Fast Fourier Transform

Přemysl Šůcha

Based on the texts: Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar "Introduction to Parallel Computing", Addison Wesley, 2003, and Paul Heckbert "「Fourier Transforms and the Fast Fourier Transform (FFT) Algorithm", Carnegie Mellon School of Computer Science, 1998.

Topic Overview

- Introduction to Fast Fourier Transform
- Binary-Exchange algorithm
- Transpose algorithm

Introduction to Fast Fourier Transform

- The discrete Fourier transform (DFT) plays an important role in many applications, including digital signal processing, image filtering, solutions to linear partial differential equations, convolution ...
- The DFT is a linear transformation that maps n regularly sampled points from a cycle of a periodic signal onto an equal number of points representing the frequency spectrum of the signal.
- In 1965, Cooley and Tukey devised an algorithm to compute the DFT of an n-point series in O($n \log n$) operations. Its variations are referred to as the Fast Fourier Transform (FFT).

Fourier Transform

Transformation of a signal (red) onto an equal number of points representing the frequency spectrum (blue).

The Serial Algorithm

- Consider a sequence $\mathrm{X}=<\mathrm{X}[0], \mathrm{X}[1], \ldots, \mathrm{X}[n-1]>$ of length n. The discrete Fourier transform of the sequence X is the sequence $\mathrm{Y}=<\mathrm{Y}[0], \mathrm{Y}[1], \ldots, \mathrm{Y}[n-1]>$, where

$$
Y[l]=\sum_{k=0}^{n-1} X[k] \omega^{k l}, 0 \leq l<n
$$

- ω is the n-th root of unity in the complex plane; that is $\omega=e^{2 \pi \sqrt{-1} / n}$.

The Serial Algorithm

- The powers of ω used in an FFT computation are also known as twiddle factors.
- Note: $\omega=e^{2 \pi \sqrt{-1} / n}=\cos \left(\frac{2 \pi}{n}\right)+i \sin \left(\frac{2 \pi}{n}\right)$

- Power of roots of unity are periodic with period n.

The Serial Algorithm

- The sequential complexity of computing the entire sequence Y of length n is $\mathrm{O}\left(n^{2}\right)$.
- The fast Fourier transform algorithm reduces this complexity to $\mathrm{O}(n \log n)$.
- The FFT algorithm is based on the idea that permits an n-point DFT computation to be split into two (n/2)-point DFT computations.

Two-point DFT (n=2)

- For $n=2$ the twiddle factor is $\omega=e^{2 \pi \sqrt{-1} / n}=e^{-\pi i}=-1^{(*}$.
- Then DFT is:

$$
\begin{aligned}
Y[l] & =\sum_{k=0}^{n-1} X[k](-1)^{k l}=X[0](-1)^{l 0}+X[1](-1)^{l 1}= \\
& =X[0]+X[1](-1)^{l}
\end{aligned}
$$

SO

$$
Y[0]=X[0]+X[1] \quad \text { and } \quad Y[1]=X[0]-X[1]
$$

${ }^{(*} e^{i \theta}=\cos \theta+i \sin \theta$

Four-point DFT (n=4)

- For $n=4$ the twiddle factor is $\omega=e^{-i \pi / 2}=-\mathrm{i}$.
- Then DFT is:

$$
\begin{array}{r}
Y[l]=\sum_{k=0}^{n-1} X[k](-i)^{k l}= \\
=X[0]+X[1](-i)^{l}+X[2](-1)^{l}+X[3] i^{l}
\end{array}
$$

so

$$
\begin{aligned}
& Y[0]=X[0]+X[1]+X[2]+X[3], \\
& Y[1]=X[0]-i X[1]-X[2]+i X[3], \\
& Y[2]=X[0]-X[1]+X[2]-X[3], \\
& Y[3]=X[0]+i X[1]-X[2]-i X[3] .
\end{aligned}
$$

Four-point DFT ($n=4$)

- To compute Y faster, we can precompute common subexpressions:

$$
\begin{aligned}
& Y[0]=(X[0]+X[2])+(X[1]+X[3]), \\
& Y[1]=(X[0]-X[2])-i(X[1]-X[3]), \\
& Y[2]=(X[0]+X[2])-(X[1]+X[3]), \\
& Y[3]=(X[0]-X[2])+i(X[1]-X[3]) .
\end{aligned}
$$

- Pre-computation of brackets in two-point DFT can save a lot of addition operations.

A recursive unordered FFT

If n is a power of two (e.g. 8 in the figure above), each of these DFT computations can be divided similarly into smaller computations in a recursive manner. This leads to the recursive FFT algorithm.

