Fast Fourier Transform

Premysl Sticha

Based on the texts: Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar
“Introduction to Parallel Computing”, Addison Wesley, 2003, and

Paul Heckbert “"Fourier Transforms and the Fast Fourier Transform (FFT) Algorithm”,
Carnegie Mellon School of Computer Science, 1998.

1

Topic Overview

 Introduction to Fast Fourier Transform
« Binary-Exchange algorithm
« Transpose algorithm

Introduction to Fast Fourier Transform

* The discrete Fourier transform (DFT) plays an important
role in many applications, including digital signal
processing, image filtering, solutions to linear partial
differential equations, convolution ...

« The DFT is a linear transformation that maps n
regularly sampled points from a cycle of a periodic
signal onto an equal number of points representing the
frequency spectrum of the signal.

* In 1965, Cooley and Tukey devised an algorithm to
compute the DFT of an n-point series in O(n log n)
operations. Its variations are referred to as the Fast
Fourier Transform (FFT).

Fourier Transform

'\.
- ik W _
Y L
Wy
f =N, = ¥ Y < i
, e ™, 1
ey, Y 1 r
A . vy
.H.'\.
o~
[rn, .
iy
1
| . \
% 1 %,
ey, | 1
"'\..""I.I |
1
1
| L
= [
"'H.-K ; |

Transformation of a signal (red) onto an equal number of points
representing the frequency spectrum (blue).

The Serial Algorithm

« Consider a sequence X =<X [0], X [1], ..., X [n - 1]> of
length n. The discrete Fourier transform of the sequence
X Is the sequence Y =<Y [0], Y [1], ..., Y [n - 1]>, where

n-1
Y[l] = ZX[k] ¥, 0<1l<n
k=0

e w IS the n-th root of unity in the complex plane; that is
w = e2mV-1/n

The Serial Algorithm

 The powers of w used in an FFT computation are also
known as twiddle factors.

. Note: w = e2™=1/n = (¢os (Z—F) + i sin (z_n)

n

Im

n=2 n=4
* Power of roots of unity are periodic with period n.

The Serial Algorithm

« The sequential complexity of computing the entire
sequence Y of length n is O(n?).

« The fast Fourier transform algorithm reduces this
complexity to O(n log n).

 The FFT algorithm is based on the idea that permits an

n-point DFT computation to be split into two (n/2)-point
DFT computations.

Two-point DFT (n=2)

. For n=2 the twiddle factor is w = e2™V-1/n = -7 — —1(*.
* Then DFT Is:

Y[l] = ¥R23X[k] (- = X[0](-D" + X[1](-D" =
= X[0]+X[1](-1)"

SO
Y[0] = X[0] + X[1] and Y[1] = X[0] - X[1]

e = cos O + i sin O

Four-point DFT (n=4)

« For n=4 the twiddle factor is w = e~"/2 = —j.
e Then DFT Is:

n-—1
Yiil=) X[k] (-)* =

= X[0] + X[1](=D)" + X[2](—1)" + X[3]i"

SO
Y[0] = X[0] + X[1] + X[2] + X[3],
Y[1] = X[0] - iX[1] - X[2] + iX[3],
Y[2] = X[0] - X[1] + X[2] - X[3],
Y[3] = X[0] + iX[1] - X[2] - iX[3].

Four-point DFT (n=4)

« To compute Y faster, we can precompute common

subexpressions:

Y[0] = (X[0] + X[2]) + (X[1] + X[3]),
Y[1] = (x[0] - X[2]) — i(X[1] - X[3]),
Y[2] = (X[0] + X[2]) — (X[1] + X[3]),
Y|3] = (X[0] = X[2]) + i(X[1] = X[3]).

* Pre-computation of brackets in two-point DFT can save

a lot of addition operations.

10

A recursive unordered FFT

X0 X[1] X[2] X[3] X[4] X[5] X[6] X[7] Top level
[O1 121 141 a6l [131 21 171 Ist level of recursion
[14 2] 6] [(5] 131 171 2nd level of recursion
(3] (4] [2] [a] 3rd level of recursion
m’! W wm’ W wm" m* (CVR)
(0] 14 121 |6l 1 151 131 171 Eeturn to 2nd level
w’ @ w? ot o' ot mt om
[121 141 161 [131 131 17 Return to Ist level

Nzl

! o ! o' o o ot w
Y01 Y1 YI[2] Y[3] Y[4] YIS Y[6] Y[7] Return to top level

If n is a power of two (e.g. 8 in the figure above), each of these DFT
computations can be divided similarly into smaller computations
In a recursive manner. This leads to the recursive FFT algorithm. 13

The Serial Algorithm

« This FFT algorithm is called the radix-2 algorithm
because at each level of recursion, the input sequence
IS split into two equal halves.

