
Parallel programming

Semester project
Data storage optimization



2 / 15

Storing lot of data

● We are given n records
– A record is a sequence of integers, e.g.,

● 1, 6, 3, 5, 1, 4

● Our goal is to store them to disk in the most 
memory-efficient way possible.

1, 6, 3, 5, 1, 4
8, 2, 3, 1
2, 3, 1, 0
3, 0, 9



3 / 15

Storing records efficiently

● How to store the records in memory-efficient way?
– Find the edit difference between the records and store 

only the differences
● Edit difference = Levenshtein distance

– The original records then can be restored by re-applying 
the differences 

1, 6, 3, 5, 1, 4
8, 2, 3, 1
2, 3, 1, 0
3, 0, 9

1, 6, 3, 5, 1, 4
8, 2, 3,  , 1,  

1, 6, 3, 5, 1, 4
 , 2, 3,  , 1, 0

1, 6, 3, 5, 1, 4
 ,  , 3,  , 0, 9

Original records Edit differences of records from
1, 6, 3, 5, 1, 4

13 edit
operations



4 / 15

Which differences??!

● Clearly, the number of stored edit differences 
depends on the record from which the 
difference is computed  

1, 6, 3, 5, 1, 4
8, 2, 3, 1
2, 3, 1, 0
3, 0, 9

Original records Edit differences of records from
3, 0, 9

12 edit
operations

 ,  , 3,  , 0, 9
1, 6, 3, 5, 1, 4

 , 3, 0, 9
8, 2, 3, 1

 , 3, 0, 9
2, 3, 1, 0



5 / 15

Tree of distances

● Better approach
– Compute the edit difference between every pair of 

records  

A: 1, 6, 3, 5, 1, 4
B: 8, 2, 3, 1
C: 2, 3, 1, 0
D: 3, 0, 9

A B

C D

4

4
5

4

3

2

– Find the minimum spanning tree on the complete 
graph (e.g., using Prim’s algorithm)  

A B

C D

4

3

2 9 edit
operations



6 / 15

Semester project assignment

● Implement the sequential and parallel version of 
the data storage optimization
– You have to decide how to parallelize the code 

(algorithms or some other parts?)
● Use Intel Parallel Studio to find the bottlenecks!

– Choose either C++11 threads, OpenMP or MPI
– Use the provided skeleton code that already 

implements the reading/writing of input/output

● Prepare the presentation to show the achieved 
results during Lab 14 (mandatory, otherwise no 
points given for semester project!)



7 / 15

Evaluation of semester project

● UploadSystem, independent evaluation (7 points)
– Upload your parallel algorithm to UploadSystem
– Automatic evaluation on a set of private instances (the size of instances will be 

known)
– The number of given points depends on how fast your algorithm finds the 

correct solution
● UploadSystem, contest (3 points)

– Comparison of students
– Points given based on how fast your algorithm is in comparison with the others

● Report (optional)
– Describe how the parallelization was done (1 point)
– Profile the bottlenecks for sequential code (1 point)

● Profiler outputs (Intel Parallel Studio), detection of bottlenecks, analysis.
– Parallel code executed on Metacentrum (2 points)

● Scalability and performance graphs and other performance metrics 
(measured on Metacentrum).

● Metacentrum: PBS scripts, hardware info, how to carry out the experiments.



8 / 15

Requirements for your presentation

● Base structure:
– Introduction
– Scalability graph
– Performance graph
– Discussion and conclusion

● The presentation should have at max 10 slides.



9 / 15

Presentation - Introduction

● Mention the used technology (C++11 threads, 
OpenMP, MPI)

● What was parallized, bottlenecks analysis



10 / 15

Presentation – graphs

● Graphs:
1) Speedup of parallel CPU version vs sequential 
version (scalability graph)

2) Graph showing the algorithm runtime based on 
the size of an input instance (performance graph).

● Each graph should have a title, legend, and an 
appropriate format of axes (+units)

● Description of the hardware and software



11 / 15

Presentation – Scalability graphs

● Shows the speedup with respect to the number 
of used threads
– Scalability graph for up to 256 threads



12 / 15

Presentation – Scalability graph

1 2 4 8 16 32
0

5

10

15

20

25

30

N = 200

N = 400

N = 800

N = 1600

N = 3200

# of threads

sp
e

e
d

u
p

● N – number of records



13 / 15

Presentation – Performance graph

● Shows how much time the algorithm takes to 
finish the computation depending on  the 
number of records and their maximum length 



14 / 15

Presentation – Performance graph

1 10 100 1000 10000
0

200

400

600

800

1000

1200

CPU Sequential

CPU Parallel (optimal one)

Xeon Xpi (optimal one)

# of stars

tim
e

 [s
]

● Either
● 2D graph (# of nodes on one axis, max record length on other 

axis) 
● Fix one parameter (e.g., number of nodes) and vary the other 

parameter (e.g., max record length) + vice versa 

# of nodes



15 / 15

Presentation

Discussion and conclusion
● Explain what was the most complicated part 

and why the results are as provided.
● What is the limiting factor of the parallelisation 

in your algorithm.


	Snímek 1
	Snímek 2
	Snímek 3
	Snímek 4
	Snímek 5
	Snímek 6
	Snímek 7
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14
	Snímek 15

