0 if i ‰ j
for i, j “ 1, 2, 3 (2.75)
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which can be rewritten in a matrix form as

»

–

1 0 0
0 1 0
0 0 1

fi

fl “

»

—

–

~c1
‹
σ‹

J

~c2
‹
σ‹

J

~c3
‹
σ‹

J

fi

ffi

fl

“

~c1σ ~c2σ ~c3σ
‰

“ γ‹
σ‹

J γσ (2.76)

and therefore
γ‹
σ‹ “ γ´J

σ (2.77)

§ 5 Remark on higher dimensions We have introduced the dual space and the dual basis in a
three-dimensional linear space. The definition of the dual space is exactly the same for any linear
space. The definition of the dual basis is the same for all finite-dimensional linear spaces [4].
For any n-dimensional linear space L and its basis β, we get the corresponding n-dimensional
dual space L‹ with the dual basis β‹.

2.5 Operations with matrices

Matrices are a powerful tool which can be used in many ways. Here we review a few useful
rules for matrix manipulation. The rules are often studied in multi-linear algebra and tensor
calculus. We shall not review the theory of multi-linear algebra but will look at the rules from
a phenomenological point of view. They are useful identities making an effective manipulation
and concise notation possible.

§ 1 Kronecker product Let A be a k ˆ l matrix and B be a m ˆ n matrix

A “

»

—

—

—

–

a11 a12 ¨ ¨ ¨ a1l
a21 a22 ¨ ¨ ¨ a2l
...

...
. . .

...
ak1 ak2 ¨ ¨ ¨ akl

fi

ffi

ffi

ffi

fl

P Rkˆl and B P Rmˆn (2.78)

then km ˆ l n matrix

C “ A b B “

»

—

—

—

–

a11 B a12 B ¨ ¨ ¨ a1l B

a21 B a22 B ¨ ¨ ¨ a2l B
...

...
. . .

...
ak1 B ak2 B ¨ ¨ ¨ akl B

fi

ffi

ffi

ffi

fl

(2.79)

is the matrix of the Kronecker product of matrices A, B (in this order).
Notice that this product is associative, i.e. pAbBqbC “ AbpBbCq, but it is not commutative,

i.e. A b B ‰ B b A in general. There holds a useful identity pA b BqJ “ AJb BJ.

§ 2 Matrix vectorization Let A be an m ˆ n matrix

A “

»

—

—

—

–

a11 a12 ¨ ¨ ¨ a1n
a21 a22 ¨ ¨ ¨ a2n
...

...
. . .

...
am1 am2 ¨ ¨ ¨ amn

fi

ffi

ffi

ffi

fl

P Rmˆn (2.80)
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We define operator vp.q : Rmˆn Ñ Rmn which reshapes an mˆn matrix A into a mnˆ 1 matrix
(i.e. into a vector) by stacking columns of A one above another

vpAq “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

a11
a21
...

am1

a12
a22
...

am2

a1n
a2n
...

amn

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ (2.81)

Let us study the relationship between vpAq and vpAJq. We see that vector vpAJq contains
permuted elements of vpAq and therefore we can construct permutation matrices [5] Jmˆn and
Jnˆm such that

vpAJq “ Jmˆn vpAq
vpAq “ Jnˆm vpAJq

We see that there holds
Jnˆm Jmˆn vpAq “ Jnˆm vpAJq “ vpAq (2.82)

for every m ˆ n matrix A. Hence
Jnˆm “ J´1

mˆn (2.83)

Consider a permutation J. It has exactly one unit element in each row and in each column.
Consider the i-th row with 1 in the j-th column. This row sends the j-th element of an input
vector to the i-th element of the output vector. The i-the column of the transpose of J has 1
in the j-th row. It is the only non-zero element in that row and therefore the j-th row of JJ

sends the i-th element of an input vector to the j-th element of the output vector. We see that
JJ is the inverse of J, i.e. permutation matrices are orthogonal. We see that

J´1

mˆn “ JJ
mˆn (2.84)

and hence conclude
Jnˆm “ JJ

mˆn (2.85)

We also write vpAq “ JJ
mˆn vpAJq.

§ 3 From matrix equations to linear systems Kronecker product of matrices and matrix vec-
torization can be used to manipulate matrix equations in order to get systems of linear equations
in the standard matrix form A x “ b. Consider, for instance, matrix equation

A X B “ C (2.86)
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with matrices A P Rmˆk, X P Rkˆl, B P Rlˆn, C P Rmˆn. It can be verified by direct computation
that

vpA X Bq “ pBJb Aq vpXq (2.87)

This is useful when matrices A, B and C are known and we use Equation 2.86 to compute X.
Notice that matrix Equation 2.86 is actually equivalent to mn scalar linear equations in k l

unknown elements of X. Therefore, we should be able to write it in the standard form, e.g., as

M vpXq “ vpCq (2.88)

with some M P Rpmnqˆpk lq. We can use Equation 2.87 to get M “ BJ b A which yields the linear
system

vpA X Bq “ vpCq (2.89)

pBJb Aq vpXq “ vpCq (2.90)

for unknown vpXq, which is in the standard form.
Let us next consider two variations of Equation 2.86. First consider matrix equation

A X B “ X (2.91)

Here unknowns X appear on both sides but we are still getting a linear system of the form

pBJb A ´ Iq vpXq “ 0 (2.92)

where I is the pmnq ˆ pk lq identity matrix.
Next, we add yet another constraints: XJ “ X, i.e. matrix X is symmetric, to get

A X B “ X and XJ “ X (2.93)

which can be rewritten in the vectorized form as

pBJb A ´ Iq vpXq “ 0 and pJmˆn ´ Iq vpXq “ 0 (2.94)

and combined it into a single linear system

„

Jmˆn ´ I

BJb A ´ I



vpXq “ 0 (2.95)
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3 Solving polynomial equations

We will explain some elements of algebraic geometry in order to understand how to solve systems
of polynomial (algebraic) equations in several unknowns that have a finite number of solutions.
We will follow the nomenclature in [2]. See [2] for more complete exposition of algebraic geometry
and [14] for more on how to solve systems of polynomial equations in several unknowns.

3.1 Polynomials

We will consider polynomials in n unknowns x1, x2, . . . , xn with rational coefficients a0, a1, . . . , an.
Polynomials are linear combinations of a finite number of monomials xα1

1
xα2

2
¨ ¨ ¨xαn

n where non-
negative integers αi P Zě0 are exponents. To simplify the notation, we will write xα instead of
xα1

1
xα2

2
¨ ¨ ¨xαn

n an for n-tuple α “ pα1, α2, . . . , αnq of exponents. N-tuple α is called the multider-
gree of monomial xα. For instance, for α “ p2, 0, 1q we get xα “ x2

1
x0
2
x1
3

“ x2
1
x3. We define the

total degree d of a non-zero monomial with exponent α “ pα1, α2, . . . , αnq as d “ α1`α2`¨ ¨ ¨`αn.
Hence, xp2,0,1q has total degree equal to three. The total degree, degpfq, of a polynomial f is
the maximum of the total degrees of its monomials. The zero polynomial has no degree.
With this notation, polynomials with rational coefficients can be written in the form

f “
ÿ

α

aαx
α, aα P Q (3.1)

where the sum is over a finite set of n-tuples α P Zn
ě0

. The set of all polynomials in unknowns
x1, x2, . . . , xn with rational coefficients will be denoted by Qrx1, x2, . . . , xns.
There is an infinite (countable) number of monomials. If we totally order monomials1 such

that 1 is the smallest monomial2 in some way (and we will discuss some useful orderings later), we
can also understand polynomials as infinite sequences of rational numbers with a finite number
of non-zero elements. For instance, polynomial x1 x

2
2

` 2x2
2

` 3x1 ` 4 can be understood as
infinite sequence

p 4 3 0 0 0 0 0 2 1 0 . . . q
1 x1 x2

1
x3
1

x2 x1 x2 x2
1
x2 x2

2
x1 x

2
2

x3
2

. . .

with exactly four non-zero elements 1, 2, 3, 4.
Polynomials with rational coefficients can be also understood as complex functions. We eval-

uate polynomial f on a point ~p P Cn as

fp~pq “
˜

ÿ

α

aαx
α

¸

p~pq “
ÿ

α

aαx
αp~pq “

ÿ

α

aα~p
α “

ÿ

α

aα~p
α1

1
~p α2

2
¨ ¨ ¨ ~p αn

n

which reflects that the evaluated polynomial is a linear combination of the evaluated monomials.
For instance, we may write px1 x22 ` 2x2

2
` 3x1 ` 4qpr1, 2sJq “ x1 x

2
2
pr1, 2sJq ` 2x0

1
x2
2
pr1, 2sJq `

3x1x
0
2
pr1, 2sJq ` 4x0

1
x0
2
pr1, 2sJq “ 4 ` 8 ` 3 ` 4 “ 19.

1Total (linear) ordering of a set S is an ordering when every two elements of S are comparable.
2This can allways be done by finding a bijection from integrers to the monomials.
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3.1.1 Univariate polynomials

Polynomials in single unknown are often called univariate polynomials. In this case α becomes
a trivial sequence containing a single number. The total degree degpfq of f is then called degree.

3.1.2 Long division of univariate polynomials

The set of all polynomials in a single unknown x over rational numbers, Qrxs, forms a ring.
Polynomials are almost as real numbers except for the division. Polynomials can’t be in general
divided. In fact, polynomials behave in many aspects as whole numbers Z.
In particular, it is easy to introduce long polynomial division in the same way as it is used

with whole numbers. Consider polynomials f, g P Qrxs, g ‰ 0. Then, there are [2] unique
polynomials q, r P Qrxs such that

f “ q g ` r with degprq ă degpgq or r “ 0

where q is the quotient and r is the remainder (of f on division by g). Equivalently, one also
often writes f ” r pmod gq and r “ f mod g.
Word “division” in “long polynomial division” is indeed somewhat misleading when r ‰ 0

since there is no real division in that case. We could peraps better name it “expressing f using
g in the most efficient way”.

3.2 Systems of linear polynomial equations in several unknowns

Solving systems of linear polynomial equations is well understood. Let us give a typical example.
Consider the following system of three linear polynomial equations in three unknowns

2x1 ` 1x2 ` 3x3 “ 0

4x1 ` 3x2 ` 2x3 “ 0

2x1 ` 1x2 ` 1x3 “ 2

and write it in the standard matrix form
»

–

2 1 3
4 3 2
2 1 1

fi

fl

»

–

x1
x2
x3

fi

fl “

»

–

0
0
2

fi

fl

Using the Gaussian elimination [5], we obtain an equivalent system

»

–

2 1 3
0 1 ´4
0 0 1

fi

fl

»

–

x1
x2
x3

fi

fl “

»

–

0
0

´1

fi

fl

We see that the system has exactly one solution x1 “ 7{2, x2 “ ´4, x3 “ ´1.
We notice that the key point of this method is to produce a system in a “triangular shape”

such that there is an equation f3px3q “ 0 in single unknown x3, an equation in two unknowns
f2px2, x3q, and so on. We can thus solve for x3 and then transform f2 by a substitution into an
equation in a single unknown and solve for x2, and so on.
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3.3 One non-linear polynomial equation in one unknown

Solving one (non-linear) polynomial equation in one unknown is also well understood. The
problem can be formulated as computation of eigenvalues of a matrix. Let us illustrate the
approach on a simple example. Consider the following polynomial equation

f “ x3 ´ 6x2 ` 11x ´ 6 “ 0

We can construct a companion matrix [5]

Mx “

»

–

0 0 6
1 0 ´11
0 1 6

fi

fl

of polynomial f and compute the characteristic polynomial of Mx

|x I ´ Mx| “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

–

x 0 ´6
´1 x 11
0 ´1 x ´ 6

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ x3 ´ 6x2 ` 11x ´ 6

to see that we are getting polynomial f . Hence, eigenvalues of Mx, 1, 2, 3, are the solutions to
equation f “ 0.
This procedure applies in general when the coefficient at the monomial of f with the highest

degree is equal to one [5], i.e. when we normalize the equation. Obviously, such a normalization,
which amounts to division by a non-zero coefficient at the monomial of the highest degree,
produces an equivalent equation with the same solutions.
The general rule for constructing the companion matrix Mx for polynomial f “ xn`an´1x

n´1`
an´2x

n´2 ` ¨ ¨ ¨ ` a1x ` a0 is [5]

Mx “

»

—

—

—

–

0 0 ¨ ¨ ¨ 0 ´a0
1 0 ¨ ¨ ¨ 0 ´a1

...
0 0 ¨ ¨ ¨ 1 ´an´1

fi

ffi

ffi

ffi

fl

Notice that eigenvalue computation must be in general approximate. In general, roots of poly-
nomials of degrees higher than four can’t be expressed as finite formulas in coefficients ai using
addition, multiplication and radicals [11].

3.4 Several non-linear polynomial equations in several unknowns

Let us now present a technique for transforming a system of polynomial equations with a finite
number of solutions into a system that will contain a polynomial in the “last” unknown, say
xn, only. Achieving that will allow for solving for xn and reducing the problem from n to n ´ 1
unknowns and so on until we solve for all unknowns. Let us illustrate the technique on an
example. Consider the following system

f1 “ x22 ` x21 ´ 1 “ 0 (3.2)

f2 “ 25x1x2 ´ 20x2 ´ 15x1 ` 12 “ 0
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Figure 3.1: Solution to (3.2) is the intersection of a circle and a pair of lines. Solution at r3
5
, 4
5
s

has multiplicity two.

and rewrite it in a matrix form

„

1 0 0 1 0 ´1
0 25 ´20 0 ´15 12



»

—

—

—

—

—

—

–

x2
2

x1x2
x2
x2
1

x1
1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“
„

0
0



or in short as

»

–

x2
2

x1x2 x2 x2
1

x1 1
1 0 0 1 0 ´1
0 25 ´20 0 ´15 12

fi

fl

(3.3)
Now, it is clear that f “ 0 implies gf “ 0 for any g P Qrx1, . . . , xns. For instance x2

1
`x2

2
´1 “ 0

implies, e.g., x1px2
1

` x2
2

´ 1q “ 0 and 25x1x2 ´ 15x1 ´ 20x2 ` 12 implies x2p25x1x2 ´ 15x1 ´
20x2 ` 12q.
Hence, adding such “new” equations to the original system produces a new system with the

same solutions. On the other hand, polynomials f , xf are certainly linearly independent when
f ‰ 0 since then xf has degree strictly greater than is the degree of f . Thus, by adding xf , we
have a chance to add another independent row to the matrix (3.3).
Let us now, e.g., add equations x1px2

1
` x2

2
´ 1q “ 0 and x2p25x1x2 ´ 15x1 ´ 20x2 ` 12q to

system (3.2) and write it in the matrix form as

f1
f2

x1f1
x2f2

»

—

—

—

—

–

x1x
2
2

x2
2

x1x2 x2 x3
1

x2
1

x1 1
0 1 0 0 0 1 0 ´1
0 0 25 ´20 0 0 ´15 12
1 0 0 0 1 0 ´1 0
25 ´20 ´15 12 0 0 0 0

fi

ffi

ffi

ffi

ffi

fl

(3.4)

We have marked each row of the coefficients with its corresponding equation. We see that two
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more rows have been added but also two new monomials, x1x
2
2
and x3

1
, emerged. The next step

will be to eliminate (3.4) by the Gaussian eliminations to get

x1f1
f1
f3
f4

»

—

—

—

—

–

x1x
2
2

x2
2

x1x2 x2 x3
1

x2
1

x1 1
1 0 0 0 1 0 ´1 0
0 1 0 0 0 1 0 ´1
0 0 25 ´20 0 0 ´15 12
0 0 0 0 ´125 100 80 ´64

fi

ffi

ffi

ffi

ffi

fl

(3.5)

We see that the last row of coefficients gives an equation in single unknown x1

f4 “ ´125x31 ` 100x21 ` 80x1 ´ 64 “ 0

Notice that we have been ordering the monomials corresponding to the columns of the matrix
such that we have all monomials in sole x1 at the end.
It can be shown [2] that the above procedure works for every system of polynomial equations

tf1, f2, . . . , fku from Qrx1, . . . , xns with a finite number of solutions. In particular, there always
are k finite sets Mi, i “ 1, . . . , k of monomials such that the extended system

tf1, f2, . . . , fku Y tmfj |m P Mj , j “ 1, . . . , ku

obtained by adding for each fj its multiples by all monomials in Mj , has matrix A with the
following nice property. If the last columns of A correspond to all monomials in a single unknown
xi (including 1, which is x0j ), then the last non-zero row of matrix B, obtained by Gaussian
elimination of A, produces a polynomials in single unknown xi.
This is a very powerful technique. It gives us a tool how to solve all systems of polynomial

equations with a finite number of solutions. In practice, the main problem is how to find small
sets Mi in acceptable time. Consider that the number of monomials of total degree at most d in
n unknowns is given by the combination number

`

n`d
d

˘

. Hence, in general, the size of the matrix
is growing very quickly as a function of n and d needed to get the result. Practical algorithms,
e.g. F4 [2], use many tricks how to select small sets of monomials and how to efficiently compute
in exact arithmetic over rational numbers.
Let us now return to our example above. We can solve the f4 “ 0 for x1 and substitute all

solutions to f3 “ 0 from the third row, which, for known x1, is an equation in single unknown x2

f3 “ 25x1x2 ´ 20x2 ´ 15x1 ` 12 “ p25x1 ´ 20qx2 ´ 15x1 ` 12 “ 0

That gives us solutions for x2.

3.5 Solving a polynomial system as an eigenvector problem

Solving polynomial systems for one unknown after another by the procedure given in the previous
paragraph calls for back-substitution that may be non-trivial to implement in general. Also
notice that in the example above, we did not really see that there are four solutions since one,
r3
5
, 4
5
s in Figure 3.1, had multiplicity two but that was “masked” by other solution that we

aligned with it.
Let us now present an alternative approach often allowing to compute all solutions at once as

an eigenvector problem. We will first illustrate the technique on an example in a single unknown
given in paragraph 3.3.
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3.5.1 Solving a univariate polynomial equation by eigenvectors

Consider a polynomial system consisting of a single equation

f “ x3 ´ 6x2 ` 11x ´ 6 “ px ´ 1q px ´ 2q px ´ 3q “ 0

in one unknown x with roots 1, 2, 3. We have seen how to solve this system by computing
eigenvalues of the companion matrix Mx of polynomial f . Let us now see how to do the same by
computing eigenvectors of MJ

x .
Let us first consider remainders of all polynomials g in Qrxs on division by f . It is the set

of all polynomials r of degree at most two. All polynomials of degrees at most two are left
unchanged by the long division by f and all monomials of a higher degree will get rewritten
using f in terms of polynomials of degre at most two. We can thus write

r “ a2x
2 ` a1x ` a0 for a0, a1, a2 P Q i.e. r ”

»

–

a0
a1
a2

fi

fl P Q3

and hence identify each remainder with a three-dimensional vector from Q3. We see that the
set of all such remainders is in one-to-one correspondence with Q3.
Secondly, consider the mapping Mx : Qrxs Ñ Qrxs on polynomials given by

Mxphq “ pxhq mod f

It maps monomials of degree at most two back to polynomials of degree at most two, i.e.

Mxp1q “ x 1 mod f “ x mod f “ x

Mxpxq “ xx mod f “ x2 mod f “ x2

Mxpx2q “ xx2 mod f “ x3 mod f “ 6x2 ´ 11x ` 6

We see that Mx is a linear mapping since for all g, h P Qrxs, a P Q we have

Mxpg ` hq “ px g ` xhq mod f “ px gq mod f ` pxhq mod f “ Mxpgq ` Mxphq
Mxpa gq “ pa x gq mod f “ a px gq mod f “ aMxpgq

Thus, Mx maps all polynomials of degree at most two to polynomials of degree at most two
since we can write

Mxpa2x2 ` a1x ` a0q “ a2Mxpx2q ` a1Mxpxq ` a0Mxp1q
and thus induces a linear mapping on the set of polynomials od degree at most two. Now, every
linear mapping has a matrix of the mapping w.r.t. a fixed basis [4]. Let us choose the standard
monomial basis r1, x, x2s in the linear space of Qrxs of degree at most two and write the above
represented by vectors in Q3. We will express monomials as vectors using basis r1, x, x2s to get

Mxp1q ” Mx

¨

˝

»

–

1
0
0

fi

fl

˛

‚ “

»

–

0
1
0

fi

fl

Mxpxq ” Mx

¨

˝

»

–

0
1
0

fi

fl

˛

‚ “

»

–

0
0
1

fi

fl

Mxpx2q ” Mx

¨

˝

»

–

0
0
1

fi

fl

˛

‚ “

»

–

6
´11

6

fi

fl

20



T. Pajdla. Elements of Geometry for Robotics 2019-9-22 (pajdla@cvut.cz)

To get the matrix of the mapping Mx, we write

Mx

¨

˝

»

–

1 0 0
0 1 0
0 0 1

fi

fl

˛

‚“

»

–

0 0 6
1 0 ´11
0 1 6

fi

fl “ Mx

and observe that Mx, the matrix of Mx w.r.t. the standard monomial basis, is the companion
matrix of f .
Third, let us evaluate polynomials g P Qrxs on the roots of f . Consider a root p of f , i.e. a

solution to equation f “ 0, and evaluate g on p using its remainder r on division by f

gppq “ qppq fppq ` rppq “ qppq 0 ` rppq “ rppq

since fppq “ 0. We see that polynomials evaluate on roots of f to the values of their remainders
on division by f . Let us now evaluate polynomials x, x2, x3 on roots ~p “ rp1, p2, p3sJ of f .

xppiq “ pi “ pi 1 “ pi 1ppiq “ xppiq 1ppiq
x2ppiq “ p2i “ pi pi “ pi xppiq “ xppiqxppiq
x3ppiq “ p3i “ pi p

2
i “ pi x

2ppiq “ xppiqx2ppiq
(3.6)

Now, since x3ppiq “ Mxpx2qppiq “ p6x2 ´ 11x ` 6qppiq, we get

p6x2 ´ 11x ` 6qppiq “ xppiqx2ppiq (3.7)

We can rewrite indentities (3.6) and (3.7) as the folowing sequence of matrix identities

xppiq

»

–

1ppiq
xppiq
x2ppiq

fi

fl “

»

–

xppiq
x2ppiq
x3ppiq

fi

fl “

»

–

xppiq
x2ppiq

p6x2 ´ 11x ` 6qppiq

fi

fl

xppiq

»

–

1ppiq
xppiq
x2ppiq

fi

fl “

»

–

0 1 0
0 0 1
6 ´11 6

fi

fl

»

–

1ppiq
xppiq
x2ppiq

fi

fl

xppiq

»

–

1
pi
p2i

fi

fl “

»

–

0 1 0
0 0 1
6 ´11 6

fi

fl

»

–

1
pi
p2i

fi

fl

pi ~vi “ MJ
x~vi

showing that ppi, ~viq are eigenvalue-eigenvector pairs of MJ
x . Eigenvalues pi are evaluations of x

on roots of f and eigenvectors ~vi are evaluations of the monomials of the standard basis r1, x, x2s
on the roots of f . The above observation holds true in general [14]. For a polynomial f of degree
n, we are getting an n ˆ n matrix with n eigenvalues, counting the multiplicities.
When matrix Mx has separated one-dimensional eigenspaces, which, e.g., happens always when

eigenvalues are pairwise distinct, i.e. when f has all roots of multiplicity one, we can (numeri-
cally) compute basis ~wi of each eigenspace3 and get ~vi as

~vi “ 1

~wi1
~w, i “ 1, . . . , n

3Many algorithms, e.g. in Matlab, deliver ~wi’s with }~wi} “ 1.
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We see that solutions to f are obtained from ~vi as pi “ xppiq “ ~vi2.
It is possible to generalize the above to a more general mappingMg : Qrxs Ñ Qrxs by replacing

unknown x by a general polynomial g P Qrxs to get

Mgphq “ pg hq mod f

Now, consider that gppiq “ rppiq where r “ a2x
2 ` a1x ` a0 is the remainder of g on division

by f . Thus
gppiq “ rppiq “ a2x

2ppiq ` a1xppiq ` a01ppiq (3.8)

Further, considering that

λ~v “ A~v

λ A~v “ A2 ~v

λ2 ~v “ A2 ~v

we can write

gppiq

»

–

1ppiq
xppiq
x2ppiq

fi

fl “
`

a2x
2ppiq ` a1xppiq ` a01ppiq

˘

»

–

1ppiq
xppiq
x2ppiq

fi

fl

gppiq

»

–

1ppiq
xppiq
x2ppiq

fi

fl “
`

a2 pMJ
x q2 ` a1 M

J
x ` a0I

˘

»

–

1ppiq
xppiq
x2ppiq

fi

fl

gppiq

»

–

1
pi
p2i

fi

fl “
`

a2 pMJ
x q2 ` a1 M

J
x ` a0I

˘

»

–

1
pi
p2i

fi

fl

gppiq~vi “ MJ
g ~vi (3.9)

showing that pgppiq, ~viq are eigenvalue-eigenvector pairs of MJ
g “ pa2 M2x ` a1 Mx ` a0IqJ.

