
Parallel programming

HW2 assignment

2 / 7

Triangulation of convex sets

● Problem: Find the triangulation of a convex set such that
a cost (sum of triangle perimeters) is minimal.

● Applications:
➢ Triangulation is useful in graphics to decompose a

complex object into triangle mesh, which can be
effectively processed by graphics cards.

3 / 7

● Number the points of a polygon by numbers in counter-clockwise order
● Let be a minimal cost of a sub-triangulation from point i to j.
● The following recursive formula minimizes the triangulation cost for

Solving triangulation
by using dynamic programming

Cij

if j < i+2
C ij=0

else

C ij=min
k=i+1

j−1

(Cik+C kj+‖ik‖+‖kj‖+‖ji‖)

Cij

4 / 7

Solving triangulation
by using dynamic programming

(0,0) (1,0)

(2,1)

(1,2)(0,2)

0 0 4.65 10.1 15.3

- 0 0 4.83 10.1

- - 0 0 4.65

- - - 0 0

- - - - 0

for (diff = 0; diff < n; ++diff)
for (i = 0, j = diff; j < n; ++i, ++j)

if (j < i+2)
T[i]= 0.0

else
T[i]= inf;
for (int k = i+1; k < j; ++k)

cost =
if (T[i] > cost)

T[i][j] = cost

return

j

i

C
Cij
Cij

Cik+C kj+‖ik‖+‖kj‖+‖ ji‖
Cij
Cij

(0, 1,2)=1+√2+√5≃4.65

(1, 2,3)=√2+√2+2≃4.83

(2, 3, 4)=√2+1+√5≃4.65

(0,1, 3)=1+2+√5≃5.24

(0, 2, 3)=√5+√2+√5≃5.89

(1, 2,4)=√2+√5+√5≃5.89

(1, 3, 4)=2+1+√5≃5.24

(0, 1, 4)=1+√5+2≃5.24

(0, 2, 4)=√5+√5+2≃6.47
(0, 3,4)=√5+1+2≃5.24

Pseudocode:
0 1

2

34

C0n−1

5 / 7

Solving triangulation
by using dynamic programming

Found optimal triangulation
for this parts

6 / 7

HW2 assignment
● Use the code skeleton

➔ reads test problems, measures runtime, generates SVG files to
show the triangulation

➔ try ‘--help’ to see the supported program arguments
● Assignment:

➔ implement a parallel min-cost triangulation
➔ use OpenMP 4.0 or higher
➔ upload your solution to UploadSystem

● Flags for g++ (used by UploadSystem)
● -fopt-info-vec-missed -fopt-info-vec -Ofast -std=c++17
-march=native -fopenmp

7 / 7

Tricky issues

● Do not forget to optimize the sequential code (memory access,
vectorization, ...).

● You should carefully think about which OpenMP schedule to use
and what part of code is parallelizable.

● Make you sure that your code is vectorized, e.g. use ‘-fopt-info-
vec’ option with GCC. See the compiler output after uploading to
UploadSystem, it should inform you whether the vectorization is
successful.

● Floats are enough for computing the cost.
● Square root can be vectorized if you use:

● GCC 4.9 and newer, glibc 2.22 and newer
● Intel compiler 15 and newer

● If you use Clang it may be beneficial to tune your code without
the square root. Afterwards, you can add the square root and
verify the vectorization in the output of UploadSystem.

● Compile your code with ‘-march=native -Ofast -fopenmp’ to
maximize the probability of the vectorization.

	Snímek 1
	Snímek 2
	Snímek 3
	Snímek 4
	Snímek 5
	Snímek 6
	Snímek 7

