
Parallel programming

C++11 threads

Libor Bukata a Jan Dvořák

2 / 13

C++11 – programme

● Executing tasks by async object.
● Future, promise – synchronized access to values.
● Atomic functions in C++11
● Exercise – write your parallel code...

3 / 13

C++11 – async

● async executes a method asynchronously, i.e., without
waiting for its completion and possibly with a delayed start

● async policy:
– launch::async – creates a new thread
– launch::deferred – method is started after its return

value is requested (by using future object).
● Async API:

– // Execute the method asynchronously.
– future<T> ret = async(method, params…);
– // The same without return value + async exec.
– async(lauch::async, method, params…);

4 / 13

C++11 – future object

● future object is used to pass/obtain a value
to/from a thread

● if value is not yet available:
– blocks until the value is computed (wait)
– waits some time (wait_for, wait_until)

● future API:
– future<T> fut = async (method, args…);
– T val = fut.get(); // get the returned value

5 / 13

C++11 – promise object

● promise stores a value that is subsequently
obtained by using the associated future object
(synchronization point) in another thread.

● promise API:
– promise<T> prom; // creation
– future<T> fut = prom.get_future(); // get related obj
– prom.set_value (T()); // set promised value

6 / 13

Asynchronous call - example
#include <iostream>
#include <future>
#include <mutex>
#include <vector>
#include <thread>

using namespace std;
using namespace std::chrono;

class CountingThreads {
 public:
 CountingThreads() { }
 void run() {
 uint32_t numThreads = thread::hardware_concurrency();
 for (uint32_t t = 0; t < numThreads; ++t) {
 promise<unsigned long> prom;
 future<unsigned long> futVal = prom.get_future();
 future<unsigned long> retVal = async(launch::async,

&CountingThreads::countTask, this, ref(futVal));
 this_thread::sleep_for(seconds(t));
 prom.set_value(t);
 cout<<"thread "<<t<<" returned value "<<retVal.get()<<endl;
 }
 }
 private:
 unsigned long countTask(future<unsigned long>& futVal) {
 uint32_t threadId = futVal.get();
 return 10u*threadId;
 }
};

int main() {
 CountingThreads ct;
 ct.run();
 return 0;
}

get promised value

returned value converted
to future object

7 / 13

Atomicity in C++11

● Atomic operations are indivisible, i.e. they
behave like one instruction.

● Useful for a non-blocking synchronization
between threads.

● Often lock-free for integer and pointer types.
● Atomic operation:

– load value
– modify value
– write value

must be indivisible!

int x = v;
x += 5;
v = x;

atomic<int> v(0);
...
v.fetch_add(5);

8 / 13

Atomicity in C++11

● Basic operations with atomic class:
– load, store
– operator++, operator--
– fetch_add, fetch_sub
– fetch_and, fetch_or, fetch_xor

● The atomic_flag is a specialization of atomic
for a boolean value (flag).

● Method test_and_set() returns the previous
boolean value and sets the current one to true.

9 / 13

Atomic functions - example
#include <atomic>
#include <iostream>
#include <future>
#include <vector>
#include <thread>

using namespace std;
using namespace std::chrono;

class CountingThreads {
 public:
 CountingThreads() : counter(0u) { }
 void run() {
 vector<future<unsigned long>> retVals;
 uint32_t numThreads = thread::hardware_concurrency();
 for (uint32_t t = 0; t < numThreads; ++t)
 retVals.push_back(async(launch::async, &CountingThreads::countTask, this));
 for (uint32_t t = 0; t < numThreads; ++t)
 cout<<"thread "<<t<<" returned value "<<retVals[t].get()<<endl;

 cout<<"Counting finished, final value is "<<counter<<"."<<endl;
 }
 private:
 unsigned long countTask() {
 for (int i = 0; i < 1e7; ++i)
 counter.fetch_add(i);

 return counter.load();
 }

 atomic<unsigned long> counter;
};

int main() {
 CountingThreads ct;
 ct.run();
 return 0;
}

Using atomic functions is
much faster than using mutex!

10 / 13

Main exercise – C++11 barrier

● Use atomic functions to implement C++11 barrier –
passed threads actively wait (busy waiting) until the
last thread enters.

● Recommended API (reusable class):
– Barrier(cont uint32_t& numThreads);
– Barrier.wait();
– ~Barrier();

● Hints:
– Use atomic<uint32_t>::fetch_add method to increase the

number of waiting threads.
– The last thread sends a signal to other threads by using

additional atomic variable (e.g., phase counter). The
counter of waiting threads is not sufficient per se to satisfy
thread-safe code.

11 / 13

Additional Assignments

● Write a parallel program that calculates
histogram data from arbitrary file.
– Repeat it for the list of English words (useful for

hangman game), download it from
https://github.com/dwyl/english-words page.

– Calculate the statistics on the current kernel from
https://www.kernel.org/.

● Calculate π by a parallel Monte Carlo method.
● Parallelize the matrix vector multiplication.

https://github.com/dwyl/english-words
https://www.kernel.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