We saw that remainders r on division by f could be identified with Q3 via their coefficients.
Let us now present another representation of r by vectors from C3. Figure 3.2 shows fpxq “
px ´ 1qpx ´ 2qpx ´ 3q and its roots p1 “ 1, p2 “ 1, p3 “ 3. Each remainder on division by f ,
e.g. g and h, which has degree not larder than two, is uniquely defined by its values on the
roots p1 “ 1, p2 “ 1, p3 “ 3 of f . In general, roots of f are from C and hence their polynomial
evaluations are from C as well. This way, every remainder r on division by f is on one to one
correspondence with a vector from C3, i.e. rpxq ” rrpp1q, rpp2q, rpp3qsJ.
All polynomials can be written as qpxq fpxq`rpxq, and thus every polynomial can be assigned

its reminder on division by f . This way, the set of polynomials is partitioned into equivalence
classes and a bijection between the sets of the equivalence classes and the remainders on division
by f is obtained.
Eigenvalue problem 3.9 thus can be seen as expressing the representative of gpxq fpxq by

multiplication by of the represetnative of fpxq by MJ
g .

3.5.2 Solving systems of multivariate polynomial equations by eigenvectors

To generalize the procedure above to systems of polynomial equations in several unknowns, we
have to generalize the concept of “remainder on division by a single polynomial in one unknown”
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x

fpxq “ px ´ 1qpx ´ 1qpx ´ 3q

gpxq “ x

hpxq “ x2 ´ 4x ` 5

gpxq ` fpxq

Figure 3.2: Poynomial fpxq and its roots 1, 2, 3. All remainders on division by f , e.g. gpxq, hpxq,
which are of degree not larger than two, are uniquely determined by their values on
the roots 1, 2, 3 of f . See the text for more detailed explanation.
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to more polynomials in more unknowns. It will require to address several issues. Let us first
lay down a general strategy, then deal with particular issues, and, finally, provide a method for
finding the solutions to a polynomial system with a finite number of solutions by computing
eigenvectors.
We have seen that the key concept for deriving the relationship between the solutions to f “ 0

and the eigenvectors of Mh in the univariate case was that the remainder r of h on division by f

gave the values of h on the roots of f .
Long division produced r “ h ´ q f such that r was “the simplest” polynomial evaluating on

roots of f to the same values as h. We could also see this as removing from h all what can be
generated by f , i.e. all what is in xfy = tg f |h P Qrxsu. We can also say that r is equivalent4

to f , writing h ” r, when h ´ r “ q f P I “ xfy.
In the multivariate case, this motivates introducing ideal I generated by polynomials f1, . . . , fk,

denoted by xf1, . . . , fky, as

I “ xf1, . . . , fky “ t
k
ÿ

i“1

gi fi | gi P Qrx1, . . . , xnsu

Ideal I is the set of all polynomials that can be generated from f1, . . . , fk by polynomial com-
binations. All polynomials in I evaluate to zero (are satisfied) on the solutions of the system
f1, . . . , fk.
In the univariate case, monomials were naturally ordered by their degree. The total degrees

of univariate monomials, i.e. the powers of the unknown, provided a total ordering [1] of the
monomials in one unknown5. In the multivariate case, howewer, total degrees do not provide
a total ordering. For instance, consider that degpx2yq “ 3 “ degpx y2q but x2y ‰ xy2, which
means that x2y, x y2 are not comparable when ordered by the total degree. We see that the
total degree makes only a partial ordering of monomials. Hence, we need to introduce another
way of ordering the monomials to get a total ordering. We will disscus this in more detail in
paragraph 3.5.3.
From the point of view of the eigenvector method in the univariate case, the remainders r on

the long division by f had the good property that all monomials of r were strictly smaller (when
ordered by the degree) than the largest (leading) monomial of f . The maximal degree of r was
equal to the number m of solutions minus one and hence r was a linear combination of exactly m

monomials. That gavemˆmmultiplication matricesMg and thusm one-dimensional sub-spaces
of eigenvectors. This was thanks to the fact that ideal xfy was in one-to-one correspondence
with its generator f .
Now, in the multivariate case, when ideals are generated by more generators F “ tf1, . . . , fku,

I “ xF y can be generated by infinitely many different sets of generators and, in general, there is
no direct connection between the multidegrees of the leading monomials of a particular generator
set and the number of solutions. Further, with a general set of generators F of I, there is no
good way of defining the remainder on division by F because when algorithmically writing a

4Equivalence ” is a relation on a set S, i.e. a subset of S ˆ S, satisfyig three axions: @a, b, c P S: (reflexivity)
a ” a, (transitivity) a ” b and b ” c implies a ” c, (symmetry) a ” b implies b ” a [1].

5Ordering ăo is a relation on a set S, i.e. a subset of S ˆS, satisfyig three axions: @a, b, c P R Ď S: (reflexivity)
a ăo a, (transitivity) a ăo b and b ăo c implies a ăo c, (antisymmetry) a ăo b and b ăo a, then a “ b.
Ordering that is defined for all members of S, i.e. when R “ S is called total ordering (or linear ordering). An
ordering is called partial ordering when R Ă S [1].
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polynomial g as a polynomial combination g “ q1f1 `¨ ¨ ¨`qnfn `r, different r’s can be obtained
when changing the order in which fi’s are used in the rewriting of g.
Fortunately, one can always find a “good set”G of generators of I, called reducedGröbner basis

of I, that “behaves well”. It is possible to generalize the univariate long division to a multivariate
long division by several polynomials such that it, for every g P Qrx1, . . . , nns, produces a unique
reminder r on division by G independently on the order in which are the generators G used in
the division process. Remainder r “ g modăo G is thus defined uniquely by the ideal I and
monomial ordering ăo used. Further, r becomes a linear combination of monomials that are
not divisible by any leading monomial of generators G. The actual monomials may be different
depending on the monomial ordering used but their number l will always be the same.
The relationship of l to the number of solutions m is more intricate. In general l ě m. The

equality occures exactly when I is a radical ideal, which means that I is such that fk P I for
some k implies f P I. Intuitively, radicality is connected to multiplicity of solutions. Fix an
unknown xi and look at all polynomials in I that are only in xi. They form an ideal Ii. The
ideal Ii is univariate and hence is generated by a single polynomial eipxiq. Roots of ei are the
projections on the solutions of F on the xi axis. Now, if the roots of eipxi) are of multiplicity
one for all unknowns, then I is radical. Radical ideals have no multiplicities in any coordinate.
For ideals I “ xF y with a finite number of solutions, we can construct its radical ideal

?
I by

removing all multiplicities from each eipxiq. This can be done [14] by constructing polynomials

pi,red “ ei

GCDpei, e1
iq

where e1
i is the derivative of ei w.r.t. xi and GCD is the greatest common divisor of two polyno-

mials. Radical ideal of I is obtained as
?
I “ xf1, . . . , fk, p1,red, . . . , pn,redy

A generalization of the long division for the multi-variate and multi-polynomial case will be
described in paragraph 3.5.4 and an algorithm for finding Gröbner basis of I will be given in
paragraph 3.5.5.
We are now ready to generalize the eigenvector-method to polynomial systems F “ tf1, . . . , fku

in multiple unknowns x1, . . . , xn:

1. Fix a particular monomial ordering ăo.

2. Construct the reduced Gröbner basis G of I “ xF y for ăo.

3. Construct the set B of all monomials that are divisible by no leading monomial of all
polynomial in G.

4. Fix a polynomial g P Qrx1, . . . , xns such that g has different values on different solu-
tions, e.g. take a random linear polynomial. This, guarantees isolated one-dimensional
eigenspaces for radical ideals xF y.

5. Construct the multiplication matrix Mg by finding remainders of all b P B on division by
G w.r.t. ăo.

6. Find eigenvalues and eigenvectors of Mg. Check if all eigenspaces are one-dimensional. If
not, extend F by setting F :“ F Y tp1,red, . . . , pn,redu and start again from the begining
with extended F .
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Figure 3.3: (a) Lex monomial ordering xα
1
yα2 with x ălex y orders monomials as

1, x, x2, . . . , y, x y, x2y, . . . , y2, x y2, . . . while (b) the GRevLex monomial ordering
orders monomials as 1, y, x, y2, x y, x2, y3, x y2, x2y, x3, . . .. We see that y ” α “
p0, 1q ăgrevlex x ” β “ p1, 0q since they both have total degree equal to one and
β´α “ p1, 0q ´ p0, 1q “ p1,´1q, i.e. the last non-zero coordinate of β´α is negative.

7. Recover the solutions from the eigenvalues, eigenvectors and G.

We will illustrate the above procedure in paragraph 3.5.6.

3.5.3 Monomial ordering

We saw that a useful total ordering of monomials in single unknown was obtained by ordering
the monomials by their degree, giving

rx0, x1, x2, . . .s (3.10)

Unfortunately, ordering monomials in more unknowns by their total degree produces only a
partial ordering, i.e. we can’t compare all monomials. Consider, e.g. , monomials x2 y, x y2.
They both have total degree equal to three

degpx2 yq “ 3 “ degpx y2q but x2 y ‰ x y2 (3.11)

and hence we see that the total degree does not define ordering of this two monomials. For
multivariate polynomials, we have to introduce another way how to order them.
Every set can be totally ordered such that it has the least element [1] but we have to satisfy

additional constraints to make the ordering useful for our case. The ordering by the degree in the
univariate case had two important properties we have to preserve. First, (i) constant 1 was the
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smallest element. Secondly, (ii) the ordering “worked nicely” together with the multiplication
by monomials, i.e.

degpm1q ă degpm2q ñ degpmm1q ă degpmm2q

for all monomials m P Qrx1, . . . , xns.
To get a useful ordering for the multivariate case, we have to preserve the above two properties.

Since monomials are in one-to-ne correspondece with their multidegrees, literature talks about
monomial ordering ăo as any total ordering of Zn

ě0
satisfying properties (i) and (ii) above. There

are infinitely many ways how to construct a monomial ordering [15]. Let us now present two
classical orderings that, in a way, represent all different monomial orderings.
Lex Monomial Ordering (Lex) ălex orders monomials as words in a dictionary. An important

parameter of ălex order (i.e. ordering of words) is the order of the unknowns (i.e. ordering of
letters). For instance, monomial x y2z “ x y y z ălex x y z z “ x y z2 when x ălex y ălex z

(i.e. x y y z is before x y z z in a standard dictionary). However, when z ălex y ălex x, then
x y z2 “ x y z z ălex x y y z “ x y2z. We see that there are n! possible ălex orderings when
dealing with n unknowns.
Formally, we say that monomial xα ălex xβ , as well as α ălex β for exponents, when either

β ´ α “ 0 or the first non-zero element of β ´ α is positive.
For instance p0, 3, 4q ălex p1, 2, 0q since p1, 2, 0q ´ p0, 3, 4q “ p1,´1,´4q and p3, 2, 1q ălex

p3, 2, 4q since p3, 2, 4q ´ p3, 2, 1q “ p0, 0, 3q.
Graded Reverse Lex Monomial Ordering (GRevLex) ăgrevlex is an extension of the partial

ordering by the total degree to a total monomial ordering.
Formally, we say that monomial xα ăgrevlex xβ , as well as α ăgrevlex β for exponents, when

either degpαq ă degpβq or degpαq “ degpβq and the last non-zero element of β ´ α is negative.
For instance y3z „ p0, 3, 1q ăgrevlex p1, 2, 2q „ x y2z2 since 0 ` 3 ` 1 “ 4 ă 5 “ 1 ` 2 ` 2 but

x y2z2 „ p1, 2, 2q ăgrevlex p1, 3, 1q „ x y3 z since 1`2`2 “ 5 “ 1`3`1 and p1, 3, 1q ´ p1, 2, 2q “
p0, 1,´1q.
Figure 3.3 shows a few first monomials in two unknowns labeled by the Lex (a) and GRevLex

(b) orderings. It has been noted that Lex is often harder to use for computation than “graded”
orderings, such as GRevLex ordering. On the other hand, Lex orderings provide us with uni-
variate polynomials.
The main difference between the above two orderings is that ăgrevlex is an archimedean or-

dering, which means that for every monomials m1,m2 P Qrx1, . . . , xns, 1 ‰ m1 ăgrevlex m2,
there is k P Zě0 such that m2 ăgrevlex mk

1
. It also means that with ăgrevlex, there are always

only finitely many monomials smaller than any monomial. Lex orderings are not archimedean.
Consider, for istance, ălex with x ălex y. We see that xk ălex y for all k P Zě0 and hence
there are infinitely many smaller monomials than y. Lex orderings are useful for constructing
a polynomial in a single unknown when a system of polynomial equations has a finite number
of solutions. Graded orderings, such as GRevLex appear to keep total degrees in computations
low and often lead to results faster than when using Lex orderings.
With a fixed monomial ordering ăo, we can talk about the leading monomial, LMpfq, of a

polynomial f , which is the largest monomial of the polynomial w.r.t. ăo. The coefficient at the
leading monomial is leading coefficient, LCpfq, their product is leading term, LTpfq “ LCpfq LMpfq.
For instance, consider polynomial f “ 1 y2 ` 2x2y ` 3. With x ălex y, we get LMpfq “ y2,
LCpfq “ 1 and LTpfq “ 1 y2 but with x ăgrevlex y we get LMpfq “ x2 y, LCpfq “ 2 and
LTpfq “ 2x2y.
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3.5.4 Mutivariate and multipolynomial long division

We will now discuss a generalization of the long division of a univariate polynomial by one
univariate polynomial to a long division of a multivariate polynomial by several multivariate
polynomials.
Let us first present an algorithm, then show two examples demonstrating an important feature

of the algorithm, and finally state the general fact about the reminder obtained.
Consider a polynomial f P Qrx1, . . . , xns and another s polynomials f1, . . . , fs P Qrx1, . . . , xns.

Now, we want to express f as

f “ a1 f1 ` a2 f2 ` ¨ ¨ ¨ ` asfs ` r (3.12)

with the quotients ai and the remainder r in Qrx1, x2, . . . , xns. To do so, we will rewrite f by
the following algorithm [2].

Long polynomial division algorithm

Input: f1, . . . , fs, f P Qrx1, . . . , xns, monomial ordering ăo

Output: a1, . . . , as, r P Qrx1, . . . , xns
a1 :“ 0; . . . , as :“ 0; r :“ 0
p :“ f

while p ‰ 0 do

i :“ 1
divisionoccured :“ false
while i ď s and divisionoccured “ false do

if LTpfiq divides p then

ai :“ ai ` LTppq{LTpfiq
p :“ p ´ pLTppq{LTpfiqq fi

divisionoccured :“ true
else

i :“ i ` 1
end if

end while

if divisionoccured “ false then

r :“ r ` LTppq
p :“ p ´ LTppq

end if

end while

The above algorithm is a generalization of the algorithm for long polynomial division in one
unknown. Let us look at some examples that illustrate some of the important features of the
algorithm.
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Example 1 Let us divide f “ x y2 ` x ` 1 by f1 “ x y ` 1, f2 “ y ` 1 with monomial ordering
y ălex x.

# f “ a1f1 ` a2f2 ` p ` r

0 “ 0 px y ` 1q ` 0 py ` 1q ` x y2 ` x ` 1 ` 0
1 “ y px y ` 1q ` 0 py ` 1q ` x ´ y ` 1 ` 0
2 “ y px y ` 1q ` 0 py ` 1q ` ´y ` 1 ` x

3 “ y px y ` 1q ´ 1 py ` 1q ` 2 ` x

4 “ y px y ` 1q ´ 1 py ` 1q ` 0 ` x ` 2

Symbol # represents the number of executions of the outer while loop above. We initialize at
#0 by setting p to f . Then, at #1, we try to divide LTppq “ x y2 by LTpf1q “ x y. We succeed
and update a1 to y and p to x ´ y ` 1. This resets i to 1 and hence at #2 we again try to
divide LTppq “ x by LTpf1q “ x y. We fail and hence increment i and try to divide LTppq “ x by
LTpf2q “ y. We fail again and thus move LTppq “ x to r, update p and reset i. At #3 we try to
divide LTppq “ ´y by LTpf1q “ x y. We fail. Hence we try to divide LTppq “ ´y by LTpf2q “ y.
We succeed, update a2 to ´1, and update p. Finally, at #4, we fail to divide LTppq “ 2 by
LTpf1q as well as by LTpf2q and thus add 2 to r. This terminates the algorithm with p “ 0.
We can first notice that no monomial of r is divisible by LTpf1q or by LTpf2q. Secondly we

also see that multidegpa1f1q “ r1, 2s ď r1, 2s “ multidegpfq as well as multidegpa2f2q “ r0, 1s ď
r1, 2s “ multidegpfq. This holds true in general and bring us to the following important general
fact about the long division algorithm.

Fact [2] Consider a fixed monomial ordering ăo and an ordered s-tuple F “ pf1, . . . , fsq of
polynomials. Then, every polynomial f can rewritten using the long divison algorithm as

f “ a1 f1 ` a2 f2 ` ¨ ¨ ¨ ` asfs ` r

with polynomials ai and r such that

1. if r ‰ 0, then no monomial of r is divisible by LTpf1q, . . . , LTpfsq and

2. if aifi ‰ 0, then multidegpfq ě multidegpaifiq.

Polynomial r is called a remainder of f on division by F , denoted as r “ f
F
.

Now, reacall that in order to solve a polynomial f in one unknown with eigenvectors, we have
used that the remainders on division by f were defined by f uniquely. Since the number of
coefficients in r was equal to the degree of f , each r was uniquely determined by its values on
the roots of f . We could thus represent remainders as vectors in a linear space with cordinates
being coefficients of r or values of r on the roots of f . This interplay between coefficients for r
and values of r on the roots of f brought the eigenvector problem with the (companion) matrix
composed of the coefficients of f and its eigenvectors containing evaluations of the standard
monomials on the roots of f .
Unfortunately, the remainder on division by more than one polynomial in more than one

unknown, as provided by the long division algorithm above, does not produce unique r. To see
this, consider f “ x y2 ´ x and f1 “ x y ` 1, f2 “ y2 ´ 1 and fix the monomial ordering as
y ălex x. Then, for the two possible orders of f1 and f2, we are getting different r’s:

1. f : pf1, f2q
f “ a11f1 ` a12f2 ` r1

x y2 ´ x “ y px y ` 1q ` 0 py2 ´ 1q ` p´x ´ yq
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2. f : pf2, f1q
f “ a21f2 ` a22f1 ` r2

x y2 ´ x “ x py2 ´ 1q ` 0 px y ` 1q ` 0

Notice that no monomial of r1, r2 is divisible by any LTpfkq as well as that multidegrees of aijfk
are not larger than the multidegree of LTpfq. We see that the properties in the Fact 3.5.4 does
not uniquely define the remainders in multivatiate and multipolynomial case.
Fortunately, we can always replace polynomials F by another set of more convenient polyno-

mials G such that G generate the same ideal as F , i.e. xGy “ xF y in the standard notation, and
the remainder on division of f by G is unique w.r.t. the change of the order of polynomials in G.
The remainder still depeds on ăo chosen. Sets G with the above property are called Gröbner
bases of ideal xF y.
Gröbner bases G generate exactly the same set of solutions as polynomials F and can be

obtained as “polynomial combinations” of polynomials F . We will next show how to do it by
introducing a very classical Buchberger algorithm [2] for constructing a Gröbner basis G from
given polynomials F .
After constructing a Gröbner basis G of F , we will be able to obtain unique remainders on

division by G and, as in the univariate case, thus obtain a one-to-one mapping from remainders
to a fine-dimensional vector space over C for polynomial systems with a finite number of solu-
tions. We will thus get an eigenvalue/eigenvector problem providing the desired solutions to a
multivariate and multipolynomial systems with a finite number of solutions.

3.5.5 Gröbner basis construction

Let us now present the most classical algorithm for constructing the reduced Gröbner basis G of
an ideal xF y [2].

