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Distributed memory

● Each unit has its own memory space
● If a unit needs data in some other memory space, explicit 

communication (often through network) is required
– Point-to-point and collective communication model

● Cluster computing
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MPI

● MPI: Message passing interface
● All processes run the same program.
● Processes have assigned a rank (i.e., identification of the process).
● Based on the rank, processes can differ in an execution.
● Processes communicate by sending and receiving messages through 

communicator.
● Message passing:

– Data transfer requires cooperative operations to be performed by each process.
– For example, a send operation must have a matching receive operation.
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Communication example
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MPI implementations

● OpenMPI
– Open source
– Project founded in 2003 after intense discussion between multiple 

open source MPI implementations.
– Developed by a consortium of research, academic, and industry 

partners

● MPICH
– Open source
– Reference implementation of the latest MPI standard

● Intel MPI
– Proprietary

● MS MPI, MVAPICH ...
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MPI installation

● MPI compilers not part of GCC, needs to be installed and loaded separately
● Linux

– Fedora
dnf install openmpi
module load mpi/openmpi-x86_64

– Ubuntu
apt install libopenmpi-dev

● MacOS
brew install openmpi

● Windows
– MinGW: see https://www.math.ucla.edu/~wotaoyin/windows_coding.html

(the link for MS mpi sdk does not work, use https://www.microsoft.com/en-
us/download/details.aspx?id=52981)

– Visual Studio + Intel compiler, see https://software.intel.com/en-us/mpi-
developer-guide-windows-configuring-a-visual-studio-project

https://www.math.ucla.edu/~wotaoyin/windows_coding.html
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Compilation - CMake

cmake_minimum_required(VERSION 3.5)
project(MyProject)

find_package(MPI)
include_directories(${MPI_INCLUDE_PATH})

add_executable(Program Program.cpp)
target_compile_options(Program PRIVATE ${MPI_CXX_COMPILE_FLAGS})
target_link_libraries(Program ${MPI_CXX_LIBRARIES} ${MPI_CXX_LINK_FLAGS})

● CLion setup (use whereis command to locate 
paths in your operating system)

-DCMAKE_BUILD_TYPE=DEBUG
-DMPI_CXX_COMPILER=/usr/bin/mpicxx
-DMPI_C_COMPILER=/usr/bin/mpicc
-DMPIEXEC_EXECUTABLE=/usr/bin/mpiexec
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Basic MPI operations

● #include <mpi.h>

– Include header file with MPI functions.

● Almost all MPI functions return an integer representing the error code (see the 
documentation of each function for the error codes)

● int MPI_Init(int *argc, char ***argv)
– Initializes MPI runtime environment and process the arguments (trim the MPI 

arguments/options from argument list)

● int MPI_Finalize()
– Terminates MPI execution environment.

● int MPI_Comm_size(MPI_Comm comm, int *size)

– Queries the size of the group associated with communicator comm

– MPI_COMM_WORLD: default communicator grouping all the processes

● int MPI_Comm_rank(MPI_Comm comm, int *rank)
– Queries the rank (identifier) of the process in communicator comm. Rank is a value from 0 to 
size.
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Hello world

HelloWorld.cpp
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Running MPI programs

● mpiexec -np 4 -f hostfile PROGRAM ARGS

– np – number of used processes
– hostfile – file with a list of hosts on which to launch MPI processes (for 

cluster computing)
– PROGRAM – program to run
– ARGS – arguments for program

● This will run PROGRAM using 4 processes of the cluster.
● All nodes run the same program.
● The processes may be running on different cores of the

same node
● Visual Studio: to change the arguments passed to mpiexec, change 

Project Properties →Debugging → Command arguments
– First start of an MPI program will ask you for your username+passwords.
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Send a message

● int MPI_Send(const void *buf, 
             int count,
             MPI_Datatype datatype, 
             int dest, 
             int tag, 
             MPI_Comm comm)

● buf -  buffer which contains the data elements to be sent
● count - number of elements to be sent
● datatype - data type of elements
● dest - rank of the target process
● tag - message tag which can be used by the receiver to distinguish 

between different messages from the same sender
● comm - communicator used for the communication
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Datatypes in MPI
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Receive a message

● int MPI_Recv(void *buf,
             int count, 
             MPI_Datatype datatype,
             int source, 
             int tag,
             MPI_Comm comm,
             MPI_Status *status)

● Same as before. New arguments:
– count – maximal number of elements to be received 
– source – rank of the source process
– status 

● data structure that contains information (rank of the sender, tag of the message, actual number of 
received elements) about the message that was received

● can be used by functions as MPI_Get_count (returns number of elements in msg.)
● If not needed, MPI_STATUS_IGNORE can be used instead

● Each Send must be matched with a corresponding Recv.
● Messages are delivered in the order in which they have been sent.
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Simultaneous Send and receive

● int MPI_Sendrecv(const void *sendbuf,
                 int sendcount, 
                 MPI_Datatype sendtype,
                 int dest, 
                 int sendtag, 
                 void *recvbuf, 
                 int recvcount,
                 MPI_Datatype recvtype, 
                 int source, 
                 int recvtag,
                 MPI_Comm comm, 
                 MPI_Status *status)

● Parameters: Combination of parameters for Send and Receive
● Performs send and receive at the same time.
● Useful for data exchange and ring communication:
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Example 1 – Send me a secret code

● Write a program which sends short message 
“IDDQD” from one process to another one 
which prints the result.
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Blocking and Non-blocking

● Send and Recv are blocking operations:
– The call does not return until the user buffer can be used again.

● Send 
– If MPI uses a separate system buffer, the data in buf (user buffer space) is copied to it; then the 

main thread resumes (fast).
– If MPI does not use a separate system buffer, the main thread must wait until the communication 

over the network is complete.

