
Parallel programming

MPI

2 / 32

Distributed memory

● Each unit has its own memory space
● If a unit needs data in some other memory space, explicit

communication (often through network) is required
– Point-to-point and collective communication model

● Cluster computing

3 / 32

MPI

● MPI: Message passing interface
● All processes run the same program.
● Processes have assigned a rank (i.e., identification of the process).
● Based on the rank, processes can differ in an execution.
● Processes communicate by sending and receiving messages through

communicator.
● Message passing:

– Data transfer requires cooperative operations to be performed by each process.
– For example, a send operation must have a matching receive operation.

4 / 32

Communication example

5 / 32

MPI implementations

● OpenMPI
– Open source
– Project founded in 2003 after intense discussion between multiple

open source MPI implementations.
– Developed by a consortium of research, academic, and industry

partners

● MPICH
– Open source
– Reference implementation of the latest MPI standard

● Intel MPI
– Proprietary

● MS MPI, MVAPICH ...

6 / 32

MPI installation

● MPI compilers not part of GCC, needs to be installed and loaded separately
● Linux

– Fedora
dnf install openmpi
module load mpi/openmpi-x86_64

– Ubuntu
apt install libopenmpi-dev

● MacOS
brew install openmpi

● Windows
– MinGW: see https://www.math.ucla.edu/~wotaoyin/windows_coding.html

(the link for MS mpi sdk does not work, use https://www.microsoft.com/en-
us/download/details.aspx?id=52981)

– Visual Studio + Intel compiler, see https://software.intel.com/en-us/mpi-
developer-guide-windows-configuring-a-visual-studio-project

https://www.math.ucla.edu/~wotaoyin/windows_coding.html

7 / 32

Compilation - CMake

cmake_minimum_required(VERSION 3.5)
project(MyProject)

find_package(MPI)
include_directories(${MPI_INCLUDE_PATH})

add_executable(Program Program.cpp)
target_compile_options(Program PRIVATE ${MPI_CXX_COMPILE_FLAGS})
target_link_libraries(Program ${MPI_CXX_LIBRARIES} ${MPI_CXX_LINK_FLAGS})

● CLion setup (use whereis command to locate
paths in your operating system)

-DCMAKE_BUILD_TYPE=DEBUG
-DMPI_CXX_COMPILER=/usr/bin/mpicxx
-DMPI_C_COMPILER=/usr/bin/mpicc
-DMPIEXEC_EXECUTABLE=/usr/bin/mpiexec

8 / 32

Basic MPI operations

● #include <mpi.h>

– Include header file with MPI functions.

● Almost all MPI functions return an integer representing the error code (see the
documentation of each function for the error codes)

● int MPI_Init(int *argc, char ***argv)
– Initializes MPI runtime environment and process the arguments (trim the MPI

arguments/options from argument list)

● int MPI_Finalize()
– Terminates MPI execution environment.

● int MPI_Comm_size(MPI_Comm comm, int *size)

– Queries the size of the group associated with communicator comm

– MPI_COMM_WORLD: default communicator grouping all the processes

● int MPI_Comm_rank(MPI_Comm comm, int *rank)
– Queries the rank (identifier) of the process in communicator comm. Rank is a value from 0 to
size.

9 / 32

Hello world

HelloWorld.cpp

10 / 32

Running MPI programs

● mpiexec -np 4 -f hostfile PROGRAM ARGS

– np – number of used processes
– hostfile – file with a list of hosts on which to launch MPI processes (for

cluster computing)
– PROGRAM – program to run
– ARGS – arguments for program

● This will run PROGRAM using 4 processes of the cluster.
● All nodes run the same program.
● The processes may be running on different cores of the

same node
● Visual Studio: to change the arguments passed to mpiexec, change

Project Properties →Debugging → Command arguments
– First start of an MPI program will ask you for your username+passwords.