3.5.5.1 Gröbner basis construction for linear polynomial sysytems

To motivate the general algorithm, we will first look at the most familiar systems of polynomial
equations, systems of linear polynomial equations. We have alredy presented an example above
in paragraph 3.2. Here, we will introduce a more general system to illustrate additional effects
related to the monomial ordering.
Consider the following system of linear polynomial equations

»

–

2 4 2 1 7
2 4 1 2 8
1 2 3 1 4

fi

fl

»

—

—

—

—

–

x1
x2
x3
x4
x5

fi

ffi

ffi

ffi

ffi

fl

“

»

–

0
0
0

fi

fl

and compute the reduced row echelon form [5] of the matrix of the above system by the Gauss-
Jordan elimination [5] to get

»

–

1 2 0 0 3
0 0 1 0 0
0 0 0 1 1

fi

fl

»

—

—

—

—

–

x1
x2
x3
x4
x5

fi

ffi

ffi

ffi

ffi

fl

“

»

–

0
0
0

fi

fl
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The reduced row echelon form is unique for a given order of unknowns. It provides the reduced
Gröbner basis

G1 “ tx1 ` 2x2 ` 3x5, x3, x4 ` x5u
of the ideal generated by F “ t2x1 ` 4x2 ` 2x3 ` x4 ` 7x5, 2x1 ` 4x2 ` x3 ` 2x4 ` 8x5, x1 `
2x2 ` 3x3 ` x4 ` 4x5u for monomial ordering ălex1 “ x5 ălex x4 ălex x3 ălex x2 ălex x1. Now,
using the monomial ordering ălex2 “ x2 ălex x1 ălex x5 ălex x4 ălex x3, we reorder the columns
of the matrix of the original system to r3 4 5 1 2s and thus get the corresponding “reordered”
system

»

–

2 1 7 2 4
1 2 8 2 4
3 1 4 1 2

fi

fl

»

—

—

—

—

–

x3
x4
x5
x1
x2

fi

ffi

ffi

ffi

ffi

fl

“

»

–

0
0
0

fi

fl

The reduced row echelon form of the reordered system is

»

–

1 0 0 0 0
0 1 0 ´1{3 ´2{3
0 0 1 1{3 2{3

fi

fl

»

—

—

—

—

–

x3
x4
x5
x1
x2

fi

ffi

ffi

ffi

ffi

fl

“

»

–

0
0
0

fi

fl

which is the reduced Gröbner basis of

G2 “ tx3, x4 ´ 1

3
x1 ´ 2

3
x2, x5 ` 1

3
x1 ` 2

3
x2u

of xF y w.r.t. the monomial ordering ălex2.
We see that the matrix of the reduced row echelon form w.r.t. ălex1 is not equal to the matrix

of the reduced row echelon form w.r.t. ălex2 and the corresponding reduced Gröbner bases are
also different. In general, the reduced Gröbner basis obtained depends on the monomial ordering
used. On the other hand, when there is a fininte number of sollutions to a linear system, i.e.
one solution, then the row reduced echelon form is the identity for all orderings of unknowns.

3.5.5.2 Gröbner basis construction for non-linear polynomial systems

Let us now look at sytems of general polynomial equations. We will introduce Buchberger
algorithm on a very simple example. Refer to [2] for complete theory and more examples.
Consider a polynomial system F “ rf1, f2s with

f1 “ 6x1x2 ` 3x22 ´ 10x1 ´ 13x2 ` 10 (3.13)

f2 “ 3x22 ´ 2x1 ´ 5x2 ` 2

Figure 3.4 shows that the system F has three solutions, all of multiplicity one. Ideal xF y is
radical. We will use monomial ordering

ăo” x2 ăgrevlex x1

Monomials of F will be thus ordered as

1 ăo x2 ăo x1 ăo x
2
2 ăo x1x2
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Figure 3.4: Solution to two conics f1 “ 6x1x2 ` 3x2
2

´ 10x1 ´ 13x2 ` 10,
f2 “ 3x2

2
´ 2x1 ´ 5x2 ` 2 are r0, 1s, r1, 0s, r2, 2s of multiplicity one.

System 3.13 has three solutions. To get an eigenvalue/eigenvector problem, we need to find a
multiplication matrix for a polynomial w.r.t. three monomials that will generate all remainders
on the division by Gröbner basis of xF y. With GRevLex ordering, we expect these to be the
three smallest monomials 1, x1, x2. Thus, all larger monomials, in particular x2

1
must be reduced

by the long division. However, polynomials in F do not reduce x2
1
since there is no polynomial

with leading term dividing x2
1
. We have to add more polynomials to the basis to be able to get

x1 as a remainder on the division by the basis.
The idea is to multiply f1 and f2 by the smallest monomials w.r.t. ăo to cancel the leading

terms and to construct a new polynomial, S-polynomial of f1, f2, which could potentially be
reduceed to polynomial with leading x2

1
. This is a generalization of one step of Gaussian elim-

ination when a new poynomial was contructed by canceling the leading unknown, the leading
monomial of degree one.
Leading monomials of f1, f2 have the least common multiple LCMpx1x2, x22q “ x1x

2
2
. Hence,

to cancel the leading terms, we have to combine f1 and f2 by monomial coeficients as follows

Spf1, f2q “ x2

6
f1 ´ x1

3
f2 “ x1x

2
2

6x1x2
f1 ´ x1x

2
2

2x2
2

f2 “ LCMpLMpf1, f2qq
LTpf1q f1 ´ LCMpLMpf1, f2qq

LTpf2q f2

“ p3x32 ` 4x21 ´ 13x22 ´ 4x1 ` 10x2q{6 (3.14)

Now, we will simplify Spf1, f2q by reducing it by long division by f1, f2. This will remove large
part of Spf1, f2q that is contained in xF y and will guarrantee that the LMprq will not be too large,
since it can’t be divided by any LM of any polynomial in F .

f3 “ Spf1, f2qF “ Spf1, f2q :ăopf1, f2q “ 3x21 ´ 5x1 ´ 2x2 ` 2 (3.15)
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Next, construct a new set of polynomials G “ rf1, f2, 6 f3s with

f1 “ 6x1x2 ` 3x22 ´ 10x1 ´ 13x2 ` 10

f2 “ 3x22 ´ 2x1 ´ 5x2 ` 2

f3 “ 3x21 ´ 5x1 ´ 2x2 ` 2

The above procedure has to be iterated further. For every pair of polynomials in G, we construct
their S-polynomial and reduce it by G, add the remainder on division by G, by which we enlarge
G, and so on.
Let us do one more step of the above procedure

Spf1, f2qG “ f3

Spf1, f3qG “ 3x1x22 ´ 10x2
1

´ 3x1x2 ` 4x2
2

` 10x1 ´ 4x2
G “ 0

Spf2, f3qG “ ´2x3
1

´ 5x2
1
x2 ` 5x1x22 ` 2x3

2
` 2x2

1
´ 2x2

2

G “ 0

We see that no new non-zero remainder has been generated and thus the set G become stable
w.r.t. to generating S-polynomials from G followed by reduction by G. We have obtained a
Gröbner basis G of xF y.
We can still further simplify G to obtain the unique reduced Gröbner basis of xF y. The idea is

to remove all monomials from polynomials of G that can be divided by the leading terms of G.
It is a generalization of Gauss-Jordan elimination. The reduced Gröbner basis is to a Gröbner
basis as is the reduced row echelon form to a mere “Gaussian eliminated” system.
In our example, we see that there is monomial x2

2
in f1 that is divisible by the leading

term x2
2
of f2, hence we can remove it by subtracting f2 from f1 (and then normaling the

resulting polynomial to get the leading coefficients equal to one) to get the reducer Gröbner
basis Gr “ rg1, g2, g3s with

g1 “ x1x2 ´ 4

3
x1 ´ 4

3
x2 ` 4

3

g2 “ x22 ´ 2

3
x1 ´ 5

3
x2 ` 2

3
(3.16)

g3 “ x21 ´ 5

3
x1 ´ 2

3
x2 ` 2

3

See Figure 3.5.
Notice that leading monomials of Gr, i.e. x1x2, x

2
2
, and x2

1
reduce all monomials except for

the three monomials 1, x1, and x2. These are the three desired monomials that will provide the
basis of the linear space to form a multiplication matrix and to obtain an eigenvalue/eigenvector
problem providing us with the solution to the original system F . See Figure 3.6.

3.5.6 Solving general radical systems by eigenvectors of a multiplication matrix

We will now generalize the procedure from paragraph 3.5.1 to ideals xF y generated by multiple
multivariate polynomials F . We will illustrate the generalization on an example in two unknowns
x1, x2.
We consider mapping Mg : Qrx1, x2s Ñ Qrx1, x2s by a polynomial g P Qrx1, x2s defined by

Mgphq “ pg hqG with a Gröbner basis G of F
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Figure 3.5: Three polynomials g1 “ 3x1x2 ´ 4x1 ´ 4x2 ` 4, g2 “ 3x2
2

´ 2x1 ´ 5x2 ` 2,
g3 “ 3x2

1
´ 5x1 ´ 2x2 ` 2 of the (un-normalized) reduced Gröbner basis G of xF y.

x1

x2

x2
1

x2
1

x2
1

x2
2

x1x2

0

0

1

1

1

2

2

3

3

4

4 degpx1q

degpx2q

Figure 3.6: Standard monomials x1, x2, 1 of G from Equation 3.16 are not divisible by leading
monomials x2

1
, x1x2, x

2
2
of G. All other monomials, shown in gray, are divisible by at

least on of the leading monomials of G.

34



T. Pajdla. Elements of Geometry for Robotics 2019-9-22 (pajdla@cvut.cz)

The reduction of g h as well as the computation of G is carried out w.r.t. the same monomial
ordering.
Next, consider that for a point pi “ rpi1, pi2sJ, gppiq “ rppiq where r “ a2x2 ` a1x1 ` a0 is

the remainder of g on division by G, i.e. gG. Thus

gppiq “ rppiq “ a1x1ppiq ` a2x2ppiq ` a01ppiq (3.17)

We can thus write

gppiq

»

–

x1ppiq
x2ppiq
1ppiq

fi

fl “ pa1x1ppiq ` a2x2ppiq ` a01ppiqq

»

–

x1ppiq
x2ppiq
1ppiq

fi

fl

gppiq

»

–

x1ppiq
x2ppiq
1ppiq

fi

fl “
`

a1 M
J
x1

` a2 M
J
x2

` a0I
˘

»

–

x1ppiq
x2ppiq
1ppiq

fi

fl

gppiq

»

–

pi1
pi2
1

fi

fl “
`

a1 M
J
x1

` a2 M
J
x2

` a0I
˘

»

–

pi1
pi2
1

fi

fl

gppiq~vi “ MJ
g ~vi

showing that pgppiq, ~viq are eigenvalue-eigenvector pairs of MJ
g “ pa1 Mx1

` a2 Mx2
` a0IqJ.

Let us now see how we can extract matrices Mx1
, Mx2

given by Gr from Equation 3.16. We
write Gr in a matrix form as

g3

g1

g2

»

—

—

—

—

–

x2
1

x1x2 x2
2

x1 x2 1

1 0 0 ´5

3
´2

3

2

3

0 1 0 ´4

3
´4

3

4

3

0 0 1 ´2

3
´5

3

2

3

fi

ffi

ffi

ffi

ffi

fl

(3.18)

We see that

x1

»

–

x1
x2
1

fi

fl

G

“

»

–

x2
1

x1x2
x1

fi

fl

G

“

»

—

–

5

3

2

3
´2

3

4

3

4

3
´4

3

1 0 0

fi

ffi

fl

»

—

–

x1

x2

1

fi

ffi

fl
and thus Mx1

“

»

—

–

5

3

2

3
´2

3

4

3

4

3
´4

3

1 0 0

fi

ffi

fl

x2

»

–

x1
x2
1

fi

fl

G

“

»

–

x1x2
x2
2

x2

fi

fl

G

“

»

—

–

4

3

4

3
´4

3

2

3

5

3
´2

3

0 1 0

fi

ffi

fl

»

—

–

x1

x2

1

fi

ffi

fl
and thus Mx2

“

»

—

–

4

3

4

3
´4

3

2

3

5

3
´2

3

0 1 0

fi

ffi

fl

Now, since the system F has three solutions with multiplicity one, ideal xF y is radical. Also,
since all three solutions have pairwise distinct x1 (as well as x2) coordinates 0, 1, 2, Figure 3.4,
we can choose g “ x1 and thus Mg “ Mx1

. We calculate eigenvectors of Mx1
and get three

one-dimensional bases of the three respective separated one-dimensional eigenspaces

eigenvectorspMx1
q “

»

–

1 0 2
0 1 2
1 1 1

fi

fl corresponding to evaluation of

»

–

x1
x2
1

fi

fl on solutions pp1, p2, p3q

We thus get three solutions r1, 0s, r0, 1s, r2, 2s to the system F .
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Figure 3.7: System F “ rx2
1

` x2
2

´ 1, p5x1 ´ 4q px2 ´ x1 ´ 1qs generates radical ideal but has
higher-dimensional eigenspace of the multiplication matrix w.r.t. x1.

3.5.6.1 General method for radical ideals

Radical ideals still may produce eigenspaces of higher dimension than one. Cosider, for instance
the system

F “ rx21 ` x22 ´ 1, p5x1 ´ 4q px2 ´ x1 ´ 1qs
see Figure 3.7.
Ideal I “ xF y is radical. The generators for the elimination ideals I X Crx1s, resp. I X Crx2s,

are x1 p1 ` x1q p5x1 ´ 4q, resp. x2 p´1 ` x2q p5x2 ´ 3qp5x2 ` 3q, which are square-free.
When selecting the standard monomials as

“

1 x1 x2 x2
1

‰

, we get the corresponding mul-
tiplication matrix

Mx1
“

»

—

—

—

–

0 1 0 0
0 0 0 1

´4

5

1

5

4

5
1

0 4

5
0 ´1

5

fi

ffi

ffi

ffi

fl

with e/v ´ 1{
C

»

—

—

–

1
´1
0
1

fi

ffi

ffi

fl

G

, p4
5

q2{
C

»

—

—

—

—

–

1 0
4

5
0

0 1
16

25
0

fi

ffi

ffi

ffi

ffi

fl

G

and 0{
C

»

—

—

–

1
0
1
0

fi

ffi

ffi

fl

G

Hence we can’t read out the two complete solutions for 4

5
directly from the basis of the corre-

sponding eigenspace.
However, we can find a suitable polynomial f such that Mf has one-dimensional eigenspaces

only. In this case, for instance, we may construct

Mx1`x2
“

»

—

—

—

–

0 1 1 0
´4

5

1

5

4

5
2

1

5

1

5

4

5
0

´16

25
´24

25

16

25

3

5

fi

ffi

ffi

ffi

fl

with e/v
1

5
{
C

»

—

—

—

–

1
4

5

´3

5

16

25

fi

ffi

ffi

ffi

fl

G

, 1{
C

»

—

—

–

1
0
1
0

fi

ffi

ffi

fl

G

,
7

5
{
C

»

—

—

—

–

1
4

5

3

5

16

25

fi

ffi

ffi

ffi

fl

G

, ´1{
C

»

—

—

–

1
´1
0
1

fi

ffi

ffi

fl

G
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and thus get complete solutions from the second and third coordinate of the bases of the
eigenspaces.

3.5.7 Solving general “non-radical” systems by eigenvectors of a multiplication

matrix

Let us now look at systems that are not radical. This means, for systems with a finite number
of solutions, that some of the solutions have multiplicity greater than one. In this situation, in
general, the multiplication matrices for a general polynomial g may have eigenvalues of greater
multiplicities and thus eigenspaces of dimension greater than one. In such a case, it is not so
clear how to extract solutions from the bases of the eigenspaces.
In principal, there are three approaches how to solve this. The first approach is to obtain

a radical ideal
a

xF y of xF y and proceed as above. The second approach would be to use
the fact that eigenvectors common to all multiplication matrices by all polynomials are in one
dimensional eigenspaces [14], and, third, it would be possible to follow [16] and to get a more
general algorithm for non-radical systems. Let us next show an example of using the first
approach.
Consider the system F “ rf1, f2s, Equation 3.2,

f1 “ x22 ` x21 ´ 1 “ 0

f2 “ 25x1x2 ´ 20x2 ´ 15x1 ` 12 “ 0

This system does not generate a radical ideal since some of the solutions have higher multipliers.
Let us follow the procedure above. The (up to multiplication by a constant) reduced Gröbner

basis G of F is, w.r.t. x1 ălex x2,

G “ rx22 ` x21 ´ 1, 25x1x2 ´ 20x2 ´ 15x1 ` 12, 125x31 ´ 100x21 ´ 80x1 ` 64s

which actually consists of the polynomials f1, f3, f4 from Equation 3.5. The standard monomials
w.r.t. to G are r1, x1, x21, x2s. These are all the monomials smaller than the leading monomials
of polynomials in G, i.e. x2

2
, x1x2, x

3
1
, w.r.t. x1 ălex x2.

Also notice that these standard monomials are not all in x1 despite using x1 ălex x2. The
reason is that the four solutions (when counting the multiplicities) project only to two solutions
in x1 with one solution of multiplicity two. The solution r4

5
, 3
5
sJ of multiplicity two “masks” the

simple solution r4
5
,´3

5
sJ.

The matrix representing the multiplication by x1 modulo G is

Mx1
“

»

—

—

—

—

–

0 1 0 0

0 0 1 0

´ 64

125

16

25

4

5
0

´12

25

3

5
0 4

5

fi

ffi

ffi

ffi

ffi

fl

with eigenvalue/eigenspace
4

5
{
C

»

—

—

—

—

–

0 1

0 4

5

0 16

25

1 0

fi

ffi

ffi

ffi

ffi

fl

G

and ´ 4

5
{
C

»

—

—

—

—

–

1

´4

5

16

25

3

5

fi

ffi

ffi

ffi

ffi

fl

G

The multiplicity of eigenvalue 4

5
is three and it has associated a two-dimensional eigenspace. The

multiplicity of eigenvalue ´4

5
is one and thus it has associated a one-dimensional eigenspace.

The basis of the eigenspace associated to eigenvalue 4

5
does not directly provide the two solutions

related to x1 “ 4

5
. On the other hand the basis of the one-dimensional eigenspace corresponding

to the eigenvalue ´4

5
provides the solution r´4

5
, 3
5
sJ.
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Let’s try to multiply by another polynomial, e.g. by x2 ´x1. We keep the same Gröbner basis
as well as monomial ordering x1 ălex x2. So, now we get the multiplication matrix

Mx2´x1
“

»

—

—

—

—

–

0 ´1 0 1

´12

25

3

5
´1 4

5

16

125
´16

25
´1

5

16

25

37

25
´3

5
´1 ´4

5

fi

ffi

ffi

ffi

ffi

fl

with ´ 1

5
{
C

»

—

—

—

—

–

1

4

5

16

25

3

5

fi

ffi

ffi

ffi

ffi

fl

G

, ´ 7

5
{
C

»

—

—

—

—

–

1

4

5

16

25

´3

5

fi

ffi

ffi

ffi

ffi

fl

G

and
7

5
{
C

»

—

—

—

—

–

1

´4

5

16

25

3

5

fi

ffi

ffi

ffi

ffi

fl

G

and we see that, in this case, we were lucky to find a polynomial x2 ´ x1 that provided three
separated one-dimensional eigenspaces. The reason is that the double eigenvalue ´1

5
has a

“defective eigenspace” [5] of dimension only one and hence we do not suffer from having a
derogatory matrix with a higher-dimensional eigenspace.
We can read out the solutions from the second and the third coordinate of the three normalized

eigenvectors above.
In general, unfortunately, there are systems for which the multiplication by no polynomial

gives only one-dimensional eigenspaces for all eigenvalues [14]. To illustrate this, we will consider
the system

F “ rpx1 ´ 1q2, px2 ´ 1q2s
The reduced Gröbner basis G of F is w.r.t. x2 ălex x1

G “ rx21 ´ 2x1 ` 1, x22 ´ 2x2 ` 1s

The standard monomials w.r.t. to G are r1, x2, x1, x1x2s. The matrix representing the multipli-
cation by x1 modulo G is

Mx1
“

»

—

—

—

—

–

0 0 1 0

0 0 0 1

´1 0 2 0

0 ´1 0 2

fi

ffi

ffi

ffi

ffi

fl

with eigenvalue/eigenspace 1{
C

»

—

—

–

1 0
0 1
1 0
0 1

fi

ffi

ffi

fl

G

The matrix representing the multiplication by x2 ´ x1 modulo G is

Mx2´x1
“

»

—

—

—

—

–

0 1 ´1 0

´1 2 0 ´1

1 0 ´2 1

0 1 ´1 0

fi

ffi

ffi

ffi

ffi

fl

with eigenvalue/eigenspace 1{
C

»

—

—

—

–

1 1
0 1

2

0 1

2

´1 0

fi

ffi

ffi

ffi

fl

G

We see that we always get a two-dimensional eigenspace and it is not possible to just read out
the solutions from the basic vectors of the eigenspaces.

3.5.7.1 General solution

To present a general method, we will consider a system obtained from 3.2 by squaring the first
equation, i.e.

F “ rpx22 ` x21 ´ 1q2, 25x1x2 ´ 20x2 ´ 15x1 ` 12s
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The Gröbner basis (reduced up to a multiplication by a constant) G of F is, w.r.t. x1 ălex x2,

G “ r 3125x51 ´ 1875x41 ´ 2250x31 ` 1350x21 ` 405x1 ´ 243,

25x1 x2 ´ 20x1 ´ 15x2 ` 12,

625x41 ` 625x42 ´ 450x21 ´ 800x22 ` 337 s

The standard monomials w.r.t. to G and x1 ălex x2

r1, x1, x21, x31, x41, x2, x22, x32s

The matrix representing the multiplication by a general linear polynomial 3x1 ` 4x2 modulo G

w.r.t. x1 ălex x2 is

M 3x1`4x2
“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0 3 0 0 0 5 0 0

´12

5
4 3 0 0 3 0 0

´36

25
0 4 3 0 9

5
0 0

´108

125
0 0 4 3 27

25
0 0

´ 891

3125
´243

625
´162

125

54

25

29

5

81

125
0 0

´36

25

12

5
0 0 0 9

5
5 0

´144

125

48

25
0 0 0 0 9

5
5

´2261

625

192

125

18

5
0 ´5 0 32

5

9

5

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

The eigenvalue/eigenspace of M 3x1`4x2
are as follows

29

5
{
C

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1 1

19

15

47

45

29

21

67

75

117

125

87

125

441

625

321

625

2

5

8

15

0 16

75

32

125
0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

G

,
11

5
{
C

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1

´3

5

9

25

´ 27

125

81

625

4

5

16

25

64

125

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

G

,´11

5
{
C

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1

3

5

9

25

27

125

81

625

´4

5

16

25

´ 64

125

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

G

corresponding to

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1

x1

x2
1

x3
1

x4
1

x2

x2
2

x3
2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Eigenvalues 11

5
and ´11

5
are of multiplicity two and both have defective eigenspaces of dimension

one. Eigenvalue 29

5
is of multiplicity four and has a defective eigenspace of dimension two.