00 N O U1 A W N B

procedure R_FFT(X, Y, n, w)
if (n = 1) then Y[@] := X[0] else
begin

R_FFT(<X[@0], X[2], ..., X[n - 2]>, <Q[@], Q[1], ..
R_FFT(<X[1], X[3], ..., X[n - 1]>, <T[0], T[1], ..

for i :=0 ton -1 do
Y[i] :=Q[1i mod (n/2)] + w! T[i mod (n/2)];
end R_FFT

.» Q[n/2]>, n/2, w*);
., T[n/2]>, n/2, w?);

12

The Serial Algorithm

The maximum number of levels of recursion is log n
for an initial sequence of length n.

The total number of arithmetic operations (line 7) at
each level is O(n).

The overall sequential complexity of the algorithm is
O(n log n).

The serial FFT algorithm can also be cast in an iterative
form.

An iterative FFT algorithm is derived by casting each
level of recursion, starting with the deepest level, as an

iteration.
13

Cooley-Tukey algorithm

 The outer loop (line 5) is executed log n times for an n-
point FFT, and the inner loop (line 8) is executed n
times during each iteration of the outer loop.

1. procedure ITERATIVE FFT(X, Y, n)

2 begin

3 r := log n;

4 for i := 0@ ton - 1 do R[i] := X[1i];

5. form :=0 tor - 1 do /* Outer loop */

6 begin

7 for i := 0 ton -1 do S[i]:= R[1];

8 for i := 0 ton - 1 do /* Inner loop */

9. begin

10. /* Let (b@bl --- br -1) be the binary representation of i */
11. j := (b0...bm-1 @ bm+1---br -1);

12. k := (b0...bm-1 1 bm+1-::br -1);

13. R[i] := S[j] + S[k] x w(bm; bm-1, bo, @, .., 0),
14. endfor; /* Inner loop */

15. endfor; /* Outer loop */

16. for i := 0@ ton -1 do Y[i] := R[i];

17. end ITERATIVE_FFT

Cooley-Tukey algorithm

X0l o - o o0 Y[0]
X(i ek : a@ , ﬁe e e Y]
XI2] @ a@ ﬁe 3 300 Y[2)
X[3] \\ ‘ A .. ;\ ﬁe/ e@ - e Y[3]
X[4] . S0 S0——0 Y[4]
XI5 T—b £ o= e i)
X[6] / \ \4@ e —0 Y[6]
X(7] ,@ 4@,/ Ty - Y[7]
X[8] AN o——>0 YI[§]
X[9] 7 7@ - " = e Y[9)
X[10] o ' ’ /7@} «s —0 Y[10]
X[11] o ﬁ@ -@ & e Y[11]
X[12) WA o0 Y[12]
X[13] o ﬁe - ﬁe ;@ e Y[13]
X[14] @ 4@ o X ie e ——0 Y[14]
X[15] @“"' 5@ \:e -@ X @ Y[15]

The pattern of combination of elements of the input and the
intermediate sequences during a 16-point unordered FFT computation. 15

Binary-Exchange algorithm

The decomposition for the parallel algorithm is induced
by partitioning the input or the output vector.

We first consider a simple mapping in which one task is
assigned to each process.

Each task starts with one element of the input vector
and computes the corresponding element of the output.
Process i (0 <i < n) initially stores X [i] and finally
generates Y [i].

In each of the log n iterations of the outer loop, process
P, updates the value of R[i] by executing line 13 of
Cooley-Tukey algorithm.

All n updates are performed in parallel.
16

16-point FFT on 16 processes

m =1} m =1 m=2 m=
X[0] Y[0] B,
X[Y[1] ly
X[2] Y[2])

..

¥[3]

Parallel mapping where one task is assigned to each process. 17

Binary-Exchange algorithm

To perform the updates, process P, requires an element
of S from a process whose label differs from i at only
one Dbit.

Parallel FFT computation maps naturally onto a
hypercube with a one-to-one mapping of processes to
nodes.

In each of the log n iterations of this algorithm, every
process performs one complex multiplication and
addition, and exchanges one complex number with
another process.

Now consider a mapping in which the n are mapped onto

P processes.
18

Binary-Exchange algorithm

For the sake of simplicity, let us assume that both n and
p are powers of two, i.e., n=2"and p = 2¢.
Elements with indices differing at their d (= 2) most

significant bits are mapped onto different processes, i.e.
there is no interaction during the last r - d iterations.