11 / 32

Send a message

● int MPI_Send(const void *buf,
 int count,
 MPI_Datatype datatype,
 int dest,
 int tag,
 MPI_Comm comm)

● buf - buffer which contains the data elements to be sent
● count - number of elements to be sent
● datatype - data type of elements
● dest - rank of the target process
● tag - message tag which can be used by the receiver to distinguish

between different messages from the same sender
● comm - communicator used for the communication

12 / 32

Datatypes in MPI

13 / 32

Receive a message

● int MPI_Recv(void *buf,
 int count,
 MPI_Datatype datatype,
 int source,
 int tag,
 MPI_Comm comm,
 MPI_Status *status)

● Same as before. New arguments:
– count – maximal number of elements to be received
– source – rank of the source process
– status

● data structure that contains information (rank of the sender, tag of the message, actual number of
received elements) about the message that was received

● can be used by functions as MPI_Get_count (returns number of elements in msg.)
● If not needed, MPI_STATUS_IGNORE can be used instead

● Each Send must be matched with a corresponding Recv.
● Messages are delivered in the order in which they have been sent.

14 / 32

Simultaneous Send and receive

● int MPI_Sendrecv(const void *sendbuf,
 int sendcount,
 MPI_Datatype sendtype,
 int dest,
 int sendtag,
 void *recvbuf,
 int recvcount,
 MPI_Datatype recvtype,
 int source,
 int recvtag,
 MPI_Comm comm,
 MPI_Status *status)

● Parameters: Combination of parameters for Send and Receive
● Performs send and receive at the same time.
● Useful for data exchange and ring communication:

15 / 32

Example 1 – Send me a secret code

● Write a program which sends short message
“IDDQD” from one process to another one
which prints the result.

16 / 32

Blocking and Non-blocking

● Send and Recv are blocking operations:
– The call does not return until the user buffer can be used again.

● Send
– If MPI uses a separate system buffer, the data in buf (user buffer space) is copied to it; then the

main thread resumes (fast).
– If MPI does not use a separate system buffer, the main thread must wait until the communication

over the network is complete.

● Recv
– If communication happens before the call, the data is stored in an MPI system buffer and then

simply copied into the user provided buf when MPI_Recv() is called.

● Note:
– The user cannot enforce whether a buffer is used or not
– The MPI library makes that decision based on the resources available and other factors.
– However, calling different functions may alter the buffering behavior, see

https://www.mcs.anl.gov/research/projects/mpi/sendmode.html

https://www.mcs.anl.gov/research/projects/mpi/sendmode.html

17 / 32

Blocking and Non-blocking

18 / 32

Non-blocking Send

● Replace: MPI_Send → MPI_Isend
● int MPI_Isend(void* buf,
 int count,
 MPI_Datatype datatype,
 int dest,
 int tag,
 MPI_Comm comm,
 MPI_Request *request)

● Parameters
– request - use to get information later on about the status of that operation.

● I stand for Immediate, meaning that it does not wait on the matching
receive. It may or may wait not for user buffer to be copied!
– Call MPI_Wait to be able to use the user buffer again.

19 / 32

Non-blocking receive

● int MPI_Irecv(void* buf,
 int count,
 MPI_Datatype datatype,
 int source,
 int tag,
 MPI_Comm comm,
 MPI_Request *request)

● Test the status of the request using:
– int MPI_Test(MPI_Request *request,
 int *flag,
 MPI_Status *status)

– flag is 1 if request has been completed, 0 otherwise.

● Wait until request completes:
– int MPI_Wait(MPI_Request *request, MPI_Status *status)

20 / 32

Example 2 – Send me a secret code

● Write a program which sends short message
“IDKFA” in non-blocking way from one
process to another one and prints the result.

21 / 32

Collective communication

● Communication where more than just two processes are
involved in.

● There are many instances where collective communications are
required. For example:
– Spread common data to all processes
– Gather results from many processes
– etc.

● Since these are typical operations, MPI provides several
functions that implement these operations.

● All these operations have
– blocking version
– non-blocking version

22 / 32

Collective communication

● Always remember that every collective function call you
make is synchronized.
– If you try to call collective functions (e.g.,
MPI_Barrier, MPI_Bcast, etc.) without ensuring all
processes in the communicator will also call it, your
program will idle => deadlock.