We see that the solution r3
5
, 4
5
s is buried in a two dimensional eigenspace and can’t be directly

read out. Since we were using a random generic polynomial 3x1 ` 4x2, we can’t expect to solve
this system as is by the eigenvector method.
Let us now find the radical system generating

a

xF y and use it to compute the solutions to
the original system F . To do that, we need to generate univariate polynomials in x1 and x2 in
xF y and get their corresponding square-free polynomials, which we then add to F .
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One way to get the univariate polynomials is to construct Gröbner bases Gx1
w.r.t. x1 ălex x2

and Gx2
w.r.t. x2 ălex x1. We get

Gx1
“ r p5x1 ` 3q2 p5x1 ´ 3q3, p5x1 ´ 3q p5x2 ´ 4q, 625x41 ` 625x42 ´ 450x21 ´ 800x22 ` 337 s

Gx2
“ r p5x2 ` 4q2 p5x2 ´ 4q3, p5x1 ´ 3q p5x2 ´ 4q, 625x41 ` 625x42 ´ 450x21 ´ 800x22 ` 337 s

The univariate polynomial in Gx1
, resp. Gx2

, is

g1 “ p5x1 ` 3q2 p5x1 ´ 3q3 resp. g2 “ p5x2 ` 4q2 p5x2 ´ 4q3

We want to construct square-free polynomials

f3 “ g1

GCD
´

g1,
Bg1
Bx1

¯ “ p5x1 ` 3q2 p5x1 ´ 3q3
GCD pp5x1 ` 3q2 p5x1 ´ 3q3, 5 p5x1 ` 3q p5x1 ´ 3q2p25x1 ` 3qq

“ p5x1 ` 3q2 p5x1 ´ 3q3
p5x1 ` 3qp5x1 ´ 3q2 “ p5x1 ` 3qp5x1 ´ 3q

f4 “ g2

GCD
´

g2,
Bg2
Bx2

¯ “ p5x2 ` 4q2 p5x2 ´ 4q3
GCD pp5x2 ` 4q2 p5x2 ´ 4q3, 5 p5x2 ` 4qp5x2 ´ 4q2p25x2 ` 4qq

“ p5x2 ` 4q2 p5x2 ´ 4q3
p5x2 ` 4qp5x2 ´ 4q2 “ p5x2 ` 4qp5x2 ´ 4q

The radical ideal
a

xF y will now be

a

xF y “ xpx22 ` x21 ´ 1q2, 25x1x2 ´ 20x2 ´ 15x1 ` 12, p5x1 ` 3qp5x1 ´ 3q, p5x2 ` 4qp5x2 ´ 4qy

giving Gröbner basis
?
G “ r25x2

1
´9, 25x1x2´20x1´15x2`12, 25x2

2
´16s w.r.t. x1 ălex x2. The

standard monomials w.r.t. x1 ălex x2 are r1, x1, x2s and the multiplication matrix for 3x1 `4x2
is

M 3x1`4x3
“

»

—

–

0 3 5

´33

25
4 3

44

25

12

5

9

5

fi

ffi

fl
with e/v as

11

5
{
C

»

–

1
´3

5
4

5

fi

fl

G

,
29

5
{
C

»

–

1
3

5
4

5

fi

fl

G

,´11

5
{
C

»

–

1
3

5

´4

5

fi

fl

G

We see that, now, we can directly read out all the solutions to the system.
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4 Affine space

Let us study the affine space, an important structure underlying geometry and its algebraic
representation. The affine space is closely connected to the linear space. The connection is
so intimate that the two spaces are sometimes not even distinguished. Consider, for instance,
function f : R Ñ R with non-zero a, b P R

fpxq “ a x ` b (4.1)

It is often called “linear” but it is not a linear function [6, 7, 5] since for every α P R there holds

fpαxq “ αax ` b ‰ α pa x ` bq “ α fpxq (4.2)

In fact, f is an affine function, which becomes a linear function only for b “ 0.
In geometry, we need to be very precise and we have to clearly distinguish affine from linear.

Let us therefore first review the very basics of linear spaces, and in particular their relationship
to geometry, and then move to the notion of affine spaces.

4.1 Vectors

Let us start with geometric vectors and study the rules of their manipulation.
Figure 4.1(a) shows the space of points P , which we live in and intuitively understand. We

know what is an oriented line segment, which we also call a marked ruler (or just a ruler). A
marked ruler is oriented from its origin towards its end, which is actually a mark (represented

x

y

z

u

v

(a) (b) (c)

Figure 4.1: (a) The space around us consists of points. Rulers (marked oriented line segments)
can be aligned (b) and translated (c) and thus used to transfer, but not measure,
distances.
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a
a

a
a

b

b
b

b
a ` b

a ` b

a

aa

ab

b

1

1
1

´1

´1

a b

´1 a

(a) (b)

Figure 4.2: Scalars are represented by oriented rulers. They can be added (a) and multiplied
(b) purely geometrically by translating and aligning rulers. Notice that we need to
single out a unit scalar “1” to perform geometric multiplication.

by an arrow in Figure 4.1(b)) on a thought infinite ruler, Figure 4.1(b). We assume that we are
able to align the ruler with any pair of points x, y, so that the ruler begins in x and a mark is
made at the point y. We also know how to align a marked ruler with any pair of distinct points
u, v such that the ruler begins in u and aligns with the line connecting u and v in the direction
towards point v. The mark on so aligned ruler determines another point, call it z, which is
collinear with points u, v. We know how to translate, Figure 4.1(c), a ruler in this space.
To define geometric vectors, we need to first define geometric scalars.

4.1.1 Geometric scalars

Geometric scalars S are horizontal oriented rulers. The ruler, which has its origin identical with
its end is called 0. Geometric scalars are equipped with two geometric operations, addition a` b

and multiplication a b, defined for every two elements a, b P S.
Figure 4.2(a) shows addition a ` b. We translate ruler b to align origin of b with the end of a

and obtain ruler a ` b.
Figure 4.2(b) shows multiplication a b. To perform multiplication, we choose a unit ruler “1”

and construct its additive inverse ´1 using 1` p´1q “ 0. This introduces orientation to scalars.
Scalars aiming to the same side as 1 are positive and scalars aiming to the same side as ´1 are
negative. Scalar 0 is neither positive, nor negative. Next we define multiplication by ´1 such
that ´1 a “ ´a, i.e. ´1 times a equals the additive inverse of a. Finally, we define multiplication
of non-negative (i.e. positive and zero) rulers a, b as follows. We align a with 1 such that origins
of 1 and a coincide and such that the rulers contain an acute non-zero angle. We align b with 1
and construct ruler a b by a translation, e.g. as shown in Figure 4.2(b)1.
All constructions used were purely geometrical and were performed with real rulers. We can

verify that so defined addition and multiplication of geometric scalars satisfy all rules of addition
and multiplication of real numbers. Geometric scalars form a field [11, 17] w.r.t. to a ` b and
a b.

1Notice that a b is well defined since it is the same for all non-zero angles contained by a and 1.
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~x ‘ ~y

~y ‘ ~x

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4.3: Bound vectors are (ordered) pairs of points po, xq, i.e. arrows ~x “ po, xq. Addition of
the bound vectors ~x, ~y is realized by parallel transport (using a ruler). We see that
the result is the same whether we add ~x to ~y or ~y to ~x. Addition is commutative.

4.1.2 Geometric vectors

Ordered pairs of points, such as px, yq in Figure 4.3(a), are called geometric vectors and denoted
as ÝÑxy, i.e. ÝÑxy “ px, yq. Symbol ÝÑxy is often replaced by a simpler one, e.g. by ~a. The set of all
geometric vectors is denoted by A.

4.1.3 Bound vectors

Let us now choose one point o and consider all pairs po, xq, where x can be any point, Fig-
ure 4.3(a). We obtain a subset Ao of A, which we call geometric vectors bound to o, or just
bound vectors when it is clear to which point they are bound. We will write ~x “ po, xq. Fig-
ure 4.3(f) shows another bound vector ~y. The pair po, oq is special. It will be called the zero
bound vector and denoted by ~0. We will introduce two operations ‘,d with bound vectors.
First we define addition of bound vectors ‘ : Ao ˆAo Ñ Ao. Let us add vector ~x to ~y as shown

on Figure 4.3(b). We take a ruler and align it with ~x, Figure 4.3(c). Then we translate the ruler
to align its begin with point y, Figure 4.3(d). The end of the ruler determines point z. We define
a new bound vector, which we denote ~x ‘ ~y, as the pair po, zq, Figure 4.3(e). Figures 4.3(f-j)
demonstrate that addition gives the same result when we exchange (commute) vectors ~x and ~y,
i.e. ~x ‘ ~y “ ~y ‘ ~x. We notice that for every point x, there is exactly one point x1 such that
po, xq ‘ po, x1q “ po, oq, i.e. ~x‘ ~x1 “ ~0. Bound vector ~x1 is the inverse to ~x and is denoted as ´~x.
Bound vectors are invertible w.r.t. operation ‘. Finally, we see that po, xq ‘ po, oq “ po, xq, i.e.
~x ‘ ~0 “ ~x. Vector ~0 is the identity element of the operation ‘. Clearly, operation ‘ behaves
exactly as addition of scalars – it is a commutative group [11, 17].
Secondly, we define the multiplication of a bound vector by a geometric scalar d : SˆAo Ñ Ao,
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where S are geometric scalars and Ao are bound vectors. Operation d is a mapping which takes
a geometric scalar (a ruler) and a bound vector and delivers another bound vector.
Figure 4.4 shows that to multiply a bound vector ~x “ po, xq by a geometric scalar a, we

consider the ruler b whose origin can be aligned with o and end with x. We multiply scalars a
and b to obtain scalar a b and align a b with ~x such that the origin of a b coincides with o and a b

extends along the line passing through ~x. We obtain end point y of so placed a b and construct
the resulting vector ~y “ a d ~x “ po, yq.
We notice that addition ‘ and multiplication d of horizontal bound vectors coincides exactly

with the addition and multiplication of scalars.

4.2 Linear space

We can verify that for every two geometric scalars a, b P S and every three bound vectors
~x, ~y, ~z P Ao with their respective operations, there holds the following eight rules

~x ‘ p~y ‘ ~zq “ p~x ‘ ~yq ‘ ~z (4.3)

~x ‘ ~y “ ~y ‘ ~x (4.4)

~x ‘~0 “ ~x (4.5)

~x ‘ ´~x “ ~0 (4.6)

1 d ~x “ ~x (4.7)

pa bq d ~x “ a d pb d ~xq (4.8)

a d p~x ‘ ~yq “ pa d ~xq ‘ pa d ~yq (4.9)

pa ` bq d ~x “ pa d ~xq ‘ pb d ~xq (4.10)

These rules are known as axioms of a linear space [6, 7, 4]. Bound vectors are one particular
model of the linear space. There are many other very useful models, e.g. n-tuples of real or
rational numbers for any natural n, polynomials, series of real numbers and real functions. We
will give some particularly simple examples useful in geometry later.
The next concept we will introduce are coordinates of bound vectors. To illustrate this concept,

we will work in a plane. Figure 4.5 shows two non-collinear bound vectors ~b1, ~b2, which we call
basis, and another bound vector ~x. We see that there is only one way how to choose scalars x1
and x2 such that vectors x1 d~b1 and x2 d~b2 add to ~x, i.e.

~x “ x1 d~b1 ‘ x2 d~b2 (4.11)

o

x

y

~x

~y “ a d ~x

a
b

a b

Figure 4.4: Multiplication of the bound vector ~x by a geometric scalar a is realized by aligning
rulers to vectors and multiplication of geometric scalars.
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o

x

~x

~b1

~b2

x1 d~b1

x2 d~b2

Figure 4.5: Coordinates are the unique scalars that combine independent basic vectors ~b1, ~b2
into ~x.

Scalars x1, x2 are coordinates of ~x in (ordered) basis r~b1,~b2s.

4.3 Free vectors

We can choose any point from A to construct bound vectors and all such choices will lead to the
same manipulation of bound vector and to the same axioms of a linear space. Figure 4.6 shows
two such choices for points o and o1.
We take bound vectors ~b1 “ po, b1q, ~b2 “ po, b2q, ~x “ po, xq at o and construct bound vectors

~b 1
1

“ po1, b1
1
q, ~b 1

2
“ po1, b1

2
q, ~x 1 “ po1, x1q at o1 by translating x to x1, b1 to b1

1
and b2 to b1

2
by the

same translation. Coordinates of ~x w.r.t. r~b1,~b2s are equal to coordinates of ~x 1 w.r.t. r~b 1
1
,~b 1

2
s.

This interesting property allows us to construct another model of a linear space, which plays an
important role in geometry.
Let us now consider the set of all geometric vectors A. Figure 4.7(a) shows an example of

a few points and a few geometric vectors. Let us partition [1] the set A of geometric vectors
into disjoint subsets Apo,xq such that we choose one bound vector po, xq and put to Apo,xq all
geometric vectors that can be obtained by a translation of po, xq. Figure 4.7(b) shows two such
partitions Apo,xq, Apo,yq. It is clear that Apo,xq XApo,x1q “ H for x ‰ x1 and that every geometric
vector is in some (and in exactly one) subset Apo,xq.

o

o1

b1

b1
1

b2

b1
2

x

x1

~x

~x 1

~b1

~b 1
1~b2

~b 1
2

x1 d~b1

x1 d~b 1
1

x2 d~b2

x2 d~b 1
2

Figure 4.6: Two sets of bound vectors Ao and Ao1 . Coordinates of ~x w.r.t. r~b1,~b2s are equal to

coordinates of ~x 1 w.r.t. r~b 1
1
,~b 1

2
s.
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ooo

xx
y y

(a) (b)

Figure 4.7: The set A of all geometric vectors (a) can be partitioned into subsets which are called
free vectors. Two free vectors Apo,xq and Apo,yq, i.e. subsets of A, are shown in (b).

oo

xx

x1

pp

yy

y1

qq

zz

Figure 4.8: Free vector Apo,xq is added to free vector App,yq by translating po, xq to pq, x1q and pp, yq
to pq, y1q, adding bound vectors pq, zq “ pq, x1q ‘ pq, y1q and setting Apo,xq ‘ App,yq “
Apq,zq

Two geometric vectors po, xq and po1, x1q form two subsets Apo,xq, Apo1,x1q which are equal if
and only if po1, x1q is related by a translation to po, xq.
“To be related by a translation” is an equivalence relation [1]. All geometric vectors in Apo,xq

are equivalent to po, xq.
There are as many sets in the partition as there are bound vectors at a point. We can define

the partition by geometric vectors bound to any point o because if we choose another point o1,
then for every point x, there is exactly one point x1 such that po, xq can be translated to po1, x1q.
We denote the set of subsets Apo,xq by V . Let us see that we can equip set V with a meaningful

addition ‘ : V ˆ V Ñ V and multiplication d : S ˆ V Ñ V by geometric scalars S such that it
will become a model of the linear space. Elements of V will be called free vectors.
We define the sum of ~x “ Apo,xq and ~y “ Apo,yq, i.e. ~z “ ~x ‘ ~y is the set Apo,xq ‘ po,yq.

Multiplication of ~x “ Apo,xq by geometrical scalar a is defined analogically, i.e. a d ~x equals the
set Aadpo,xq. We see that the result of ‘ and d does not depend on the choice of o. We have
constructed the linear space V of free vectors.

§ 1 Why so many vectors? In the literature, e.g. in [4, 5, 8], linear spaces are often treated
purely axiomatically and their geometrical models based on geometrical scalars and vectors are
not studied in detail. This is a good approach for a pure mathematician but in engineering we
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x
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z

t

~u

~v

~w

Figure 4.9: Free vectors ~u, ~v and ~w defined by three points x, y and z satisfy triangle identity
~u ‘ ~v “ ~w.

use the geometrical model to study the space we live in. In particular, we wish to appreciate
that good understanding of the geometry of the space around us calls for using bound as well
as free vectors.

4.4 Affine space

We saw that bound vectors and free vectors were (models of) a linear space. On the other hand,
we see that the set of geometric vectors A is not (a model of) a linear space because we do not
know how to meaningfully add (by translation) geometric vectors which are not bound to the
same point. The set of geometric vectors is an affine space.
The affine space connects points, geometric scalars, bound geometric vectors and free vectors

in a natural way.
Two points x and y, in this order, give one geometric vector px, yq, which determines exactly

one free vector ~v “ Apx,yq. We define function ϕ : A Ñ V , which assigns to two points x, y P P

their corresponding free vector ϕpx, yq “ Apx,yq.
Consider a point a P P and a free vector ~x P V . There is exactly one geometric vector pa, xq,

with a at the first position, in the free vector ~x. Therefore, point a and free vector ~x uniquely
define point x. We define function # : P ˆ V Ñ P , which takes a point and a free vector and
delivers another point. We write a#~x “ x and require ~x “ ϕpa, xq.
Consider three points x, y, z P P , Figure 4.9. We can produce three free vectors ~u “ ϕpx, yq “

Apx,yq, ~v “ ϕpy, zq “ Apy,zq, ~w “ ϕpx, zq “ Apx,zq. Let us investigate the sum ~u ‘ ~v. Chose
the representatives of the free vectors, such that they are all bound to x, i.e. bound vectors
px, yq P Ax,y, px, tq P Apy,zq and px, zq P Apx,zq. Notice that we could choose the pairs of original
points to represent the first and the third free vector but we had to introduce a new pair of
points, px, tq, to represent the second free vector. Clearly, there holds px, yq ‘ px, tq “ px, zq. We
now see, Figure 4.9, that py, zq is related to px, tq by a translation and therefore

~u ‘ ~v “ Apx,yq ‘ Apy,zq “ Apx,yq ‘ Apx,tq “ Apx,yq‘px,tq “ Apx,zq “ ~w (4.12)

Figure 4.10 shows the operations explained above in Figure 4.9 but realized using the vectors
bound to another point o.
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x

y

z “ x#~w

px, yq

py, zq

px, zq

~u “ Apx,yq

~v “ Apy,zq

~w “ ~u ‘ ~v “ Apo,aq‘po,cq

ϕpx, yq

t

o

a

b

c

Figure 4.10: Affine space pP,L, ϕq, its geometric vectors px, yq P A “ P ˆ P and free vector
space L and the canonical assignment of pairs of points px, yq to the free vector
Apx,yq. Operations ‘, ‘, combining vectors with vectors, and #, combining points

with vectors, are illustrated.

The above rules are known as axioms of affine space and can be used to define even more
general affine spaces.

§ 1 Remark on notation We were carefully distinguishing operations p`, q over scalars, p‘,dq
over bound vectors, p‘,dq over free vectors, and function # combining points and free vectors.
This is very correct but rarely used. Often, only the symbols introduced for geometric scalars
are used for all operations, i.e.

` ” `, ‘, ‘, # (4.13)

” , d, d (4.14)

§ 2 Affine space Triple pP,L, ϕq with a set of points P , linear space pL,‘,dq (over some field
of scalars) and a function ϕ : P ˆ P Ñ L, is an affine space when

A1 ϕpx, zq “ ϕpx, yq ‘ ϕpy, zq for every three points x, y, z P P

A2 for every o P P , the function ϕo : P Ñ L, defined by ϕopxq “ ϕpo, xq for all x P P is a
bijection [1].

Axiom A1 calls for an assignment of pairs of point to vectors. Axiom A2 then makes this
assignmet such that it is one-to-one when the first argument of ϕ is fixed.
We can define another function # : P ˆ L Ñ P , defined by o#~x “ ϕ´1

o p~xq, which means
ϕpo, o#~xq “ ~x for all ~x P L. This function combines points and vectors in a way that is very
similar to addition and hence is sometimes denoted by ` instead of more correct #.
In our geometrical model of A discussed above, function ϕ assigned to a pair of points x, y

their corresponding free vector Apx,yq. Function #, on the other hand, takes a point x and a
free vector ~v and gives another points y such that the bound vector px, yq is a representative of
~v, i.e. Apx,yq “ ~v.
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~x “ ϕpo, xq
~x 1 “ ϕpo1, xq

~o 1 “ ϕpo, o1q

~b1

~b2

~b 1
1

~b 1
2

Figure 4.11: Point x is represented in two affine coordinate systems.

4.5 Coordinate system in affine space

We see that function ϕ assigns the same vector from L to many different pairs of points from P .
To represent uniquely points by vectors, we select a point o, called the origin of affine coordinate
system and represent point x P P by its position vector ~x “ ϕpo, xq. In our geometric model
of A discussed above, we thus represent point x by bound vector po, xq or by point o and free
vector Apo,xq.
To be able to compute with points, we now pass to the representation of points in A by

coordinate vectors. We choose a basis β “ p~b1,~b2, . . .q in L. That allows us to represent point
x P P by a coordinate vector

~xβ “

»

—

–

x1
x2
...

fi

ffi

fl
, such that ~x “ x1~b1 ` x2~b2 ` ¨ ¨ ¨ (4.15)

The pair po, βq, where o P P and β is a basis of L is called an affine coordinate system (often
shortly called just coordinate system) of affine space pP,L, ϕq.
Let us now study what happens when we choose another point o1 and another basis β1 “

p~b 1
1
,~b 1

2
, . . .q to represent x P P by coordinate vectors, Figure 4.11. Point x is represented twice: by

coordinate vector ~xβ “ ϕpo, xqβ “ Apo,xqβ and by coordinate vector ~x 1
β 1 “ ϕpo1, xqβ 1 “ Apo1,xqβ 1 .

To get the relationship between the coordinate vectors ~xβ and ~x 1
β 1 , we employ the triangle

equality

ϕpo, xq “ ϕpo, o1q ‘ ϕpo1, xq (4.16)

~x “ ~o 1
‘ ~x 1 (4.17)

which we can write in basis β as (notice that we replace ‘ by ` to emphasize that we are adding
coordinate vectors)

~xβ “ ~x 1
β ` ~o 1

β (4.18)

and use the matrix A transforming coordinates of vectors from basis β1 to β to get the desired
relationship

~xβ “ A ~x 1
β 1 ` ~o 1

β (4.19)
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Figure 4.12: Affine space pP, V, ϕq of solutions to a linear system is the set of vectors representing
points on line p. In coordinate system p~o, ~uq, vector ~x has coordinate 1. The
subspace V of solutions to the associated homogeneous system is the associated
linear space. Function ϕ assigns to two points ~o, ~x the vector ~u “ ~y ´ ~x.

Columns of A correspond to coordinate vectors ~b 1
1β ,

~b 1
2β , . . .. When presented with a situation in

a real affine space, we can measure those coordinates by a ruler on a particular representation
of L by geometrical vectors bound to, e.g., point o.

4.6 An example of affine space

Let us now present an important example of affine space.

