
Parallel programming

Introduction



2

Why should you care about it?

● Parallel computing is a dominant player in scientific 
and cluster computing. Why?
– Moore law is reaching its limits

● Increase in transistor density is limited
● Memory access time has not been reduced at a rate 

comparable with processing speed

● How to get out of this trap?
– Most promising approach is to have multiple cores on a 

single processor.
– Parallel computing can be found at many devices today:



3

Ok; However, It should be task for compiler 
and not for me!!!

● Yes, compiler can help you, but without your guidance, it 
is not able pass all the way to the successful result.
– Parallel programs often look very different than sequential ones.
– An efficient parallel implementation of a serial program may not 

be obtained by simply parallelizing each step.
– Rather, the best parallelization may be obtained by stepping back 

and devising an entirely new algorithm.



4

What is the aim of the labs?

● To get the feel for parallel programming

1) Understand what makes the parallelisation complicated

2) Which problems can occur during the paralellisation

3) What can be a bottleneck

4) How to think about algorithms from the paralellisation point of 
view 

● To get basic skills in common parallel programming frameworks

1) for Multicore processors – C++11 threads, OpenMP

2) for Computer clusters – MPI



5

Course web

● Course page https://cw.fel.cvut.cz/b191/courses/pag/start
– Plan of the labs, grading

https://cw.fel.cvut.cz/b191/courses/pag/start


6

What this course requires?

● Basic skills with Linux – shell, ssh, etc. (for MetaCentrum)

● Knowledge of C and C++ language

● Analytical thinking and opened mind



7

Setting up your programming environment

Linux, Mac OS, Windows
● CMake and gcc
● Recommended IDE: CLion

– https://download.cvut.cz, JetBrains
● Homework and semestral project skeletons 

provided only as Cmake projects
● Windows: see next slide
● Mac OS: see next+1 slide

Windows+Visual Studio? :(
● Use at your own risk

● Do not use MSVC (no support for newer OpenMP)

● Instead, use Intel icc compiler (part of Intel Parallel Studio)
 

https://download.cvut.cz/


8

Windows toolchain

● Install msys2, see this link
● In the msys2 console do the following

>> pacman -Syu
>> pacman -Su
>> pacman -S base-devel mingw-w64-x86_64-toolchain

● Create MinGW toolchain in CLion, see this link. If 
msys2 is installed in default location, set C:\
msys64\mingw64 as your MinGW Environment 
path (everything else should be detected 
automatically)

● Add msys2 directories to your PATH environment 
variable, e.g.,
C:\msys64
C:\msys64\mingw64\bin

https://www.msys2.org/
https://www.jetbrains.com/help/clion/quick-tutorial-on-configuring-clion-on-windows.html#MinGW


9

MacOS toolchains

● Using g++ (recommended)
– Install g++ from Homebrew

>> brew install gcc

– Find the installed g++ executable. Usually a program called g++-FŇ 
where FŇ is the version (can be found using TAB completion), e.g., 
g++-9

– Set g++-FŇ compiler in CLion: Settings → Build, execution, 
Deployment →Toolchains → C++ compiler 

● Using clang
– Install OpenMP runtime from Homebrew

>> brew install libomp

– Check where libomp is installed, usually /usr/local/opt/libomp
>> brew --prefix libomp

– Link OpenMP into CMakeLists.txt
include_directories("/usr/local/include" "/usr/local/opt/libomp/include")
link_directories("/usr/local/lib" "/usr/local/opt/libomp/lib")

https://brew.sh/
https://brew.sh/


10

Intel Parallel Studio

● Software development suite for parallel 
computing
– For Linux, Mac OS and Windows

● Intel icc compiler
● Debugging and profiling tools

– IDE plug-in integration with Visual Studio
– Mac OS: some profiling tools (e.g., Advisor) do not 

fully work

● Free for students: 
https://software.intel.com/en-us/qualify-for-free-s
oftware/student

https://software.intel.com/en-us/qualify-for-free-software/student
https://software.intel.com/en-us/qualify-for-free-software/student


11

Intel Parallel Studio - tools

● Intel VTune Amplifier - performance profiling tool for C, 
C++, and Fortran code. It can identify where in the code 
time is being spent in both serial and threaded 
applications.
– https://www.youtube.com/watch?v=rRtef997xww&t=20s

● Intel Inspector - memory and threading error debugger for 
C, C++, and Fortran.
– https://www.youtube.com/watch?v=JM603bqPKaU&t=2

05s

https://www.youtube.com/watch?v=rRtef997xww&t=20s
https://www.youtube.com/watch?v=JM603bqPKaU&t=205s
https://www.youtube.com/watch?v=JM603bqPKaU&t=205s


12

Intel Parallel Studio - tools

● Intel Trace Analyzer and Collector - tool for 
understanding MPI application behavior, finding 
bottlenecks, improving performance.

● Intel Advisor - is a SIMD vectorization optimization and 
shared memory threading assistance tool for C, C++ and 
Fortran.
– https://www.youtube.com/watch?v=MsWq2gwrrgU

https://www.youtube.com/watch?v=MsWq2gwrrgU


13

MetaCentrum system

● operates and manages distributed computing infrastructure 
consisting of computing and storage resources owned by 

CESNET 
● MetaCentrum membership is free for researchers and students 

of academic institutions in the Czech Republic



14

MetaCentrum – Sign up


	Snímek 1
	Snímek 2
	Snímek 3
	Snímek 4
	Snímek 5
	Snímek 6
	Snímek 7
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14