The Serial Algorithm

- This FFT algorithm is called the radix-2 algorithm because at each level of recursion, the input sequence is split into two equal halves.

```
1. procedure R_FFT(X, Y, n, w)
2. if (n = 1) then Y[0] := X[0] else
3. begin
4. R_FFT(<X[0], X[2], ..., X[n - 2]>, <Q[0], Q[1], ..., Q[n/2]>, n/2, w2);
5. R_FFT(<X[1], X[3], ..., X[n - 1]>, <T[0], T[1], ..., T[n/2]>, n/2, w');
6. for i := 0 to n - 1 do
7. Y[i] :=Q[i mod (n/2)] + wi T[i mod (n/2)];
8. end R_FFT
```


The Serial Algorithm

- The maximum number of levels of recursion is $\log n$ for an initial sequence of length n.
- The total number of arithmetic operations (line 7) at each level is $\mathrm{O}(n)$.
- The overall sequential complexity of the algorithm is $\mathrm{O}(n \log n)$.
- The serial FFT algorithm can also be cast in an iterative form.
- An iterative FFT algorithm is derived by casting each level of recursion, starting with the deepest level, as an iteration.

Cooley-Tukey algorithm

- The outer loop (line 5) is executed log n times for an n point FFT, and the inner loop (line 8) is executed n times during each iteration of the outer loop.

```
procedure ITERATIVE_FFT(X, Y, n)
begin
    r := log n;
    for i := 0 to n - 1 do R[i] := X[i];
    for m := 0 to r - 1 do /* Outer loop */
        begin
            for i := 0 to n - 1 do S[i]:= R[i];
            for i := 0 to n - 1 do /* Inner loop */
                begin
                /* Let (b0b1 ... br -1) be the binary representation of i */
                    j := (b0...bm-1 0 bm+1\cdotsbr -1);
                    k := (b0...bm-1 1 bm+1\cdotsbr -1);
```



```
        endfor; /* Inner loop */
    endfor; /* Outer loop */
    for i := 0 to n - 1 do Y[i] := R[i];

\section*{Cooley-Tukey algorithm}


The pattern of combination of elements of the input and the intermediate sequences during a 16-point unordered FFT computation. 15

\section*{Binary-Exchange algorithm}
- The decomposition for the parallel algorithm is induced by partitioning the input or the output vector.
- We first consider a simple mapping in which one task is assigned to each process.
- Each task starts with one element of the input vector and computes the corresponding element of the output. Process \(i(0 \leq i<n)\) initially stores \(\mathrm{X}[\mathrm{i}]\) and finally generates Y [i].
- In each of the log \(n\) iterations of the outer loop, process \(\boldsymbol{P}_{\boldsymbol{i}}\) updates the value of \(\boldsymbol{R}[\boldsymbol{]}\) by executing line 13 of Cooley-Tukey algorithm.
- All \(n\) updates are performed in parallel.

\section*{16-point FFT on 16 processes}


Parallel mapping where one task is assigned to each process.

\section*{Binary-Exchange algorithm}
- To perform the updates, process \(P_{i}\) requires an element of \(S\) from a process whose label differs from \(i\) at only one bit.
- Parallel FFT computation maps naturally onto a hypercube with a one-to-one mapping of processes to nodes.
- In each of the log \(n\) iterations of this algorithm, every process performs one complex multiplication and addition, and exchanges one complex number with another process.
- Now consider a mapping in which the \(n\) are mapped onto p processes.

\section*{Binary-Exchange algorithm}
- For the sake of simplicity, let us assume that both \(n\) and \(p\) are powers of two, i.e., \(n=2^{r}\) and \(p=2^{d}\).
- Elements with indices differing at their \(d(=2)\) most significant bits are mapped onto different processes, i.e. there is no interaction during the last \(r\) - \(\boldsymbol{d}\) iterations.
- Each interaction operation exchanges \(n / p\) words of data. The time spent in communication in the entire algorithm is \(t_{s} \log p+t_{w}(n / p) \log p\).
- The parallel run time of the algorithm on a \(p\)-node hypercube network is
\[
T_{P}=t_{c} \frac{n}{p} \log n+t_{s} \log p+t_{w} \frac{n}{p} \log p
\]

\section*{Transpose Algorithm}
- The binary-exchange algorithm yields good performance on parallel computers with sufficiently high communication bandwidth with respect to the processing speed of the CPUs.