Each interaction operation exchanges n/p words of
data. The time spent in communication in the entire
algorithm is t, log p + t,(n/p) log p.

The parallel run time of the algorithm on a p-node
hypercube network is

Tp = L-i logn <41, log p 4+ 1, L log .
ﬂ

i
19

Transpose Algorithm

* The binary-exchange algorithm yields good performance
on parallel computers with sufficiently high
communication bandwidth with respect to the
processing speed of the CPUs.

« The simplest transpose algorithm requires a single
transpose operation over a two-dimensional array;
we call this algorithm the two-dimensional transpose
algorithm.

« Assume that \/n is a power of 2, and that the input
sequence of size n is arranged in a \/n X \/n two-
dimensional square array.

20

Two-dimensional transpose

@000
0000
foRoloR®
@006
{a) Iteration m =10

© 000
ONONCRC
CNCNON®

ic) lterationm =2

0-0-0-0
‘0000
®-0-® -0
©°000

(b)) Tteration m= |
© 000
® 0060
© 000
@00 06

(d) Tteration m = 3

The pattern of combination of elements in a 16-point FFT when
the data are arranged in a 4 x 4 two-dimensional square array. 21

Transpose Algorithm

« The FFT computation in each column can proceed

independently for log +/n iterations without any column
requiring data from any other column.

« Similarly, in the remaining log +/n iterations, computation
proceeds independently in each row without any row
requiring data from any other row.

22

Two-dimensional (2D) transpose

forofere,
Q000
® 000
@00 ®

) 000 -
) 0.0 0 -

00060 -
) © QO =

"'@ @ @ @

(a) Steps in phase | of the transpose algorithm (before transpose)

Fololfoe
0000
‘0000
© 000

T B By

@@@ @

(b) Steps in phase 3 of the transpose algorithm (after transpose)

The 2D transpose algorithm for a 16-point FFT on four processes.

23

Transpose Algorithm (p< /n)

The 2D array of data is striped into blocks, and one block
of \/n/p rows is assigned to each process.

In the first and third phases of the algorithm, each
process computes v/n/p FFTs of size \/n each.

The second phase transposes the \/n X y/n matrix (all-
to-all personalized communication).

The parallel run time of the transpose algorithm on a
hypercube is:

H

I
Ip = 214.£ﬁ|ﬂg \.-"'E—F sl — 1)+t
I {*

= " l fel 1)+ 1 "
) e iTr —— . J._ "|_
ill'.l' U,__.J'i' ; f J”

24

Three-dimensional transpose algorithm

« As an extension of the two-dimensional transpose
algorithm, consider the n data points to be arranged in
an n13 x n13 x n3 three-dimensional array mapped

onto a logical 1/p X /p two-dimensional mesh of
processes.

11
2 .3 1

n3 n3 _
Each process has (ﬁ)(ﬁ)n3 elements of data.

25

Three-dimensional transpose algorithm

i Irr|.".:|
F 3
nl/3
i === =g X
Fiy I:'II FJ P4 F
Ps|P s ¥
Ps = I 1
o I 1
|
P'- — | I
g | |
1 I.l'-'.'i ______ I_ |
| I
| I | AR B I
I I I I
i i i i
1 1 1 1
| |==cA ==
I I I |
i i i i
o5 P .
n

Data distribution in the three-dimensional transpose algorithm for an n-
point FFT on p processes (y/p < n'/3)
26

Three-dimensional transpose algorithm

« This algorithm can be divided into the following five
phases:

1. In the first phase, n13-point FFTs are computed on all the rows
along the z-axis.

2. Inthe second phase, all the n'3 cross-sections of size n1/3 x
nl’3 along the y-z plane are transposed.

3. Inthe third phase, n13 -point FFTs are computed on all the rows
of the modified array along the z-axis.

4. In the fourth phase, each of the n'/3 x n/3 cross-sections along
the x-z plane is transposed.

5. In the fifth and final phase, n'3 -point FFTs of all the rows
along the z-axis are computed again.

27

Binary-Exchange vs. Transpose Algorithm

« Parallel runtime of the transpose algorithm

(7r = n-;—}mgn +1(p— 1) +r~-%) has a much higher overhead
than the binary-exchange algorithm

Y ()
(Tp = rt-r—}]ngu + t; log p + .f;!,.; log Jr:r.) due to the message

startup time t,, but has a lower overhead due to per-
word transfer time t,,.

 If the latency t. is very low, then the transpose
algorithm may be the algorithm of choice.

 The binary-exchange algorithm may perform better on
a parallel computer with a high communication
bandwidth but a significant startup time. .