4.6.1 Affine space of solutions of a system of linear equations

When looking at the following system of linear equations in R2

„

1 1
´1 ´1



~x “
„

2
´2



(4.20)

we immediately see that there is an infinite number of solutions. They can be written as

~x “
„

2
0



` τ

„

1
´1



, τ P R (4.21)

or as a sum of a particular solution r2, 0sJ and the set of solutions ~v “ τ r´1, 1sJ of the
accompanied homogeneous system

„

1 1
´1 ´1



~v “
„

0
0



(4.22)

Figure 4.12 shows that the affine space pP, V, ϕq of solutions to the linear system (4.20) is the
set of vectors representing points on line p. The subspace V of solutions to the accompanied
homogeneous system (4.22) is the linear space associated to A by function ϕ, which assigns to

50



T. Pajdla. Elements of Geometry for Robotics 2019-9-22 (pajdla@cvut.cz)

two points ~x, ~y P A the vector ~u “ ~y ´ ~x P V . If we choose ~o “ r2, 0sJ as the origin in A and
vector ~b “ ϕp~o, ~xq “ ~x ´ ~o as the basis of V , vector ~x has coordinate 1.
We see that, in this example, points of A are actually vectors of R2, which are the solution to

the system (4.20). The vectors of V are the vectors of R2, which are solutions to the associated
homogeneous linear system (4.22).

51



5 Motion

Let us introduce a mathematical model of rigid motion in three-dimensional Euclidean space.
The important property of rigid motion is that it only relocates objects without changing their
shape. Distances between points on rigidly moving objects remain unchanged. For brevity, we
will use “motion” for “rigid motion”.

5.1 Change of position vector coordinates induced by motion

o’

X

~x

~x 1

O

O 1

~b1

~b2

~b 1
1

~b 1
2

o’

X Y

~x
~y

~y 1

O

O 1

~b1

~b2

~b 1
1

~b 1
2

(a) (b)

Figure 5.1: Representation of motion. (a) Alias representation: Point X is represented in two
coordinate systems. (b) Alibi representation: Point X move tohetjer with the coor-
dinate system into point Y .

§ 1 Alias representation of motion1. Figure 5.1(a) illustrates a model of motion using coor-
dinate systems, points and their position vectors. A coordinate system pO, βq with origin O

and basis β is attached to a moving rigid body. As the body moves to a new position, a new
coordinate system pO 1, β 1q is constructed. Assume a point X in a general position w.r.t. the
body, which is represented in the coordinate system pO, βq by its position vector ~x. The same
point X is represented in the coordinate system pO 1, β 1q by its position vector ~x 1. The motion
induces a mapping ~x 1

β 1 ÞÑ ~xβ. Such a mapping also determines the motion itself and provides
its convenient mathematical model.

1The terms alias and alibi were introduced in the classical monograph [17].

52



T. Pajdla. Elements of Geometry for Robotics 2019-9-22 (pajdla@cvut.cz)

Let us derive the formula for the mapping ~x 1
β 1 ÞÑ ~xβ between the coordinates ~x 1

β 1 of vector ~x 1

and coordinates ~xβ of vector ~x. Consider the following equations:

~x “ ~x 1 ` ~o 1 (5.1)

~xβ “ ~x 1
β ` ~o 1

β (5.2)

~xβ “
”

~b 1
1β

~b 1
2β

~b 1
3β

ı

~x 1
β 1 ` ~o 1

β (5.3)

~xβ “ R ~x 1
β 1 ` ~o 1

β (5.4)

Vector ~x is the sum of vectors ~x 1 and ~o 1, Equation 5.1. We can express all vectors in (the same)

basis β, Equation 5.2. To pass to the basis β 1 we introduce matrix R “
”

~b 1
1β

~b 1
2β

~b 1
3β

ı

, which

transforms the coordinates of vectors from β 1 to β, Equation 5.4. Columns of matrix R are
coordinates ~b 1

1β
,~b 1

2β
,~b 1

3β
of basic vectors ~b 1

1
,~b 1

2
,~b 1

3
of basis β 1 in basis β.

§ 2 Alibi representation of motion. An alternative model of motion can be developed from
the relationship between the points X and Y and their position vectors in Figure 5.1(b). The
point Y is obtained by moving point X altogether with the moving object. It means that
the coordinates ~y 1

β 1 of the position vector ~y 1 of Y in the coordinate system pO 1, β 1q equal the
coordinates ~xβ of the position vector ~x of X in the coordinate system pO, βq, i.e.

~y 1
β 1 “ ~xβ

~yβ 1 ´ ~o 1
β 1 “ ~xβ

R´1
`

~yβ ´ ~o 1
β

˘

“ ~xβ

~yβ “ R ~xβ ` ~o 1
β (5.5)

Equation 5.5 describes how is the point X moved to point Y w.r.t. the coordinate system pO, βq.

5.2 Rotation matrix

Motion that leaves at least one point fixed is called rotation. Choosing such a fixed point as
the origin leads to O “ O 1 and hence to ~o “ ~0. The motion is then fully described by matrix R,
which is called rotation matrix.

§ 1 Two-dimensional rotation. To understand the matrix R, we shall start with an experiment
in two-dimensional plane. Imagine a right-angled triangle ruler as shown in Figure 5.2(a) with
arms of equal length and let us define a coordinate system as in the figure. Next, rotate the
triangle ruler around its tip, i.e. around the origin O of the coordinate system. We know, and we
can verify it by direct physical measurement, that, thanks to the symmetry of the situation, the
parallelograms through the tips of ~b 1

1
and ~b 1

2
and along ~b1 and ~b2 will be rotated by 90 degrees.

We see that

~b 1
1 “ a11~b1 ` a21~b2 (5.6)

~b 1
2 “ ´a21~b1 ` a11~b2 (5.7)

for some real numbers a11 and a21. By comparing it with Equation 5.3, we conclude that

R “
„

a11 ´a21
a21 a11



(5.8)
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~b1 ~b1

~b2 ~b2

~b 1
1

~b 1
2

a11

a11

a21

´a21O O

(a) (b)

Figure 5.2: Rotation in two-dimensional space.

We immediately see that

RJR “
„

a11 a21
´a21 a11

 „

a11 ´a21
a21 a11



“
„

a2
11

` a2
21

0
0 a2

11
` a2

21



“
„

1 0
0 1



(5.9)

since pa2
11

` a2
21

q is the squared length of the basic vector of b1, which is one. We derived an
interesting result

R´1 “ RJ (5.10)

R “ R´J (5.11)

Next important observation is that for coordinates ~xβ and ~x 1
β 1 , related by a rotation, there holds

true
px1q2 ` py1q2 “ ~x 1

β 1
J
~x 1
β 1 “ pR ~xβqJ R ~xβ “ ~xJ

β

`

RJR
˘

~xβ “ ~xJ
β ~xβ “ x2 ` y2 (5.12)

Now, if the basis β was constructed as in Figure 5.2, in which case it is called an orthonormal
basis, then the parallelogram used to measure coordinates x, y of ~x is a rectangle, and hence
x2 ` y2 is the squared length of ~x by the Pythagoras theorem. If β 1 is related by rotation ro β,
then also px1q2 ` py1q2 is the squared length of ~x, again thanks to the Pythagoras theorem.
We see that ~xJ

β ~xβ is the squared length of ~x when β is orthonormal and that this length is
preserved by computing it in the same way from the new coordinates of ~x in the new coordinate
system after motion. The change of coordinates induced by motion is modeled by rotation
matrix R, which has the desired property RJR “ I when the bases β, β 1 are both orthonormal.

§ 2 Three-dimensional rotation. Let us now consider three dimensions. It would be possible
to generalize Figure 5.2 to three dimensions, construct orthonormal bases, and use rectangular
parallelograms to establish the relationship between elements of R in three dimensions. However,
the figure and the derivations would become much more complicated.
We shall follow a more intuitive path instead. Consider that we have found that with two-

dimensional orthonormal bases, the lengths of vectors could be computed by the Pythagoras
theorem since the parallelograms determining the coordinates were rectangular. To achieve
this in three dimensions, we need (and can!) use bases consisting of three orthogonal vectors.
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Figure 5.3: A three-dimensional coordinate system.

Then, again, the parallelograms will be rectangular and hence the Pythagoras theorem for three
dimensions can be used analogically as in two dimensions, Figure 5.3.
Considering orthonormal bases β, β 1, we require the following to hold true for all vectors ~x

with ~xβ “
“

x y z
‰J

and ~x 1
β 1 “

“

x1 y1 z1
‰J

px1q2 ` py1q2 ` pz1q2 “ x2 ` y2 ` z2

~x 1
β 1

J
~x 1
β 1 “ ~xJ

β ~xβ

pR ~xβqJ R ~xβ “ ~xJ
β ~xβ

~xJ
β

`

RJR
˘

~xβ “ ~xJ
β ~xβ

~xJ
β C ~xβ “ ~xJ

β ~xβ (5.13)

Equation 5.13 must hold true for all vectors ~x and hence also for special vectors such as those
with coordinates

»

–

1
0
0

fi

fl ,

»

–

0
1
0

fi

fl ,

»

–

0
0
1

fi

fl ,

»

–

1
1
0

fi

fl ,

»

–

1
0
1

fi

fl ,

»

–

0
1
1

fi

fl (5.14)

Let us see what that implies, e.g., for the first vector

“

1 0 0
‰

C

»

–

1
0
0

fi

fl “ 1 (5.15)

c11 “ 1 (5.16)

Taking the second and the third vector leads similarly to c22 “ c33 “ 1. Now, let’s try the fourth
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vector

“

1 1 0
‰

C

»

–

1
1
0

fi

fl “ 2 (5.17)

1 ` c12 ` c21 ` 1 “ 2 (5.18)

c12 ` c21 “ 0 (5.19)

Again, taking the fifth and the sixth vector leads to c13 ` c31 “ c23 ` c32 “ 0. This brings us to
the following form of C

C “

»

–

1 c12 c13
´c12 1 c23
´c13 ´c23 1

fi

fl (5.20)

Moreover, we see that C is symmetric since

CJ “
`

RJR
˘J “ RJR “ C (5.21)

which leads to ´c12 “ c12, ´c13 “ c13 and ´c23 “ c23, i.e. c12 “ c13 “ c23 “ 0 and allows us to
conclude that

RJR “ C “ I (5.22)

Interestingly, not all matrices R satisfying Equation 5.22 represent motions in three-dimensional
space.
Consider, e.g., matrix

S “

»

–

1 0 0
0 1 0
0 0 ´1

fi

fl (5.23)

Matrix S does not correspond to any rotation of the space since it keeps the plane xy fixed and
reflects all other points w.r.t. this xy plane. We see that some matrices satisfying Equation 5.22
are rotations but there are also some such matrices that are not rotations. Can we somehow
distinguish them?
Notice that |S| “ ´1 while |I| “ 1. It might be therefore interesting to study the determinant

of C in general. Consider that

1 “ |I| “
ˇ

ˇpRJRq
ˇ

ˇ “
ˇ

ˇRJ
ˇ

ˇ |R| “ |R| |R| “ p|R|q2 (5.24)

which gives that |R| “ ˘1. We see that the sign of the determinant splits all matrices satisfying
Equation 5.22 into two groups – rotations, which have a positive determinant, and reflections,
which have a negative determinant. The product of any two rotations will again be a rotation,
the product of a rotation and a reflection will be a reflection and the product of two reflections
will be a rotation.
To summarize, rotation in three-dimensional space is represented by a 3 ˆ 3 matrix R with

RJR “ I and |R| “ 1. The set of all such matrices, and at the same time also the corresponding ro-
tations, will be called SOp3q, for special orthonormal three-dimensional group. Two-dimensional
rotations will be analogically denoted as SOp2q.
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5.3 Coordinate vectors

We see that the matrix R induced by motion has the property that coordinates and the basic
vectors are transformed in the same way. This is particularly useful observation when β is
formed by the standard basis, i.e.

β “

¨

˝

»

–

1
0
0

fi

fl ,

»

–

0
1
0

fi

fl ,

»

–

0
0
1

fi

fl

˛

‚ (5.25)

For a rotation matrix R, Equation 2.15 becomes

»

—

–

~b 1
1

~b 1
2

~b 1
3

fi

ffi

fl
“ R

»

—

–

~b1
~b2
~b3

fi

ffi

fl
“

»

–

r11 r12 r13
r21 r22 r23
r31 r32 r33

fi

fl

»

—

–

~b1
~b2
~b3

fi

ffi

fl
“

»

—

–

r11~b1 ` r12~b2 ` r13~b3

r21~b1 ` r22~b2 ` r23~b3

r31~b1 ` r32~b2 ` r33~b3

fi

ffi

fl
(5.26)

and hence

~b 1
1 “ r11~b1 ` r12~b2 ` r13~b3 “ r11

»

–

1
0
0

fi

fl ` r12

»

–

0
1
0

fi

fl ` r13

»

–

0
0
1

fi

fl “

»

–

r11
r12
r13

fi

fl (5.27)

and similarly for ~b 1
2
and ~b 1

3
. We conclude that

”

~b 1
1

~b 1
2

~b 1
3

ı

“

»

–

r11 r21 r31
r12 r22 r32
r13 r23 r33

fi

fl “ RJ (5.28)

This also corresponds to solving for R in Equation 2.13 with A “ R

»

–

1 0 0
0 1 0
0 0 1

fi

fl “
”

~b 1
1

~b 1
2

~b 1
3

ı

R (5.29)
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6 Rotation

6.1 Properties of rotation matrix

Let us study additional properties of the rotation matrix in three-dimensional space.

6.1.1 Inverse of R

Let

R “

»

–

r11 r12 r13
r21 r22 r23
r31 r32 r33

fi

fl “
“

r1 r2 r3
‰

(6.1)

be a rotation matrix with columns r1, r2, r3. We can find the inverse of R by evaluating its
adjugate matrix [5] and use R´1 “ RJ and |R| “ 1

R´1 “ 1

|R| AdjpRq (6.2)

RJ “ AdjpRq (6.3)

“
“

r2 ˆ r3 r3 ˆ r1 r1 ˆ r2
‰J

(6.4)

“

»

–

r22 r33 ´ r23 r32 r13 r32 ´ r12 r33 r12 r23 ´ r13 r22
r23 r31 ´ r21 r33 r11 r33 ´ r13 r31 r13 r21 ´ r11 r23
r21 r32 ´ r22 r31 r12 r31 ´ r11 r32 r11 r22 ´ r12 r21

fi

fl (6.5)

which also gives an alternative expression of

R “

»

–

r11 r12 r13
r21 r22 r23
r31 r32 r33

fi

fl “

»

–

r22 r33 ´ r23 r32 r23 r31 ´ r21 r33 r21 r32 ´ r22 r31
r13 r32 ´ r12 r33 r11 r33 ´ r13 r31 r12 r31 ´ r11 r32
r12 r23 ´ r13 r22 r13 r21 ´ r11 r23 r11 r22 ´ r12 r21

fi

fl (6.6)

6.1.2 Eigenvalues of R

Let R be a rotation matrix. Then for every ~v P C3

pR~vq:R~v “ ~v:RJR~v “ ~v:pRJRq~v “ ~v:~v (6.7)
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where : is the conjugate transpose1. We see that for all ~v P C3 and λ P C such that

R~v “ λ~v (6.8)

there holds true

pλ~vq:pλ~vq “ p~v:~vq (6.9)

λλ p~v:~vq “ p~v:~vq (6.10)

|λ|2p~v:~vq “ p~v:~vq (6.11)

and hence |λ|2 “ 1 for all ~v ‰ ~0. We conclude that the absolute value of eigenvalues of R is one.
Next, by looking at the characteristic polynomial of R

ppλq “ |pλ I ´ Rq| “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

¨

˝

»

–

λ ´ r11 ´r12 ´r13
´r21 λ ´ r22 ´r23
´r31 ´r32 λ ´ r33

fi

fl

˛

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(6.12)

“ λ3 ´ pr11 ` r22 ` r33qλ2

`pr11 r22 ´ r21 r12 ` r11 r33 ´ r31 r13 ` r22 r33 ´ r23 r32qλ (6.13)

`r11 pr23 r32 ´ r22 r33q ´ r21 pr32 r13 ´ r12 r33q ` r31 pr13 r22 ´ r12 r23q
“ λ3 ´ pr11 ` r22 ` r33qλ2 ` pr33 ` r22 ` r11qλ ´ |R| (6.14)

“ λ3 ´ trace R pλ2 ´ λq ´ 1 (6.15)

“ pλ ´ 1q
`

λ2 ` p1 ´ trace Rqλ ` 1
˘

(6.16)

we conclude that 1 is always an eigenvalue of R. Notice that we have used identities in Equa-
tion 6.6 to pass from Equation 6.13 to Equation 6.142.
Let us denote the eigenvalues as λ1 “ 1, λ2 “ x` yi and λ3 “ x´ yi with real x, y. It follows

from the above that x2 ` y2 “ 1. We see that there is either one real or three real solutions
since if y “ 0, then x2 “ 1 and hence λ2 “ λ3 “ ˘1. We conclude that we encounter only two
situations when all eigenvalues are real. Either λ1 “ λ2 “ λ3 “ 1, or λ1 “ 1 and λ2 “ λ3 “ ´1.

6.1.3 Eigenvectors of R.

Let us now look at eigenvectors of R and let’s first investigate the situation when all eigenvalues
of R are real.
1Conjugate transpose [5] on vectors with complex coordinates means, e.g., that

„

a11 ` b11 i a12 ` b12 i

a21 ` b21 i a22 ` b22 i

:
“

„

a11 ´ b11 i a21 ´ b21 i

a12 ´ b12 i a22 ´ b22 i



for all a11, a12, a21, a22, b11, b12, b21, b22 P R. Also recall [3] that a b “ a b for all a, b P C, : becomes J for real
matrices and λ: “ λ for scalar λ P C. Conjugate transpose is a natural generalization of the Euclidean scalar
product in real vector spaces to complex vector spaces. As ~xJ~x “ }~x}2 gives the squared Euclidean norm for
real vectors, ~x:~x “ }~x}2 gives the squared “Euclidean” norm for complex vectors. It therefore also makes a

good sense to extend the notion of angle between complex vectors to ~x, ~y as cos=p~x, ~yq “ Rep~x:~yq?
~x:~x

?
~y:~y

.

2Alternatively, it follows from the Fundamental theorem of algebra [7] the ppλq “ 0 has always a solution in C

and since coefficients of ppλq are all real, the solutions must come in complex conjugated pairs. The degree of
ppλq is three and thus at least one solution must be real and hence equal to ˘1. Now, since pp0q “ ´ |pRq| “ ´1,
limλÑ8 ppλq “ 8, and ppλq is a continuous function, it must (by the mean value theorem [3]) cross the positive
side of the real axis and hence one of its eigenvalues has to be equal to one.
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§ 1 λ1 “ λ2 “ λ3 “ 1: Let λ1 “ λ2 “ λ3 “ 1. Then ppλq “ pλ ´ 1q3 “ λ3 ´ 3λ2 ` 3λ ´ 1. It
means that r11 `r22 `r33 “ 3 and since r11 ď 1, r22 ď 1, r33 ď 1, it leads to r11 “ r22 “ r33 “ 1,
which implies R “ I. Then I´R “ 0 and all non-zero vectors of R3 are eigenvectors of R. Notice
that rank of R ´ I is zero in this case.
Next, consider λ1 “ 1 and λ2 “ λ3 “ ´1. The eigenvectors ~v corresponding to λ2 “ λ3 “ ´1

are solutions to

R~v “ ´~v (6.17)

There is always at least one one-dimensional space of such vectors. We also see that there is a
rotation matrix

R “

»

–

1 0 0
0 ´1 0
0 0 ´1

fi

fl (6.18)

with real eigenvectors

r

»

–

1
0
0

fi

fl , r ‰ 0, and s

»

–

0
1
0

fi

fl ` t

»

–

0
0
1

fi

fl , s2 ` t2 ‰ 0, (6.19)

which means that there is a one-dimensional space of real eigenvectors corresponding to 1 and
a two-dimensional space of real eigenvectors corresponding to ´1. Notice that rank of R ´ I is
two here.

§ 2 λ1 “ 1, λ2 “ λ3 “ ´1: How does the situation look for a general R with eigenvalues
1,´1,´1? Consider an eigenvector ~v1 corresponding to 1 and an eigenvector ~v2 corresponding
to ´1. They are linearly independent. Otherwise there has to be s P R such that ~v2 “ s~v1 ‰ 0
and then

~v2 “ s~v1 (6.20)

R~v2 “ s R~v1 (6.21)

´~v2 “ s~v1 (6.22)

leading to s “ ´s and therefore s “ 0 which contradicts ~v2 ‰ 0. Now, let us look at vectors
~v3 P R3 defined by

„

~vJ
1

~vJ
2



~v3 “ 0 (6.23)

The above linear system has a one-dimensional space of solutions since the rows of its matrix
are independent. Chose a fixed solution ~v3 ‰ 0. Then

„

~vJ
1

~vJ
2



RJ ~v3 “
„

~vJ
1
RJ

~vJ
2
RJ



~v3 “
„

~vJ
1

´~vJ
2



~v3 “ 0 (6.24)

We see that RJ~v3 and ~v3 are in the same one-dimensional space, i.e. they are linearly dependent
and we can write

RJ~v3 “ s~v3 (6.25)
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for some non-zero s P C. Multiplying equation 6.25 by R from the left and dividing both sides
by s gives

1

s
~v3 “ R~v3 (6.26)

Clearly, ~v3 is an eigenvector of R. Since it is not a multiple of ~v1, it must correspond to eigenvalue
´1. Moreover, ~vJ

2
~v3 “ 0 and hence they are linearly independent. We have shown that if ´1 is an

eigenvalue of R, then there are always at least two linearly independent vectors corresponding to
the eigenvalue ´1, and therefore there is a two-dimensional space of eigenvectors corresponding
to ´1. Notice that the rank of R ´ I is two in this case since the two-dimensional subspace
corresponding to ´1 can be complemented only by a one-dimensional subspace corresponding
to 1 to avoid intersecting the subspaces in a non-zero vector.

§ 3 General λ1, λ2, λ3: Finally, let us look at arbitrary (even non-real) eigenvalues. Assume
λ “ x ` yi for real x, y. Then we have

R~v “ px ` yiq~v (6.27)

If y ‰ 0, vector ~v must be non-real since otherwise we would have a real vector on the left and a
non-real vector on the right. Furthermore, the eigenvalues are pairwise distinct and hence there
are three one-dimensional subspaces of eigenvectors (we now understand the space as C3 over
C). In particular, there is exactly one one-dimensional subspace corresponding to eigenvalue 1.
The rank of R ´ I is two.
Let ~v be an eigenvector of a rotation matrix R. Then

R~v “ px ` yiq~v (6.28)

RJR~v “ px ` yiq RJ~v (6.29)

~v “ px ` yiq RJ~v (6.30)

1

px ` yiq ~v “ RJ~v (6.31)

px ´ yiq~v “ RJ~v (6.32)

We see that the eigenvector ~v of R corresponding to eigenvalue x ` yi is the eigenvector of
RJ corresponding to eigenvalue x ´ yi and vice versa. Thus, there is the following interesting
correspondence between eigenvalues and eigenvectors of R and RJ. Considering eigenvalue-
eigenvector pairs p1, ~v1q, px ` yi, ~v2q, px ´ yi, ~v3q of R we have p1, ~v1q, px ´ yi, ~v2q, px ` yi, ~v3q
pairs of RJ, respectively.