- The simplest transpose algorithm requires a single transpose operation over a two-dimensional array; we call this algorithm the two-dimensional transpose algorithm.
- Assume that \(\sqrt{n}\) is a power of 2 , and that the input sequence of size \(n\) is arranged in a \(\sqrt{n} \times \sqrt{n}\) twodimensional square array.

\section*{Two-dimensional transpose}

(a) Iteration \(\mathrm{m}=0\)

(c) Iteration \(\mathrm{m}=2\)

(b) Iteration \(\mathrm{m}=1\)

(d) Iteration \(\mathrm{m}=3\)

The pattern of combination of elements in a 16-point FFT when the data are arranged in a \(4 \times 4\) two-dimensional square array.

\section*{Transpose Algorithm}
- The FFT computation in each column can proceed independently for \(\log \sqrt{n}\) iterations without any column requiring data from any other column.
- Similarly, in the remaining \(\log \sqrt{n}\) iterations, computation proceeds independently in each row without any row requiring data from any other row.

\section*{Two-dimensional (2D) transpose}

(a) Steps in phase 1 of the transpose algorithm (before transpose)

(b) Steps in phase 3 of the transpose algorithm (after transpose)

The 2D transpose algorithm for a 16-point FFT on four processes. \({ }^{23}\)

\section*{Transpose Algorithm \((\mathbf{p} \leq \sqrt{n})\)}
- The 2D array of data is striped into blocks, and one block of \(\sqrt{n} / p\) rows is assigned to each process.
- In the first and third phases of the algorithm, each process computes \(\sqrt{n} / p\) FFTs of size \(\sqrt{n}\) each.
- The second phase transposes the \(\sqrt{n} \times \sqrt{n}\) matrix (all-to-all personalized communication).
- The parallel run time of the transpose algorithm on a hypercube is:
\[
\begin{aligned}
T_{P} & =2 t_{c} \frac{\sqrt{n}}{p} \sqrt{n} \log \sqrt{n}+t_{s}(p-1)+t_{w} \frac{n}{p} \\
& =t_{c} \frac{n}{p} \log n+t_{s}(p-1)+t_{w} \frac{n}{p}
\end{aligned}
\]

\section*{Three-dimensional transpose algorithm}
- As an extension of the two-dimensional transpose algorithm, consider the \(n\) data points to be arranged in an \(n^{1 / 3} \times n^{1 / 3} \times n^{1 / 3}\) three-dimensional array mapped onto a logical \(\sqrt{p} \times \sqrt{p}\) two-dimensional mesh of processes.
- Each process has \(\left(\frac{n^{\frac{1}{3}}}{\sqrt{p}}\right)\left(\frac{n^{\frac{1}{3}}}{\sqrt{p}} n^{\frac{1}{3}}\right.\) elements of data.

\section*{Three-dimensional transpose algorithm}


Data distribution in the three-dimensional transpose algorithm for an \(n\) point FFT on \(p\) processes \(\left(\sqrt{p} \leq n^{1 / 3}\right)\)

\section*{Three-dimensional transpose algorithm}
- This algorithm can be divided into the following five phases:
1. In the first phase, \(n^{1 / 3}\)-point FFTs are computed on all the rows along the \(z\)-axis.
2. In the second phase, all the \(n^{1 / 3}\) cross-sections of size \(n^{1 / 3} \mathrm{x}\) \(n^{1 / 3}\) along the \(\boldsymbol{y}-z\) plane are transposed.
3. In the third phase, \(n^{1 / 3}\)-point FFTs are computed on all the rows of the modified array along the z-axis.
4. In the fourth phase, each of the \(n^{1 / 3} \times n^{1 / 3}\) cross-sections along the \(\boldsymbol{x}-\mathbf{z}\) plane is transposed.
5. In the fifth and final phase, \(n^{1 / 3}\)-point FFTs of all the rows along the \(z\)-axis are computed again.

\section*{Binary-Exchange vs. Transpose Algorithm}
- Parallel runtime of the transpose algorithm
\(\left(T_{P}=t_{c} \frac{n}{p} \log n+t_{s}(p-1)+t_{w} \frac{n}{p}\right)\) has a much higher overhead than the binary-exchange algorithm
\(\left(T_{P}=t_{c} \frac{n}{p} \log n+t_{s} \log p+t_{w} \frac{n}{p} \log p\right.\).) due to the message startup time \(t_{s}\), but has a lower overhead due to perword transfer time \(t_{w}\).
- If the latency \(t_{s}\) is very low, then the transpose algorithm may be the algorithm of choice.
- The binary-exchange algorithm may perform better on a parallel computer with a high communication bandwidth but a significant startup time.```