23 / 32

Broadcast message

● int MPI_Bcast(void *buf,
 int count,
 MPI_Datatype datatype,
 int root,
 MPI_Comm comm)

● The simplest communication: one process sends a piece of data to all
other processes.

● Parameters:

– root – rank of the process that provides data (all other receive it)

24 / 32

Barrier

● int MPI_Barrier(MPI_Comm comm)

● Synchronization point among processes.
– All processes must reach a point in their code before they

can all begin executing again.

25 / 32

Scatter

● int MPI_Scatter(const void *sendbuf,
 int sendcount,
 MPI_Datatype sendtype,
 void *recvbuf,
 int recvcount,
 MPI_Datatype recvtype,
 int root,
 MPI_Comm comm)

● Sends personalized data from one root process to all other processes in a communicator group.

● The primary difference between MPI_Bcast and MPI_Scatter is that MPI_Bcast sends the
same piece of data to all processes while MPI_Scatter sends chunks of an array to different
processes.

● Parameters:
– sendcount - dictate how many elements of a sendtype will be sent to each process.

26 / 32

Scatterv

● int MPI_Scatterv(const void *sendbuf,
 const int *sendcounts,

 const int *displs,
 MPI_Datatype sendtype,
 void *recvbuf,
 int recvcount,
 MPI_Datatype recvtype,
 int root,
 MPI_Comm comm)

● Like scatter, but the programmer can say which parts of the buffer will be send to processes
(similar function exists for other collective communications)

● Parameters:

– sendcounts – array of integers representing the number of elements sent to each
process

– displs – array of integers, each specifying the displacement (relative to sendbuf) from
which to take the outgoing data to process i

27 / 32

Gather

● int MPI_Gather(const void *sendbuf,
 int sendcount,
 MPI_Datatype sendtype,
 void *recvbuf,
 int recvcount,
 MPI_Datatype recvtype,
 int root,
 MPI_Comm comm)

● MPI_Gather is the inverse of MPI_Scatter

● MPI_Gather takes elements from many processes and gathers them
to one single root process (ordered by rank)

28 / 32

Reduce

● int MPI_Reduce(const void *sendbuf,
 void *recvbuf,
 int count,
 MPI_Datatype datatype,
 MPI_Op op,
 int root,
 MPI_Comm comm)

● Takes an array of input elements on each process and returns an array of
output elements to the root process (similarly to Gather).

● The output elements contain the reduced result.

29 / 32

Operations for reduction

30 / 32

All-versions of operations

● Works exactly as the basic operation followed by broadcasting (everyone has the same
results at the end)

● Allgather

– int MPI_Allgather(const void *sendbuf, int sendcount,
 MPI_Datatype sendtype, void *recvbuf,
 int recvcount, MPI_Datatype recvtype, MPI_Comm comm)

● Allreduce

– MPI_Allreduce(const void *sendbuf, void *recvbuf,
int count, MPI_Datatype datatype, MPI_Op op,
MPI_Comm comm)

31 / 32

All to All communication - Gossiping

● int MPI_Alltoall(const void *sendbuf,
 int sendcount,
 MPI_Datatype sendtype,
 void *recvbuf,
 int recvcount,
 MPI_Datatype recvtype,
 MPI_Comm comm)

● All processes send data personalized data to all processes

● Total exchange of information

32 / 32

Example 2 – Vector normalization

● Write function for computing vector normalization using MPI.

– Root process generates random vector, splits it into
chunks and distribute the corresponding chunks to
processes

– Each process works with its chunk

– In the end, the normalized vector is gathered in the root
process

	Snímek 1
	Snímek 2
	Snímek 3
	Snímek 4
	Snímek 5
	Snímek 6
	Snímek 7
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14
	Snímek 15
	Snímek 16
	Snímek 17
	Snímek 18
	Snímek 19
	Snímek 20
	Snímek 21
	Snímek 22
	Snímek 23
	Snímek 24
	Snímek 25
	Snímek 26
	Snímek 27
	Snímek 28
	Snímek 29
	Snímek 30
	Snímek 31
	Snímek 32