§ 4 Orthogonality of eigenvectors The next question to ask is what are the angles between
eignevectors of R? We will considers pairs pλ1 “ 1, ~v1q, pλ2 “ x ` yi, ~v2q, pλ3 “ x ´ yi, ~v3q
of eigenvectors associated with their respective eigenvalues. For instance, vector ~v1 denotes an
eigenvector associated with egenvalue 1.
If all eigenvalues are equal to 1, i.e. R “ I, then all non-zero vectors of R3 are eigenvectors of

R and hence we can alway find two eignevectors containing a given angle. In particular, we can
choose three mutually orthogonal eignevectors.
If λ1 “ 1 and λ2 “ λ3 “ ´1, then we have seen that every ~v1 is perpendicular to ~v2 and

~v3 and that ~v2 and ~v3 can be any two non-zero vectors in a two-dimensional subspace of R3,
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which is orthogonal to ~v1. Therefore, for every angle, there are ~v2 and ~v3 which contain it. In
particular, it is possible to choose ~v2 to be orthogonal to ~v3 and hence there are three mutually
orthogonal eigenvectors.
Finally, if λ2, λ3 are non-real, i.e. y ‰ 0, we have three mutually distinct eigenvalues and hence

there are exactly three one-dimensional subspaces (each without the zero vector) of eigenvectors.
If two eigenvectors are from the same subspace, then they are linearly dependent and hence they
contain the zero angle.
Let us now evaluate ~v:

1
~v2

~v
:
1
~v2 “ ~vJ

1 ~v2 “ ~vJ
1 R

JR~v2 “ ~vJ
1 px ` yiq~v2 “ px ` yiq~vJ

1 ~v2 (6.33)

We conclude that either px`yiq “ 1 or ~vJ
1
~v2 “ 0. Since the latter can’t be the case as y ‰ 0, the

former must hold true. We see that ~v1 is orthogonal to ~v2. We can show that ~v1 is orthogonal
to ~v3 exactly in the same way.
Let us next consider the angle between eigenvectors ~v2 and ~v3

~v
:
3
~v2 “ ~v

:
3
RJR~v2 “ pR~v3q:R~v2 “ ppx ´ yiq~v3q:px ` yiq~v2 (6.34)

“ ~v
:
3

px ` yiq px ` yiq~v2 (6.35)

~v
:
3
~v2 “ px2 ` 2xyi ´ y2q~v:

3
~v2 (6.36)

We conclude that either px2 ` 2xyi ´ y2q “ 1 or ~v
:
3
~v2 “ 0. The former implies xy “ 0 and

threfore x “ 0 since y ‰ 0 but then ´y2 “ 1, which is, for a real y, impossible. We see that
~v

:
3
~v2 “ 0, i.e. vectors ~v2 are orthogonal to vectors ~v3.
Clearly, it is always possible to choose three mutually orhogonal eigenvectors. We can further

normalize them to unit legth and thus obtain an orthonormal basis as non-zero orthogonal
vectors are linearly independent. Therefore

R
“

~v1 ~v2 ~v3
‰

“
“

~v1 ~v2 ~v3
‰

»

–

λ1

λ2

λ3

fi

fl (6.37)

“

~v1 ~v2 ~v3
‰:
R
“

~v1 ~v2 ~v3
‰

“

»

–

λ1

λ2

λ3

fi

fl (6.38)

Let us further investigate the structure of eigenvectors ~v2, ~v3. We shall show that they are
“conjugated”. Let’s write ~v2 “ ~u ` ~wi with real vectors ~u, ~w. There holds true

R~v2 “ R p~u ` ~wiq “ R ~u ` R ~w i (6.39)

px ` yiq~v2 “ px ` yiq p~u ` ~wiq “ x~u ´ y ~w ` px~w ` y~uqi (6.40)

which implies
R ~u “ x~u ´ y ~w and R ~w “ x ~w ` y ~u (6.41)

Now, let us compare two expressions: R p~u ´ ~wiq and px ´ yiq p~u ´ ~wiq

R p~u ´ ~wiq “ R ~u ´ R ~wi “ x~u ´ y ~w ´ px ~w ` y ~uq i (6.42)

px ´ yiq p~u ´ ~wiq “ x~u ´ y ~w ´ px ~w ` y ~uq i (6.43)
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We see that
R p~u ´ ~wiq “ px ´ yiq p~u ´ ~wiq (6.44)

which means that px ´ yi, ~u ´ ~wiq are an eigenvalue-eigenvector pair of R. It is importatnt
to understand what has been shown. We have shown that if ~u ` ~wi is an eigenvector of R
corresponding to an eigenvalue λ, then the conjugated vector ~u ´ ~wi is an eignevector of R
corresponding to eigenvalue, which is conjugated to λ (This does not mean that every two
eigenvectors corresponding to x ` yi and x ´ yi must be conjugated).
The conclusion from the previous analysis is that the both non-real eigenvectors of R are

generated by the same two real vectors ~u and ~w. Let us look at the angle between ~u and ~w.
Consider that

0 “ ~v
:
3
~v2 “ p~u ´ ~wiq:p~u ` ~wiq “ p~uJ ` ~wJiqp~u ` ~wiq (6.45)

“ p~uJ~u ´ ~wJ ~wq ` p~uJ ~w ` ~wJ~uq i (6.46)

“ p~uJ~u ´ ~wJ ~wq ` 2 ~wJ~u i (6.47)

and therefore
~uJ~u “ ~wJ ~w and ~wJ~u “ 0 (6.48)

which means that vectors ~u and ~w are orthogonal.
Finally, let us consider

0 “ ~vJ
1 ~v2 “ ~vJ

1 ~u ` ~vJ
1 ~wi (6.49)

and hence
~vJ
1 ~u “ 0 and ~vJ

1 ~w “ 0 (6.50)

which means that ~u and ~w are also orthogonal to ~v1.

6.1.4 Rotation axis

A one-dimensional subspace generated by an eigenvector ~v1 of R corresponding to λ “ 1, is
called the rotation axis (or axis of rotation) of R. If R “ I, then there is an infinite number of
rotation axes, otherwise there is exactly one. Vectors ~v, which are in a rotation axis of rotation
R, remain unchanged by R, i.e. R~v “ ~v.
Consider that the eigenvector of R corresponding to 1 is also an eigenvector of RJ since

R~v1 “ ~v1 (6.51)

RJR~v1 “ RJ~v1 (6.52)

~v1 “ RJ~v1 (6.53)

It implies

pR ´ RJq~v1 “ 0 (6.54)
»

–

0 r12 ´ r21 r13 ´ r31
r21 ´ r12 0 r23 ´ r32
r31 ´ r13 r32 ´ r23 0

fi

fl ~v1 “ 0 (6.55)

and we see that
»

–

0 r12 ´ r21 r13 ´ r31
r21 ´ r12 0 r23 ´ r32
r31 ´ r13 r32 ´ r23 0

fi

fl

»

–

r32 ´ r23
r13 ´ r31
r21 ´ r12

fi

fl “

»

–

0
0
0

fi

fl (6.56)
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Clearly, we have a nice formula for an eigenvector corresponding to λ1 “ 1, when vector
“

r32 ´ r23 r13 ´ r31 r21 ´ r12
‰J

is non-zero. That is when R´ RJ is a non-zero matrix, which
is exactly when R is not symmetric.
Let us now investigate the situation when R is symmetric. Then, R “ RJ “ R´1 and therefore

R pR ` Iq “ R R ` R “ I ` R “ R ` I (6.57)

which shows that the non-zero columns of the matrix R`I are eigenvectors corresponding to the
unit eigenvalue. Clearly, at least one of the columns must be non-zero since otherwise, R “ ´I

and |R| would be minus one, which is impossible for a rotation.

6.1.5 Rotation angle

Rotation angle θ of rotation R is the angle between a non-zero real vector ~x which is orthogonal
to ~v1 and its image R ~x. There holds

cos θ “ ~xJR ~x

~xJ~x
(6.58)

Let us set
~x “ ~u ` ~w (6.59)

Clearly, ~x is a real vector which is orthogonal to ~v1 since both ~u and ~w are. Let’s see that it is
non-zero. Vector ~v2 is an eigenvector and thus

0 ‰ ~vJ
2 ~v2 “ ~uJ~u ` ~wJ ~w (6.60)

and therefore ~u ‰ ~0 or ~w ‰ ~0. Vectors ~u, ~w are orthogonal and therefore their sum can be zero
only if they both are zero since otherwise for, e.g., a non-zero ~u we get the following contradiction

0 “ ~uJ~0 “ ~uJp~u ` ~vq “ ~uJ~u ` ~uJ~v “ ~uJ~u ‰ 0 (6.61)

Let us now evaluate

cos θ “ ~xJR ~x

~xJ~x
“ p~u ` ~wqJR p~u ` ~wq

p~u ` ~wqJp~u ` ~wq “ p~u ` ~wqJpx~u ´ y ~w ` x ~w ` y ~uq
~uJ~u ` ~wJ ~w

“ x p~uJ~u ` ~wJ ~wq ` y p~uJ~u ´ ~wJ ~wq
~uJ~u ` ~wJ ~w

(6.62)

“ x (6.63)

We have used equation 6.41 and equation 6.48. We see that the rotation angle is given by the
real part of λ2 (or λ3). Consider the characteristic equation of R, Equation 6.13

0 “ λ3 ´ trace Rλ2 ` pR11 ` R22 ` R33qλ ´ |R| (6.64)

“ pλ ´ 1qpλ ´ x ´ yiqpλ ´ x ` yiq (6.65)

“ λ3 ´ p2x ` 1qλ2 ` px2 ` 2x ` y2qλ ´ px2 ` y2q (6.66)

We see that trace R “ 2x ` 1 and thus

cos θ “ 1

2
ptrace R ´ 1q (6.67)
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6.1.6 Matrix pR ´ Iq.

We have seen that rank pR´Iq “ 0 for R “ I and rank pR´Iq “ 2 for all rotation matrices R ‰ I.
Let us next investigate the relationship between the range and the null space of pR ´ Iq. The

null space of pR ´ Iq is generated by eigenvectors corresponding to 1 since pR ´ Iq~v “ 0 implies
R~v “ ~v.
Now assume that vector ~v is also in the range of pR ´ Iq. Then, there is a vector ~a P R3 such

that ~v “ pR ´ Iq~a. Let us evaluate the square of the length of ~v

~vJ~v “ ~vJpR ´ Iq~a “ p~vJR ´ ~vJq~a “ p~vJ ´ ~vJq~a “ 0 (6.68)

which implies ~v “ ~0. We have used result 6.32 with x “ 1 and y “ 0.
Let us next investigate the relationship between the range and the null space of pR ´ Iq. We

shall again consider two cases. When R “ I, the range of R is 0 and the null space of R is R3.
Hence, the null space intersects the range in the zero vector.
Otherwise, when R ‰ I, we have a one-dimensional null space of vectors ~v solving pR´Iq~v “ 0

since this is exactly the space of eigenvectors corresponding to the eigenvalue 1. Now denote
columns of pR ´ Iq “

“

~a1 ~a2 ~a3
‰

and consider a vector ~v from the range of pR ´ Iq. Then,
there are α1, α2, α3 P R such that ~v “ α1~a1 ` α2~a2 ` α3~a3. Assuming that ~v is also in the null
space of pR ´ Iq we get

0J “ ´~vJpR ´ IqJ (6.69)

0J “ ´~vJpRJ ´ Iq (6.70)

0J “ ´~vJpRJ ´ Iq R (6.71)

0J “ ~vJpR ´ Iq (6.72)

0J “ ~vJ
“

~a1 ~a2 ~a3
‰

(6.73)

leading to ~vJ~a1 “ ~vJ~a2 “ ~vJ~a3 “ 0 and hence ~vJ~v “ α1 ~v
J~a1 ` α2 ~v

J~a2 ` α3 ~v
J~a3 “ 0 implies

~v “ 0. We conclude that in this case, too, the range and the null space intersect in the zero
vector.
Hence, the range of R ´ I intersects the null space of R ´ I in the zero vector.

6.1.7 Tangent space to rotations

The set of rotation matrices

R “
 

R P R3ˆ3 | RJR “ I, |R| “ 1
(

(6.74)

can be understood as a subset of R9 with

r “
“

r11 r21 r31 r12 r22 r32 r12 r23 r3
‰J

representing R “

»

–

r11 r12 r13
r21 r22 r23
r31 r32 r33

fi

fl (6.75)

Rotation constraints in definition 6.74 are algebraic and thus R is a an affine variety.3. Let us
investigate how does look the tangent space to R.

3Affine variety is a subset of a linear space defined by algebraic constraints
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To get the tangent space to R, we will first find the normal NR to R at rotation R and then
take its orthogonal complement TR, which is tangent to R at R. In the end, we will write it all
down in a convenient matrix form.
The space NR, normal to R, is generated by columns of the Jacobian matrix [3] of constraints

in 6.74, written in a matrix form as

C “

»

—

—

—

—

—

—

—

—

–

r11 r12 ` r21 r22 ` r31 r32
r11 r13 ` r21 r23 ` r31 r33
r12 r13 ` r22 r23 ` r32 r33
r2
11

` r2
21

` r2
31

´ 1
r2
12

` r2
22

` r2
32

´ 1
r2
13

` r2
23

` r2
33

´ 1
r11 r22 r33 ´ r11 r23 r32 ´ r12 r21 r33 ` r12 r23 r31 ` r13 r21 r32 ´ r13 r22 r31 ´ 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(6.76)

The Jacobian matrix of C is obtained as

Jij “ BCi
Brj

, J “

»

—

—

—

—

—

—

—

—

–

r12 r22 r32 r11 r21 r31 0 0 0
r13 r23 r33 0 0 0 r11 r21 r31
0 0 0 r13 r23 r33 r12 r22 r32

2 r11 2 r21 2 r31 0 0 0 0 0 0
0 0 0 2 r12 2 r22 2 r32 0 0 0
0 0 0 0 0 0 2 r13 2 r23 2 r33
J71 J72 J73 J74 J75 J76 J77 J78 J79

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

with

J71 “ r22 r33 ´ r23 r32

J72 “ ´r12 r33 ` r13 r32

J73 “ r12 r23 ´ r13 r22

J74 “ ´r21 r33 ` r23 r31

J75 “ r11 r33 ´ r13 r31

J76 “ ´r11 r23 ` r13 r21

J77 “ r21 r32 ´ r22 r31

J78 “ ´r11 r32 ` r12 r31

J79 “ r11 r22 ´ r12 r21

Jacobian matrix J is a 7 ˆ 9 matrix. The first three rows of J contain the elements of two
columns of R. The next three rows contain one column of R. It suggests to construct a basis T
of the tangent space TR to R from columns of R. We can check that

J T “ 0 with T “

»

—

—

—

—

—

—

—

—

—

—

—

—

–

0 ´r13 r12
0 ´r23 r22
0 ´r33 r32

r13 0 ´r11
r23 0 ´r21
r33 0 ´r31

´r12 r11 0
´r22 r21 0
´r32 r31 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (6.77)
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Next, we can see that each column of T contains two different columns of R and hence T x “ 0
for a non-zero x implies that every two columns of R are linearly dependent, which is impossible.
Therefore, T has rank equal to three at least.
Finally, the first six rows of J contain columns of R. We see that

“

xJ 0
‰

J “ 0 for a non-zero
x implies that columns of R are linearly dependent, which is impossible. Therefore, the rank of
NR is not smaller than six. Hence, the dimension of the tangent space TR is exactly three at
every R P R and T is indeed a basis of TR.
Let us now rewrite the above back into a matrix form by inverting the matrix vectorization

used in 6.75. We rewrite columns of T into three matrices

T1 “

»

–

0 r13 ´r12
0 r23 ´r22
0 r33 ´r32

fi

fl , T2 “

»

–

´r13 0 r11
´r23 0 r21
´r33 0 r31

fi

fl , T3 “

»

–

r12 ´r11 0
r22 ´r21 0
r32 ´r31 0

fi

fl (6.78)

and then can write the reformated tangent space of rotations at R for some real vector s “
“

s1 s2 s3
‰

as

TRpsq “ T1 s1 ` T2 s2 ` T3 s3 (6.79)

“

»

–´s2

»

–

r13
r23
r33

fi

fl ` s3

»

–

r12
r22
r32

fi

fl , s1

»

–

r13
r23
r33

fi

fl ´ s3

»

–

r11
r21
r31

fi

fl , ´s1

»

–

r12
r22
r32

fi

fl ` s2

»

–

r11
r21
r31

fi

fl

fi

fl

“

»

–

r11 r12 r13
r21 r22 r23
r31 r32 r33

fi

fl

»

–

0 ´s3 s2
s3 0 ´s1

´s2 s1 0

fi

fl (6.80)

“ R rssˆ (6.81)

The first order approximation of rotations around R is then obtained as

R ` TRpsq “ R ` R rssˆ “ R pI ` rssˆq (6.82)

In particular, vectors in the tangent spaces to the space of rotations at the identity, which are
called infinitesimal rotations, are

TIpsq “ rssˆ (6.83)

and the first order approximation of rotations at identity is

I ` TIpsq “ I ` rssˆ (6.84)
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7 Axis of Motion

We will study motion and show that every motion in three dimensional space has an axis of
motion. Axis of motion is a line of points that remain in the line after the motion. The existence
of such an axis will allow us to decompose every motion into a sequence of a rotation around
the axis followed by a translation along the axis as shown in Figure 7.1(a).

§ 1 Algebraic characterization of the axis of motion. Consider Equation 5.5 and denote the
motion so defined as mp~xβq “ R ~xβ ` ~o 1

β w.r.t. a fixed coordinate system pO, βq. Now let us
study the sets of points that remain fixed by the motion, i.e. sets F such that for all ~xβ P F

motion m leaves the mp~xβq in the set, i.e. mp~xβq P F . Obviously, complete space and the empty
set are fixed sets. How do look other, non-trivial, fixed sets?
A nonempty F contains at least one ~xβ. Then, both ~yβ “ mp~xβq and ~zβ “ mp~yβq must be in

F , see Figure 7.1(b). Let us investigate such fixed points ~xβ for which

~zβ ´ ~yβ “ ~yβ ´ ~xβ (7.1)

holds true. We do not yet know whether such equality has to necessary hold true for points of
all fixed sets F but we see that it holds true for the identity motion id that leaves all points
unchanged, i.e. idp~xβq “ ~xβ. We will find later that it holds true for all motions and all their
fixed sets. Consider the following sequence of equalities

~zβ ´ ~yβ “ ~yβ ´ ~xβ

R pR ~xβ ` ~o 1
βq ` ~o 1

β ´ R~xβ ´ ~o 1
β “ R ~xβ ` ~o 1

β ´ ~xβ

R2~xβ ` R~o 1
β ´ R ~xβ “ R ~xβ ` ~o 1

β ´ ~xβ

R2~xβ ´ 2 R ~xβ ` ~xβ “ ´R~o 1
β ` ~o 1

β
`

R2 ´ 2 R ` I
˘

~xβ “ ´pR ´ Iq~o 1
β

pR ´ IqpR ´ Iq ~xβ “ ´pR ´ Iq~o 1
β (7.2)

pR ´ Iq
`

pR ´ Iq ~xβ ` ~o 1
β

˘

“ 0 (7.3)

Equation 7.3 always has a solution. Let us see why.
Recall that rank pR´ Iq is either two or zero. If it is zero, then R´ I “ 0 and (i) Equation 7.3

holds for every ~xβ.
Let rank pR´Iq be two. Vector ~o 1

β either is zero or it is not zero. If it is zero, then Equation 7.3

becomes pR ´ Iq2 ~xβ “ 0, which has (ii) a one-dimensional space of solutions because the null
space and the range of R ´ I intersect only in the zero vector for R ‰ I.
Let ~o 1

β be non-zero. Vector ~o 1
β either is in the span of R´ I or it is not. If ~o 1

β is in the span of
R ´ I, then pR ´ Iq ~xβ ` ~o 1

β “ 0 has (iii) one-dimensional affine space of solutions.

If ~o 1
β is not in the span of R ´ I, then pR ´ Iq ~xβ ` ~o 1

β for ~xβ P R3 generates a vector in all

one-dimensional subspaces of R3 which are not in the span of R ´ I. Therefore, it generates
a non-zero vector ~zβ “ pR ´ Iq ~yβ ` ~o 1

β in the one-dimensional null space of R ´ I, because
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~xβ

~yβ “ R ~xβ ` ~o 1
β

~zβ “ R pR ~xβ ` ~o 1
βq ` ~o 1

β

mp~xβq

mp~yβq

(a) (b)

Figure 7.1: Axis of motion.

the null space and the span of pR ´ Iq intersect only in the zero vector for R ‰ I. Equation
pR ´ Iq ~xβ “ ~zβ ´ ~o 1

β is satisfied by (iv) a one-dimensional affine set of vectors.
We can conclude that every motion has a fixed line of points for which Equation 7.1 holds.

Therefore, every motion has a fixed line of points, every motion has an axis.

§ 2 Geometrical characterization of the axis of motion We now understand the algebraic
description of motion. Can we also understand the situation geometrically? Figure 7.2 gives the
answer. We shall concentrate on the general situation with R ‰ I and ~o 1

β ‰ 0. The main idea of
the figure is that the axis of motion a consists of points that are first rotated away from a by
the pure rotation R around r and then returned back to a by the pure translation ~o 1

β.
Figure 7.2 shows axis a of motion, which is parallel to the axis of rotation r and intersects

the perpendicular plane σ passing through the origin O at a point P , which is first rotated in σ

away from a to P 1 and then returned back to P 2 on a by translation ~o 1
β . Point P is determined

by the component ~o 1
σβ of ~o 1

β, which is in the plane σ. Notice that every vector ~o 1
β can be written

as a sum of its component ~o 1
rβ parallel to r and component ~o 1

σβ perpendicular to r.