● Recv
– If communication happens before the call, the data is stored in an MPI system buffer and then 

simply copied into the user provided buf when MPI_Recv() is called.

● Note: 
– The user cannot enforce whether a buffer is used or not
– The MPI library makes that decision based on the resources available and other factors.
– However, calling different functions may alter the buffering behavior, see 

https://www.mcs.anl.gov/research/projects/mpi/sendmode.html

https://www.mcs.anl.gov/research/projects/mpi/sendmode.html
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Blocking and Non-blocking
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Non-blocking Send

● Replace: MPI_Send → MPI_Isend
● int MPI_Isend(void* buf,
              int count, 
              MPI_Datatype datatype,
              int dest,
              int tag,
              MPI_Comm comm,
              MPI_Request *request)

● Parameters
– request - use to get information later on about the status of that operation.

● I stand for Immediate, meaning that it does not wait on the matching 
receive. It may or may wait not for user buffer to be copied!
– Call MPI_Wait to be able to use the user buffer again.
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Non-blocking receive

● int MPI_Irecv(void* buf, 
              int count,
              MPI_Datatype datatype,
              int source,
              int tag,
              MPI_Comm comm,
              MPI_Request *request)

● Test the status of the request using:
– int MPI_Test(MPI_Request *request, 
             int *flag, 
             MPI_Status *status)

– flag is 1 if request has been completed, 0 otherwise.

● Wait until request completes:
– int MPI_Wait(MPI_Request *request, MPI_Status *status)
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Example 2 – Send me a secret code

● Write a program which sends short message 
“IDKFA” in non-blocking way from one 
process to another one and prints the result.
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Collective communication

● Communication where more than just two processes are 
involved in.

● There are many instances where collective communications are 
required. For example:
– Spread common data to all processes
– Gather results from many processes
– etc.

● Since these are typical operations, MPI provides several 
functions that implement these operations.

● All these operations have
– blocking version
– non-blocking version
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Collective communication

● Always remember that every collective function call you 
make is synchronized.
– If you try to call collective functions (e.g., 
MPI_Barrier, MPI_Bcast, etc.) without ensuring all 
processes in the communicator will also call it, your 
program will idle => deadlock.
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Broadcast message

● int MPI_Bcast(void *buf,
              int count,
              MPI_Datatype datatype, 
              int root,
              MPI_Comm comm)

● The simplest communication: one process sends a piece of data to all 
other processes. 

● Parameters:

– root – rank of the process that provides data (all other receive it)
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Barrier

● int MPI_Barrier(MPI_Comm comm)

● Synchronization point among processes.
– All processes must reach a point in their code before they 

can all begin executing again.
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Scatter

● int MPI_Scatter(const void *sendbuf, 
                          int sendcount, 
                          MPI_Datatype sendtype,
                          void *recvbuf, 
                          int recvcount, 
                          MPI_Datatype recvtype, 
                          int root,
                          MPI_Comm comm)

● Sends personalized data from one root process to all other processes in a communicator group. 

● The primary difference between MPI_Bcast and MPI_Scatter is that MPI_Bcast sends the 
same piece of data to all processes while MPI_Scatter sends chunks of an array to different 
processes.

● Parameters:
– sendcount - dictate how many elements of a sendtype will be sent to each process. 
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Scatterv

● int MPI_Scatterv(const void *sendbuf, 
                          const int *sendcounts,

    const int *displs,
                          MPI_Datatype sendtype,
                          void *recvbuf, 
                          int recvcount, 
                          MPI_Datatype recvtype, 
                          int root,
                          MPI_Comm comm)

● Like scatter, but the programmer can say which parts of the buffer will be send to processes 
(similar function exists for other collective communications)

● Parameters:

– sendcounts – array of integers representing the number of elements sent to each 
process   

– displs – array of integers, each specifying the displacement (relative to sendbuf) from 
which to take the outgoing data to process i  
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Gather

● int MPI_Gather(const void *sendbuf, 
               int sendcount, 
               MPI_Datatype sendtype,
               void *recvbuf, 
               int recvcount, 
               MPI_Datatype recvtype, 
               int root,
               MPI_Comm comm)

● MPI_Gather is the inverse of MPI_Scatter

● MPI_Gather takes elements from many processes and gathers them 
to one single root process (ordered by rank)
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Reduce

● int MPI_Reduce(const void *sendbuf, 
 void *recvbuf, 
 int count,
 MPI_Datatype datatype, 
 MPI_Op op, 
 int root,
 MPI_Comm comm)

● Takes an array of input elements on each process and returns an array of 
output elements to the root process (similarly to Gather). 

● The output elements contain the reduced result.
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Operations for reduction



30 / 32

All-versions of operations

● Works exactly as the basic operation followed by broadcasting (everyone has the same 
results at the end)

● Allgather

– int MPI_Allgather(const void *sendbuf, int sendcount, 
       MPI_Datatype sendtype, void *recvbuf, 
       int recvcount, MPI_Datatype recvtype, MPI_Comm comm)

● Allreduce

– MPI_Allreduce(const void *sendbuf, void *recvbuf, 
int count, MPI_Datatype datatype, MPI_Op op, 
MPI_Comm comm)
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All to All communication - Gossiping

● int MPI_Alltoall(const void *sendbuf, 
   int sendcount, 
   MPI_Datatype sendtype, 
   void *recvbuf, 
   int recvcount, 
   MPI_Datatype recvtype, 
   MPI_Comm comm)

● All processes send data personalized data to all processes

● Total exchange of information 
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Example 2 – Vector normalization

● Write function for computing vector normalization using MPI.

– Root process generates random vector, splits it into 
chunks and distribute the corresponding chunks to 
processes

– Each process works with its chunk

– In the end, the normalized vector is gathered in the root 
process
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