§ 3 Motion axis is parallel to rotation axis. Let us verify algebraically that the rotation axis
r is parallel to the motion axis a. Consider Equation 7.2, which we can rewrite as

pR ´ Iq2 ~xβ “ ´pR ´ Iq~o 1
β (7.4)

Define axis r of motion as the set of points that are left fixed by the pure rotation R, i.e.

pR ´ Iq ~xβ “ 0 (7.5)

R ~xβ “ ~xβ (7.6)

These are eigenvectors of R and the zero vector. Take any two solutions ~x1β, ~x2β of Equation 7.4
and evaluate

pR ´ Iq2p~x1β ´ ~x2βq “ ´pR ´ Iq~o 1
β ` pR ´ Iq~o 1

β “ 0 (7.7)
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a

r

σ

O

P
P 1

P 2

~o 1

~o 1

~o 1
r

~o 1
σ

~o 1
σ

Figure 7.2: Axis a of motion is parallel to the axis of rotation r and intersects the perpendicular
plane σ passing through the origin O at a point P , which is first rotated in σ away
from a to P 1 and then returned back to P 2 on a by translation ~o 1. Point P is
determined by the component ~o 1

σ of ~o 1, which is in the plane σ.

and thus a non-zero ~x1β ´ ~x2β is an eigenvector of R. We see that the direction vectors of a lie
in the subspace of direction vectors of r.
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8 Rotation representation and parameterization

We have seen Chapter 6 that rotation can be represented by an orthonormal matrix R. Matrix
R has nine elements and there are six constraints RJR “ I and one constratint |R| “ 1. Hence,
we can view the space of all rotation matrices as a subset of R9. This subset1 is determined
by seven polynomial equations in nine variables. We will next investigate how to describe, i.e.
parameterize, this set with fewer parameters and fewer constraints.

8.1 Angle-axis representation of rotation

~v
~x

~y

~xˆ “ ~v ˆ ~x

~x‖ “ p~vJ
σ ~xσq~v

~xK “ ~x ´ p~vJ
σ ~xσq~v

sin θ ~xˆ

cos θ ~xK

Figure 8.1: Vector ~y is obtained by rotating vector ~x by angle θ around the rotation axis given
by unit vector ~v. Vector ~y can be written as a linear combination of an orthogonal
basis r~x ´ p~vJ

σ ~xσq~v,~v ˆ ~x, p~vJ
σ ~xσq~vs.

We know, Paragraph 6.1.4, that every rotation is etermined by a rotation axis and a rotation
angle. Let us next give a classical construction of the rotation matrix from an axis and angle.
Figure 8.1 shows how the vector ~x rotates by angle θ around an axis given by a unit vector ~v

into vector ~y. To find the relationship between ~x and ~y, we shall construct a special basis of R3.
Vector ~x either is, or it is not a multiple of ~v. If it is, than ~y “ ~x and R “ I. Let us alternatively
consider ~x, which is not a multiple of ~v (an hence is not the zero vector!). Futher, let us consider

1It is often called algebraic variaty in specialized literature [2].
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the standard basis σ of R3 and coordinates of vectors ~xσ and ~vσ. We construct three non-zero
vectors

~x‖σ “ p~vJ
σ ~xσq~vσ (8.1)

~xKσ “ ~x ´ p~vJ
σ ~xσq~vσ (8.2)

~xˆσ “ ~vσ ˆ ~xσ (8.3)

which are mutually orthogonal and hence form a basis of R3. We may notice that cooridate
vectors ~x P R3, are actually equal to their coordinates w.r.t. the standard basis σ. Hence we can
drop σ index and write

~x‖ “ p~vJ~xq~v “ ~v p~vJ~xq “ p~v ~vJq ~x “ r~vs‖ ~x (8.4)

~xK “ ~x ´ p~vJ~xq~v “ ~x ´ p~v ~vJq ~x “ pI ´ ~v ~vJq ~x “ r~vsK ~x (8.5)

~xˆ “ ~v ˆ ~x “ r~vsˆ ~x (8.6)

We have introduced two new matrices

r~vs‖ “ ~v ~vJ and r~vsK “ I ´ ~v ~vJ (8.7)

Let us next study how the three matrices r~vs‖, r~vsK, r~vsˆ behave under the transposition and
mutual multiplication. We see that the following indentities

r~vsJ
‖ “ r~vs‖ , r~vs‖ r~vs‖ “ r~vs‖ , r~vs‖ r~vsK “ 0, r~vs‖ r~vsˆ “ 0,

r~vsJ
K “ r~vsK , r~vsK r~vs‖ “ 0, r~vsK r~vsK “ r~vsK , r~vsK r~vsˆ “ r~vsˆ ,

r~vsJ
ˆ “ ´ r~vsˆ , r~vsˆ r~vs‖ “ 0, r~vsˆ r~vsK “ r~vsˆ , r~vsˆ r~vsˆ “ ´ r~vsK

(8.8)

hold true. The last identity is obtained as follows

r~vsˆ r~vsˆ “

»

–

0 ´v3 v2
v3 0 ´v1

´v2 v1 0

fi

fl

»

–

0 ´v3 v2
v3 0 ´v1

´v2 v1 0

fi

fl (8.9)

“

»

–

´v2
2

´ v2
3

v1v2 v1v3
v1v2 ´v2

1
´ v2

3
v2v3

v1v3 v2v3 ´v2
1

´ v2
2

fi

fl (8.10)

“

»

–

v2
1

´ 1 v1v2 v1v3
v1v2 v2

2
´ 1 v2v3

v1v3 v2v3 v2
3

´ 1

fi

fl “ r~vs‖ ´ I “ ´ r~vsK (8.11)

It is also interesting to investigate the norms of vectors ~xK and ~xˆ. Consider

}~xˆ}2 “ ~xJ
ˆ~xˆ “ ~xJ r~vsJ

ˆ r~vsˆ ~x “ ~xJp´ r~vs2ˆq~x “ ~xJ r~vsK ~x (8.12)

}~xK}2 “ ~xJ
K~xK “ ~xJ r~vsJ

K r~vsK ~x “ ~xJ r~vs2K ~x “ ~xJ r~vsK ~x (8.13)

Since norms are non-negaive, we conclude that }~xK} “ }~xˆ}.
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We can now write ~y in the basis r~x‖, ~xK, ~xˆs as

~y “ ~x‖ ` ||~xK|| cos θ ~xK

||~xK|| ` ||~xK|| sin θ ~xˆ

||~xˆ|| (8.14)

“ ~x‖ ` cos θ ~xK ` sin θ ~xˆ (8.15)

“ r~vs‖ ~x ` cos θ r~vsK ~x ` sin θ r~vsˆ ~x (8.16)

“ pr~vs‖ ` cos θ r~vsK ` sin θ r~vsˆq ~x “ R ~x (8.17)

We obtained matrix
R “ r~vs‖ ` cos θ r~vsK ` sin θ r~vsˆ (8.18)

Let us check that this indeed is a rotation matrix

RJR “
´

r~vs‖ ` cos θ r~vsK ` sin θ r~vsˆ

¯J ´

r~vs‖ ` cos θ r~vsK ` sin θ r~vsˆ

¯

“
´

r~vs‖ ` cos θ r~vsK ´ sin θ r~vsˆ

¯´

r~vs‖ ` cos θ r~vsK ` sin θ r~vsˆ

¯

“ r~vs‖ ` cos2 θ r~vsK ` sin θ cos θ r~vsˆ ´ sin θ cos θ r~vsˆ ` sin2 θ r~vsK

“ r~vs‖ ` r~vsK “ I (8.19)

R can be wrtten in many variations, which are useful in different situations when simplifying
formulas. Let us provide the most common of them using r~vs‖ “ ~v ~vJ, r~vsK “ I´ r~vs‖ “ I´~v ~vJ

and r~vsˆ

R “ r~vs‖ ` cos θ r~vsK ` sin θ r~vsˆ (8.20)

“ ~v ~vJ ` cos θ pI ´ ~v ~vJq ` sin θ r~vsˆ (8.21)

“ cos θ I ` p1 ´ cos θq~v ~vJ ` sin θ r~vsˆ (8.22)

“ cos θ I ` p1 ´ cos θq r~vs‖ ` sin θ r~vsˆ (8.23)

“ cos θ I ` p1 ´ cos θq pI ` r~vs2ˆq ` sin θ r~vsˆ (8.24)

“ I ` p1 ´ cos θq r~vs2ˆ ` sin θ r~vsˆ (8.25)

8.1.1 Angle-axis parameterization

Let us write R in more detail

R “ cos θ I ` p1 ´ cos θq~v ~vJ ` sin θ r~vsˆ (8.26)

“ p1 ´ cos θq~v ~vJ ` cos θ I ` sin θ r~vsˆ (8.27)

“ p1 ´ cos θq

»

–

v1v1 v1v2 v1v3
v2v1 v2v2 v2v3
v3v1 v3v2 v3v3

fi

fl ` cos θ

»

–

1 0 0
0 1 0
0 0 1

fi

fl ` sin θ

»

–

0 ´v3 v2
v3 0 ´v1

´v2 v1 0

fi

fl

“

»

–

v1v1p1 ´ cos θq ` cos θ v1v2p1 ´ cos θq ´ v3 sin θ v1v3p1 ´ cos θq ` v2 sin θ
v2v1p1 ´ cos θq ` v3 sin θ v2v2p1 ´ cos θq ` cos θ v2v3p1 ´ cos θq ´ v1 sin θ
v3v1p1 ´ cos θq ´ v2 sin θ v3v2p1 ´ cos θq ` v1 sin θ v3v3p1 ´ cos θq ` cos θ

fi

fl

(8.28)
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which allows us to parameterize rotation by four numbers

“

θ v1 v2 v3
‰J

with v21 ` v22 ` v23 “ 1 (8.29)

The parameterization uses goniometric functions.

8.1.2 Computing the axis and the angle of rotation from R

Let us now discuss how to get a unit vector ~v of the axis and the corresponding angle θ of
rotation from a rotation matrix R, such that the pair rθ,~vs gives R by Equation 8.28. To avoid
multiple representations due to periodicity of θ, we will confine θ to real interval p´π, πs.
We can get cospθq from Equation 6.67.
If cos θ “ 1, then sin θ “ 0, and thus θ “ 0. Then, R “ I and any unit vector can be taken as

~v, i.e. all paris r0, ~vs for unit vector ~v P R3 represent I.
If cos θ “ ´1, then sin θ “ 0, and thus θ “ π. Then R is a symmetrical matrix and we

use Equation 6.57 to get ~v1, a non-zero multiple of ~v, i.e. ~v “ α~v1, with real non-zero α, and
therefore ~v1{||~v1|| “ s~v with s “ ˘1. We are getting

R “ 2 r~vs‖ ´ I “ 2~v ~vJ ´ I “ 2 s2~v ~vJ ´ I “ 2 ps~v q ps~v qJ ´ I (8.30)

“ 2

ˆ

~v1

}~v1}

˙ˆ

~v1

}~v1}

˙J

´ I “ 2

ˆ

´ ~v1

}~v1}

˙ˆ

´ ~v1

}~v1}

˙J

´ I (8.31)

from Equation 8.27 and hence we can form two pairs

„

π,` ~v1

}~v1}



,

„

π,´ ~v1

}~v1}



(8.32)

representing this rotation.
Let’s now move to ´1 ă cos θ ă 1. We construct matrix

R ´ RJ “ p1 ´ cos θq r~vs‖ ` cos θ I ` sin θ r~vsˆ

´
´

p1 ´ cos θq r~vs‖ ` cos θ I ` sin θ r~vsˆ

¯J
(8.33)

“ p1 ´ cos θq r~vs‖ ` cos θ I ` sin θ r~vsˆ

´
´

p1 ´ cos θq r~vs‖ ` cos θ I ´ sin θ r~vsˆ

¯

(8.34)

“ 2 sin θ r~vsˆ (8.35)

which gives

»

–

0 r12 ´ r21 r13 ´ r31
r21 ´ r12 0 r23 ´ r32
r31 ´ r13 r32 ´ r23 0

fi

fl “ 2 sin θ

»

–

0 ´v3 v2
v3 0 ´v1

´v2 v1 0

fi

fl (8.36)

and thus

sin θ ~v “ 1

2

»

–

r32 ´ r23
r13 ´ r31
r21 ´ r12

fi

fl (8.37)
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We thus get

| sin θ| ||~v|| “ | sin θ| “ 1

2

a

pr23 ´ r32q2 ` pr31 ´ r13q2 ` pr12 ´ r21q2 (8.38)

There holds
sin θ ~v “ sinp´θq p´~vq (8.39)

true and hence we define

θ “ arccos

ˆ

1

2
ptrace pRq ´ 1q

˙

, ~r “ 1

2

»

–

r32 ´ r23
r13 ´ r31
r21 ´ r12

fi

fl (8.40)

and write two pairs
„

`θ,` ~r

sin θ



,

„

´θ,´ ~r

sin θ



(8.41)

representing rotation R.
We see that all rotations are represented by two pairs of rθ, ~vs except for the identity, which

is represented by an infinite number of pairs.

8.2 Euler vector representation and the exponential map

Let us now discuss another classical and natural representation of rotations. It may seem as only
a slight variation of the angle-axis representation but it leads to several interesting connections
and properties.
Let us consider the euler vector defined as

~e “ θ ~v (8.42)

where θ is the rotation angle and ~v is the unit vector representing the rotation axis in the
angle-axis representation as in Equation 8.27.
Next, let us recall the very fundamental real functions [3] and their related power series

expx “
8
ÿ

n“0

xn

n!
(8.43)

sinx “
8
ÿ

n“0

p´1qn
p2n ` 1q!x

2n`1 (8.44)

cosx “
8
ÿ

n“0

p´1qn
p2nq! x

2n (8.45)

It makes sense to define the exponential function of an m ˆ m real matrix A P Rmˆm as

exp A “
8
ÿ

n“0

An

n!
(8.46)

We will now show that the rotation matrix R corresponding to the angle-axis parameterization
rθ,~vs can be obtained as

Rprθ,~vsq “ exp r~esˆ “ exp rθ ~vsˆ (8.47)

75



T. Pajdla. Elements of Geometry for Robotics 2019-9-22 (pajdla@cvut.cz)

The basic tool we have to employ is the relationship between r~es3ˆ and r~esˆ. It will allow us to
pass form the ifinite summantion of matrix powers to the infinite summation of the powers of
the θ and hence to sin θ and cos θ, which will, at the end, give the rodrigues formula. We write,
Equation 8.11,

rθ ~vs2ˆ “ θ2 p~v ~vJ ´ Iq
rθ ~vs3ˆ “ ´θ2 rθ~vsˆ

rθ ~vs4ˆ “ ´θ2 rθ~vs2ˆ (8.48)

rθ ~vs5ˆ “ θ4 rθ~vsˆ

rθ ~vs6ˆ “ θ4 rθ~vs2ˆ
...

and substitute into Equation 8.46 to get

exp rθ ~vsˆ “
8
ÿ

n“0

rθ ~vsnˆ
n!

(8.49)

“
8
ÿ

n“0

rθ ~vs2nˆ

p2nq! `
8
ÿ

n“0

rθ ~vs2n`1

ˆ

p2n ` 1q! (8.50)

Let us notice the identities, which are obtained by generalizing Equations 8.48 to an arbitrary
power n

rθ ~vs0ˆ “ I (8.51)

rθ ~vs2nˆ “ p´1qn´1 θ2pn´1q rθ ~vs2ˆ for n “ 1, . . . (8.52)

rθ ~vs2n`1

ˆ “ p´1qn θ2n rθ ~vsˆ for n “ 0, . . . (8.53)

and substitute them into Equation 8.50 to get

exp rθ ~vsˆ “ I `
˜

8
ÿ

n“1

p´1qn´1θ2pn´1q

p2nq!

¸

rθ ~vs2ˆ `
˜

8
ÿ

n“0

p´1qnθ2n
p2n ` 1q!

¸

rθ ~vsˆ

“ I `
˜

8
ÿ

n“1

p´1qn´1θ2n

p2nq!

¸

r~vs2ˆ `
˜

8
ÿ

n“0

p´1qnθ2n`1

p2n ` 1q!

¸

r~vsˆ

“ I ´
˜

8
ÿ

n“0

p´1qnθ2n
p2nq! ´ 1

¸

r~vs2ˆ ` sin θ r~vsˆ

“ I ´ pcos θ ´ 1q r~vs2ˆ ` sin θ r~vsˆ

“ I ` sin θ r~vsˆ ` p1 ´ cos θq r~vs2ˆ

“ I ` sin }~e}
„

~e

}~e}



ˆ

` p1 ´ cos }~e}q
„

~e

}~e}

2

ˆ

“ Rprθ,~vsq (8.54)

by the comparison with Equation 8.25.
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8.3 Quaternion representation of rotation

8.3.1 Quaternion parameterization

We shall now introdude another parameterization of R by four numbers but this time we will not
use goniometric functions but polynomials only. We shall see later that this parameterization
has other useful properties.
This paramterization is known as unit quaternion parameterization of rotations since rotations

are represented by unit vectors from R4. In general, it may sense to talk even about non-unit
quaternions and we will see how to use them later when applying rotations represented by unit
quaternions on points represented by non-unit quaternions. To simplify our notation, we will
often write “quaternions” insted of more correct “unit quaternions”.
Let us do a seemingly unnecessary trick. We will pass from θ to θ

2
and introduce

~q “
„

cos θ
2

~v sin θ
2



“

»

—

—

–

q1
q2
q3
q4

fi

ffi

ffi

fl

“

»

—

—

–

cos θ
2

v1 sin
θ
2

v2 sin
θ
2

v3 sin
θ
2

fi

ffi

ffi

fl

(8.55)

There still holds

}~q} “ q21 ` q22 ` q23 ` q24 “ cos2
θ

2
` sin2

θ

2
v21 ` sin2

θ

2
v22 ` sin2

θ

2
v23 “ cos2

θ

2
` sin2

θ

2
“ 1 (8.56)

true. We can verify that the following identities

cos θ “ 2 cos2
θ

2
´ 1 “ 2 q21 ´ 1 (8.57)

sin θ “ 2 cos
θ

2
sin

θ

2
(8.58)

sin θ ~v “ 2 cos
θ

2
sin

θ

2
~v “ 2 q1

“

q2 q3 q4
‰J

(8.59)

cos θ “ 1 ´ 2 sin2
θ

2
“ 1 ´ 2 pq22 ` q23 ` q24q “ q21 ´ q22 ´ q23 ´ q24 (8.60)

1 ´ cos θ “ 2 sin2
θ

2
“ 2 pq22 ` q23 ` q24q (8.61)
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hold true. We can now substitute the above into Equation 8.23 to get

R “ I ` sin θ r~vsˆ ` p1 ´ cos θq r~vs2ˆ (8.62)

“ I ` 2 cos
θ

2
sin

θ

2
r~vsˆ ` 2 sin2

θ

2
r~vs2ˆ (8.63)

“ I ` 2 cos
θ

2

„

sin
θ

2
~v



ˆ

` 2

„

sin
θ

2
~v

2

ˆ

(8.64)

“ I ` 2 cos
θ

2

„

sin
θ

2
~v



ˆ

` 2

˜

„

sin
θ

2
~v



‖

´ I

¸

(8.65)

“ I ` 2 q1

»

–

»

–

q2
q3
q4

fi

fl

fi

fl

ˆ

` 2

¨

˚

˝

»

–

»

–

q2
q3
q4

fi

fl

fi

fl

‖

´ I

˛

‹

‚
(8.66)

“

»

–

1 ´2 q1q4 2 q1q3
2 q1q4 1 ´2 q1q2

´2 q1q3 2 q1q2 1

fi

fl `

»

–

2 q2q2 ´ 2 2 q2q3 2 q2q4
2 q3q2 2 q3q3 ´ 2 2 q3q4
2 q4q2 2 q4q3 2 q4q4 ´ 2

fi

fl

“

»

–

q2
1

` q2
2

´ q2
3

´ q2
4

2 pq2q3 ´ q1q4q 2 pq2q4 ` q1q3q
2 pq2q3 ` q1q4q q2

1
´ q2

2
` q2

3
´ q2

4
2 pq3q4 ´ q1q2q

2 pq2q4 ´ q1q3q 2 pq3q4 ` q1q2q q2
1

´ q2
2

´ q2
3

` q2
4

fi

fl (8.67)

which uses only second order polynomials in elements of ~q.

8.3.2 Computing quaternions from R

To get the quaternions representing a rotation matrix R, we start with Equation 8.64. Let us
first confine θ to the real interval p´π, πs as we did for the angle-axis parameterization.
Matrix R either is or it is not symmetric.
If R is symmetric, then either sin θ{2~v “ ~0 or cos θ{2 “ 0. If sin θ{2~v “ ~0, then sin θ{2 “ 0

since }~v} “ 1 and thus cos θ{2 “ ˘1. However, cos θ{2 “ ´1 for no θ P p´π, πs and hence
cos θ{2 “ 1. This corresponds to θ “ 0 and hence to R “ I which is thus represented by
quaternion

“

1 0 0 0
‰J

(8.68)

If cos θ{2 “ 0, then sin θ{2 “ ˘1 but sin θ{2 “ ´1 for no θ P p´π, πs and hence sin θ{2 “ 1.
This corresponds to the rotation the by θ “ π around the axis given by unit ~v “ rv1, v2, v3sJ.
This rotation is thus represented by quaternion

“

0 v1 v2 v3
‰J

(8.69)

Notice that ~v and ´~v generate the same rotation matrix R and hence every rotation by θ “ π is
represented by two quaternions.
If R is not symmetric, then R ´ RJ ‰ 0 and hence we are geting a useful relationship

R ´ RJ “ 4 cos
θ

2

„

sin
θ

2
~v



ˆ

(8.70)
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and next continue with writing

cos2
θ

2
“ 1 ´ sin2

θ

2
“ 1 ´ 1

2
p1 ´ cos θq “ 1 ´ 1

2

ˆ

1 ´ 1

2
ptrace R ´ 1q

˙

“ 1

4
p1 ` trace Rq (8.71)

using trace R, and thus

q1 “ cos
θ

2
“ s

2

?
trace R ` 1 (8.72)

with s “ ˘1. We can form equation

»

–

0 r12 ´ r21 r13 ´ r31
r21 ´ r12 0 r23 ´ r32
r31 ´ r13 r32 ´ r23 0

fi

fl “

»

–

»

–

r32 ´ r23
r13 ´ r31
r21 ´ r12

fi

fl

fi

fl

ˆ

“ s
?
trace R ` 1

»

–

»

–

q2
q3
q4

fi

fl

fi

fl

ˆ

(8.73)

which gives the following two quaternions

`1

2
?
trace R ` 1

»

—

—

–

trace R ` 1
r32 ´ r23
r13 ´ r31
r21 ´ r12

fi

ffi

ffi

fl

,
´1

2
?
trace R ` 1

»

—

—

–

trace R ` 1
r32 ´ r23
r13 ´ r31
r21 ´ r12

fi

ffi

ffi

fl

(8.74)

which represent the same rotation as R.
We see that all rotations are represented by the above by two quaternions ~q and ´~q except

for the identity, which is represented by exactly one quaternion.
The quaternion representation of rotation presented above represents every rotation by a

finite number of quaternions whereas angle-axis repesentation allowed for an infinite number of
angle-axis pairs to correspond to the indentity. Yet, even this still has an “aesthetic flaw” at the
identity, which has only one quaternion whereas all other rotations have two quaternions. The
“flaw” can be removed by realizing that ~q “ r´1, 0, 0, 0sJ also maps to the identity. However, if
we look for θ that corresponds to cos θ{2 “ ´1 we see that such θ{2 “ ˘k π and hence θ “ ˘2 k π
for k “ 1, 2, . . ., which are points isolated from p´π, πs. Now, if we allow θ to be in interval
p´2π,`2πs, then the set

"„

cos θ{2
~v sin θ{2

 ˇ

ˇ

ˇ

ˇ

θ P r´2π, `2πs, ~v P R3, }~v} “ 1

*

(8.75)

of quaternions contains exactly two quaternions for every rotation matrix R and is obtained by
a continuous mapping of a closed interval of angles, which is boundend, times a sphere in R3,
which is also closed and bounded.

8.3.3 Quaternion composition

Consider two rotations represented by ~q1 and ~q2. The respective rotation matrices R1, R2 can be
composed into rotation matrix R21 “ R2 R1, which can be represented by ~q21. Let us investigate
how to obtain ~q21 from ~q1 and ~q2. We shall use Equation 8.76 to relate R1 to ~q1 and R2 to ~q1,
then evaluate R21 “ R2 R1 and recover ~q21 from R21. We use Equation 8.23 to write

R “ 2 sin2
θ

2
~v ~vJ ` p2 cos2

θ

2
´ 1q I ` 2 cos

θ

2
sin

θ

2
r~vsˆ (8.76)
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and

R1 “ 2 ps1~v1q ps1~v1qJ ` p2 c21 ´ 1q I ` 2 c1 rs1~v1sˆ (8.77)

R2 “ 2 ps2~v2q ps2~v2qJ ` p2 c22 ´ 1q I ` 2 c2 rs2~v2sˆ (8.78)

R21 “ 2 ps21~v21q ps21~v21qJ ` p2 c221 ´ 1q I ` 2 c21 rs21~v21sˆ

with shortcuts

c1 “ cos
θ1

2
, s1 “ sin

θ1

2
, c2 “ cos

θ2

2
, s2 “ sin

θ2

2
, c21 “ cos

θ21

2
, s21 “ sin

θ21

2

Let us next assume that both R1, R2 are not identities. Then θ1 ‰ 0 and θ2 ‰ 0 and rotation
axes ~v1 ‰ ~0, ~v2 ‰ ~0 are well defined. We can now distinguish two cases. Either ~v1 “ ˘~v2, and
then ~v21 “ ~v1 “ ˘~v2, or ~v1 ‰ ˘~v2, and then

r~v1, ~v2, ~v2 ˆ ~v1s (8.79)

forms a basis of R3. We also notice that ~v1, ~v2 always appear in R1, R2 in the product with s1, s2.
We can thus write

sin
θ21

2
~v21 “ a1 sin

θ1

2
~v1 ` a2 sin

θ2

2
~v2 ` a3 psin θ2

2
~v2 ˆ sin

θ1

2
~v1q (8.80)

with coefficients a1, a2, a3 P R. To find coefficients a1, a2, a3, we will consider the following
special situations:

1. ~v1 “ ˘~v2 implies ~v21 “ ~v1 “ ˘~v2 and θ21 “ θ1 ˘ θ2 for all real θ1 and θ2.

2. ~vJ
2
~v1 “ 0 and θ1 “ θ2 “ π implies

R1 “ 2~v1~v
J
1 ´ I (8.81)

R2 “ 2~v2~v
J
2 ´ I (8.82)

R21 “ p2~v2~vJ
2 ´ Iqp2~v1~vJ

1 ´ Iq “ I ´ 2 p~v2~vJ
2 ` ~v1~v

J
1 q (8.83)

We see that in the former case we are getting

sin
θ21

2
~v1 “ pa1 sin

θ1

2
` a2 sin

θ2

2
q~v1 for all θ1, θ2 P R (8.84)

which for ~v1 ‰ ~0 leads to

sin
θ21

2
“ a1 sin

θ1

2
` a2 sin

θ2

2
(8.85)

sin
θ1 ` θ2

2
“ a1 sin

θ1

2
` a2 sin

θ2

2
(8.86)

sin
θ1

2
cos

θ2

2
` cos

θ1

2
sin

θ2

2
“ a1 sin

θ1

2
` a2 sin

θ2

2
(8.87)

for all θ1, θ2 P R. But that means that

a1 “ cos
θ2

2
and a2 “ cos

θ1

2
(8.88)
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In the latter case we find that ~v21 is a non-zero multiple of ~v2 ˆ ~v1 since

R21 p~v2 ˆ ~v1q “ pI ´ 2 p~v2~vJ
2 ` ~v1~v

J
1 qq p~v2 ˆ ~v1q (8.89)

“ ~v2 ˆ ~v1 ´ 2~v2~v
J
2 p~v2 ˆ ~v1q ´ 2~v1~v

J
1 p~v2 ˆ ~v1q (8.90)

“ ~v2 ˆ ~v1 (8.91)

But that means that

sin
θ21

2
~v21 “ a3 psin θ2

2
~v2 ˆ ~v1 sin

θ1

2
q (8.92)

We next get θ21 using Equation 6.67 as

cos θ21 “ 1

2
ptrace R ´ 1q “ 1

2
p3 ´ 2 p}~v2}2 ` }~v1}2q ´ 1q “ 1

2
p3 ´ 4 ´ 1q “ ´1 (8.93)

and hence θ21 “ ˘π and thus
~v21 “ a3 p~v1 ˆ ~v2q (8.94)

but since ~v1 is perpendicular to ~v2, ~v1 ˆ ~v2 is a unit vector and thus a3 “ 1. We can thus
hypothesize that in general

sin
θ21

2
~v21 “ cos

θ2

2

ˆ

sin
θ1

2
~v1

˙

` cos
θ1

2

ˆ

sin
θ2

2
~v2

˙

`
ˆ

sin
θ2

2
~v2

˙

ˆ
ˆ

sin
θ1

2
~v1

˙

(8.95)

Let’s next find cos θ21
2

consistent with the above hypothesis. We see that

cos2
θ21

2
“ 1 ´ sin2

θ21

2
(8.96)

and hence we evaluate

sin2
θ21

2
“ sin2

θ21

2
~vJ
21~v21 “

ˆ

sin
θ21

2
~v21

˙Jˆ

sin
θ21

2
~v21

˙

(8.97)

“ cos2
θ2

2
sin2

θ1

2
` cos2

θ1

2
sin2

θ2

2
(8.98)

` 2 cos
θ2

2
cos

θ1

2

ˆ

sin
θ2

2
~v2

˙Jˆ

sin
θ1

2
~v1

˙

(8.99)

`
„ˆ

sin
θ2

2
~v2

˙

ˆ
ˆ

sin
θ1

2
~v1

˙J„ˆ

sin
θ2

2
~v2

˙

ˆ
ˆ

sin
θ1

2
~v1

˙

(8.100)

We used the fact that ~v1, ~v2 are perpendicular to their vector product.
To move further, we will use that for every two unit vectors ~u, ~v in R3 there holds

p~u ˆ ~vqJp~u ˆ ~vq “ }p~u ˆ ~vq}2 “ }~u}2}~v}2 sin2 =p~u,~vq (8.101)

“ }~u}2}~v}2p1 ´ cos2 =p~u,~vqq “ }~u}2}~v}2 ´ p~uJ~vq2 (8.102)

true.
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Applying this to the last summand in Equation 8.100, we get

sin2
θ21

2
“ cos2

θ2

2
sin2

θ1

2
` cos2

θ1

2
sin2

θ2

2
(8.103)

` 2 cos
θ2

2
cos

θ1

2

ˆ

sin
θ2

2
~v2

˙Jˆ

sin
θ1

2
~v1

˙

(8.104)

` sin2
θ2

2
sin2

θ1

2
´
«

ˆ

sin
θ2

2
~v2

˙Jˆ

sin
θ1

2
~v1

˙

ff2

(8.105)

“ sin2
θ1

2
` cos2

θ1

2
sin2

θ2

2
(8.106)

` 2 cos
θ2

2
cos

θ1

2

ˆ

sin
θ2

2
~v2

˙Jˆ

sin
θ1

2
~v1

˙

´
«

ˆ

sin
θ2

2
~v2

˙Jˆ

sin
θ1

2
~v1

˙

ff2

“ 1 ´ cos2
θ1

2
cos2

θ2

2
(8.107)

` 2 cos
θ2

2
cos

θ1

2

ˆ

sin
θ2

2
~v2

˙Jˆ

sin
θ1

2
~v1

˙

´
«

ˆ

sin
θ2

2
~v2

˙Jˆ

sin
θ1

2
~v1

˙

ff2

where we used the fact that

sin2
θ1

2
` cos2

θ1

2
sin2

θ2

2
“ 1 ´ cos2

θ1

2
` cos2

θ1

2
sin2

θ2

2
(8.108)

“ 1 ` cos2
θ1

2

ˆ

sin2
θ2

2
´ 1

˙

“ 1 ´ cos2
θ1

2
cos2

θ2

2

We are thus obtaining

cos2
θ21

2
“ 1 ´ sin2

θ21

2
(8.109)

“ cos2
θ1

2
cos2

θ2

2
(8.110)

´ 2 cos
θ2

2
cos

θ1

2

ˆ

sin
θ2

2
~v2

˙Jˆ

sin
θ1

2
~v1

˙

`
«

ˆ

sin
θ2

2
~v2

˙Jˆ

sin
θ1

2
~v1

˙

ff2

“
˜

cos
θ1

2
cos

θ2

2
´
ˆ

sin
θ2

2
~v2

˙Jˆ

sin
θ1

2
~v1

˙

¸2

(8.111)

Our complete hypothesis will be

sin
θ21

2
~v21 “ cos

θ2

2

ˆ

sin
θ1

2
~v1

˙

` cos
θ1

2

ˆ

sin
θ2

2
~v2

˙

`
ˆ

sin
θ2

2
~v2

˙

ˆ
ˆ

sin
θ1

2
~v1

˙

cos
θ21

2
“ cos

θ1

2
cos

θ2

2
´
ˆ

sin
θ2

2
~v2

˙Jˆ

sin
θ1

2
~v1

˙

(8.112)

To verify this, we will run the following Maple [18] program

> restart:
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> with(LinearAlgebra):

> E:=IdentityMatrix(3):

> X :=proc(u) <<0|-u[3]|u[2]>,<u[3]|0|-u[1]>,<-u[2]|u[1]|0>> end proc:

> v1:=<x1,y1,z1>:

> v2:=<x2,y2,z2>:

> R1:=2*(s1*v1).Transpose(s1*v1)+(2*c1^2-1)*E+2*c1*X (s1*v1):

> R2:=2*(s2*v2).Transpose(s2*v2)+(2*c2^2-1)*E+2*c2*X (s2*v2):

> R21:=expand~(R2.R1):

> c21:=c2*c1-Transpose(s2*v2).(s1*v1);

c21 :“ c2 c1 ´ s1 x1 s2 x2 ´ s1 y1 s2 y2 ´ s1 z1 s2 z2

> s21v21:=c2*s1*v1+s2*c1*v2+X (s2*v2).(s1*v1);

s21v21 :“

»

—

—

–

c2 s1 x1 ` s2 c1 x2 ´ s2 z2 s1 y1 ` s2 y2 s1 z1

c2 s1 y1 ` s2 c1 y2 ` s2 z2 s1 x1 ´ s2 x2 s1 z1

c2 s1 z1 ` s2 c1 z2 ´ s2 y2 s1 x1 ` s2 x2 s1 y1

fi

ffi

ffi

fl

> RR21:=2*s21v21.Transpose(s21v21)+(2*c21^2-1)*E+2*c21*X (s21v21):

> simplify(expand~(RR21-R21),[x1^2+y1^2+z1^2=1,x2^2+y2^2+z2^2=1,

c1^2+s1^2=1,c2^2+s2^2=1]);

»

—

—

–

0 0 0

0 0 0

0 0 0

fi

ffi

ffi

fl

which verifies that our hypothesis was correct.
Considering two unit quaternions

~p “

»

—

—

–

p1
p2
p3
p4

fi

ffi

ffi

fl

, and ~q “

»

—

—

–

q1
q2
q3
q4

fi

ffi

ffi

fl

(8.113)
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we can now give their composition as

~q21 “ ~q ~p “

»

—

—

–

q1 p1 ´ q2 p2 ´ q3 p3 ´ q4 p4
q1 p2 ` q2 p1 ` q3 p4 ´ q4 p3
q1 p3 ` q3 p1 ` q4 p2 ´ q2 p4
q1 p4 ` q4 p1 ` q2 p3 ´ q3 p2

fi

ffi

ffi

fl

(8.114)

“

»

—

—

–

q1 p1 ´ q2 p2 ´ q3 p3 ´ q4 p4
q2 p1 ` q1 p2 ´ q4 p3 ` q3 p4
q3 p1 ` q4 p2 ` q1 p3 ´ q2 p4
q4 p1 ´ q3 p2 ` q2 p3 ` q1 p4

fi

ffi

ffi

fl

(8.115)

“

»

—

—

–

q1 ´q2 ´q3 ´q4
q2 q1 ´q4 q3
q3 q4 q1 ´q2
q4 ´q3 q2 q1

fi

ffi

ffi

fl

»

—

—

–

p1
p2
p3
p4

fi

ffi

ffi

fl

(8.116)

8.3.4 Application of quaternions to vectors

Consider a rotation by angle θ around an axis with direection ~v represented by a unit quaternion
~q “

“

cos θ
2

sin θ
2
~v
‰

and a vector ~x P R3. To rotate the vector, we may construct the rotation
matrix Rp~q q and apply it to the vector ~x as Rp~q q ~x.
Interestingly enough, it is possible to accomplish this in somewhat different and more efficient

way by first “embedding” vector ~x into a (non-unit!) quaternion

~pp~xq “
„

0
~x



“

»

—

—

–

0
x1
x2
x3

fi

ffi

ffi

fl

(8.117)

and then composing it with quaternion ~q from both sides

~q ~pp~xq ~q´1 “
„

cos θ
2

sin θ
2
~v

 „

0
~x

 „

cos θ
2

´ sin θ
2
~v



(8.118)

One can verify that the following

„

0
Rp~q q ~x



“ ~q ~pp~xq ~q´1 (8.119)

holds true.

8.4 “Cayley transform” parameterization

We see that unit quaternions provide a nice parameterization. It is given as a matrix with
polynomial entries of four parameters. However, unit quaternions still are somewhat redundant
since every rotation is represented twice.
Let us now mention yet another classical rotation parameterization, which is known as “Cayley

transform”. This parameterization uses only three parameters to represent three-dimensional

84



T. Pajdla. Elements of Geometry for Robotics 2019-9-22 (pajdla@cvut.cz)

x

y

c

1

1´1

´1

θθ{2
0

sin θ

cos θ

Figure 8.2: Cayley transform parameterization of two-dimensional rotations.

rotations. In a sense, it is as ecconomic as it can be. On the other hand, it can’t represent
rotations by 180˝.
Actually, it can be proven [19] that there is no mapping (parameterization), which could be

(i) continuous, (ii) one-to-one, (iii) onto, and (iv) three-dimensional (i.e. mapping a “three-
dimensional box” onto all three-dimensional rotations).
Axis-angle parameterization is continuous and onto but not one-to-one and not three-dimensional.

Euler vector parameterization is continuous, onto, three-dimensional but not one-to one. Unit
quaternions are continuous, onto but not three-dimensional and not one-to one (although they
are close to that by being two-to-one). Finally, Cayley transform parameterization is continuous,
one-to-one, three-dimensional but it not onto.
In addition, unit quaternions and Cayley transform parameterizations are “finite” in the sense

that they are polynomial rational functions of their parameters while other above mentioned
representations require some “infinite” process for computing goniometric functions. This may
be no probelem if approximate evaluation of functions is acceptable but, as we will see, it is a
findamental obstackle to solving interestign engineering problems using computational algebra.

8.4.1 Cayley transform parameterization of two-dimensional rotations

Let us first look at two-dimesional roations. Figure 8.2 shows an illustartion of the relationship
between parameter c and cos θ, sin θ on the unit circle. We see that, using the similarity of
triangles, sin θ

cos θ`1
“ c

1
. Considering that pcos θq2 ` psin θq2 “ 1 we are getting

1 ´ pcos θq2 “ psin θq2 “ c2pcos θ ` 1q2 “ c2ppcos θq2 ` 2 cos θ ` 1q (8.120)

0 “ pc2 ` 1qpcos θq2 ` 2 c2 cos θ ` c2 ´ 1 (8.121)
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and thus

cos θ “ ´2 c2 ˘
a

4 c4 ´ 4 pc2 ` 1qpc2 ´ 1q
2pc2 ` 1q “ ´c2 ˘

a

c4 ´ pc4 ´ 1q
c2 ` 1

“ ˘1 ´ c2

1 ` c2
(8.122)

gives either cos θ “ ´1 or

cos θ “ 1 ´ c2

1 ` c2
(8.123)

The former case corresponds to point r´1 0sJ. In the latter case, we have

psin θq2 “ 1 ´ pcos θq2 “ 1 ´ p1 ´ c2

1 ` c2
q2 “ p1 ` c2q2 ´ p1 ´ c2q2

p1 ` c2q2 (8.124)

“ p1 ` 2 c2 ` c4q ´ p1 ´ 2 c2 ` c4q
p1 ` c2q2 “ 4 c2

p1 ` c2q2 “
ˆ

2 c

1 ` c2

˙2

(8.125)

and thus sin θ “ ˘ 2 c
1`c2

. Now, we see from Figure 8.2 that we want sin θ to be positive for
positive c. Therefore, we conclude that

sin θ “ 2 c

1 ` c2
(8.126)

It is impotant to notice that with the parameterization given by Equation 8.123, we can never
get cos θ “ ´1 for a real c since if that was true, we would get ´1 ´ c2 “ 1 ´ c2 and hence
´1 “ 1. On the other hand, we see that Cayley transform maps every c P R into a point on the
unit circle rcos θ sin θsJ, and hence to the corresponding rotation

Rpcq “
„

cos θ ´ sin θ
sin θ cos θ



“
«

1´c2

1`c2
´ 2 c

1`c2

2 c
1`c2

1´c2

1`c2

ff

(8.127)

The mapping Rpcq : R Ñ R is one-to-one since when two c1, c2 map into the same point, then

2 c1
1 ` c2

1

“ 2 c2
1 ` c2

2

(8.128)

c1p1 ` c22q “ c2p1 ` c21q (8.129)

c1 ´ c2 “ c1c2pc1 ´ c2q (8.130)

implies that either c1c2 ‰ 0, and then c1 “ c2, or c1c2 “ 0, and then c1 “ 0 “ c2 because both
1` c2

1
, 1` c2

2
are positive. Next, let us see that the mapping is also onto Rztr´1 0sJu. Consider

a point rcos θ sin θsJ ‰ r´1 0sJ. Its preimage c, is obtained as

c “ sin θ

1 ` cos θ
(8.131)

which is clearly defined for cos θ ‰ ´1.

8.4.1.1 Two-dimensional rational rotations

It is also important to notice that the Rpcq is a rational function of c as well as c is a rational
function or R (e.g. of the two elements in its first column). Hence, every rational number c gives
a rational point ra bsJ on the unit circle as well as every rational point ra bsJ provides a rational
c. This way, we can obtain all rational two-dimensional rotations by going over all rational c’s
plus the rotation ´I2ˆ2.
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8.4.2 Cayley transform parameterization of three-dimensional rotations

We saw that we have obtained a bijective (one-to-one and onto) mapping between all real
numbers and all two-dimensional rotations other than the rotation by 180˝ degrees. Now,
since every three-dimensional rotation can be actually seen as a two-dimensional rotation after
aligning the z-axis with the rotation axis, we may hint on having an analogous situation in three
dimensons after removing all rotations by 180˝. Let us investigate this further and see that
we can indeed establish a bijective mapping between R3 and all three-dimesnional rotations by
other than 180˝ angle.
Let us consider that all rotations by 180˝ are represented by unit quaternons in the form

“

0 q2 q3 q4
‰

. Hence, to remove them, it is enough to remove from all cases when c1 “ 0.
One way to do it, is to write down the rotation matrix in tems of (non-unit) quaternions ~q

Rp~qq “ 1

q2
1

` q2
2

` q2
3

` q2
4

»

–

q2
1

` q2
2

´ q2
3

´ q2
4

2 pq2q3 ´ q1q4q 2 pq2q4 ` q1q3q
2 pq2q3 ` q1q4q q2

1
´ q2

2
` q2

3
´ q2

4
2 pq3q4 ´ q1q2q

2 pq2q4 ´ q1q3q 2 pq3q4 ` q1q2q q2
1

´ q2
2

´ q2
3

` q2
4

fi

fl (8.132)

and then set q1 “ 1, q2 “ c1, q3 “ c2, q4 “ c3, to get

Rp~cq “ 1

1 ` c2
1

` c2
2

` c2
3

»

–

1 ` c2
1

´ c2
2

´ c2
3

2 pc1c2 ´ c3q 2 pc1c3 ` c2q
2 pc1c2 ` c3q 1 ´ c2

1
` c2

2
´ c2

3
2 pc2c3 ´ c1q

2 pc1c3 ´ c2q 2 pc2c3 ` c1q 1 ´ c2
1

´ c2
2

` c2
3

fi

fl (8.133)

with ~c “
“

c1 c2 c3
‰J P R3.

It can be verified that Rp~cqJRp~cq “ I for all ~c P R3 and hence the mapping Rp~cq : R3 Ñ R maps
the space R3 into rotation matrices R. Let us next see that the mapping is also one-to-one.
First, notice that by setting c1 “ c2 “ 0, we are getting

Rpc3q “ 1

1 ` c2
3

»

–

1 ´ c2
3

´2 c3 0
2 c3 1 ´ c2

3
0

0 0 1 ` c2
3

fi

fl “

»

—

—

–

1´c2
3

1`c2
3

´2 c3
1`c2

3

0

2 c3
1`c2

3

1´c2
3

1`c2
3

0

0 0 1

fi

ffi

ffi

fl

(8.134)

which is exactly the Cayley parameterization for two-dimensional rotation aroung the z-axis. In
the same way, we get that Rpc1q are rotations around the x-axis and Rpc2q are rotations around
the y-axis.
We have seen in Paragraph 8.3.2 that the mapping between the unit quaternions ~q and rotation

matrices Rp~qq was “two-to-one” in the way that there were exactly two quaternions ~q, ´~q mapping
into one R, i.e. Rp~qq “ Rp´~qq. Now, we are forcing the first coordinate of the unit quaternion

~q “
”

1 c1 c2 c3
ıJ

1`c2
1

`c3
2

`c3
be positive. Therefore, the mapping Rp~cq becomes one-to-one.

Now, let us see that by Rp~cq we can represent all rotations that are not by 180˝. ...
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