
Fast Fourier Transform

Přemysl Šůcha

Based on the texts: Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar

``Introduction to Parallel Computing'', Addison Wesley, 2003, and

Paul Heckbert ``Fourier Transforms and the Fast Fourier Transform (FFT) Algorithm'',

Carnegie Mellon School of Computer Science, 1998.
1

Topic Overview

• Introduction to Fast Fourier Transform

• Binary-Exchange algorithm

• Transpose algorithm

2

Introduction to Fast Fourier Transform

• The discrete Fourier transform (DFT) plays an important

role in many applications, including digital signal

processing, image filtering, solutions to linear partial

differential equations, convolution …

• The DFT is a linear transformation that maps n

regularly sampled points from a cycle of a periodic

signal onto an equal number of points representing the

frequency spectrum of the signal.

• In 1965, Cooley and Tukey devised an algorithm to

compute the DFT of an n-point series in O(n log n)

operations. Its variations are referred to as the Fast

Fourier Transform (FFT).
3

Fourier Transform

4

Transformation of a signal (red) onto an equal number of points

representing the frequency spectrum (blue).

The Serial Algorithm

• Consider a sequence X = <X [0], X [1], ..., X [n - 1]> of

length n. The discrete Fourier transform of the sequence

X is the sequence Y = <Y [0], Y [1], ..., Y [n - 1]>, where

𝑌 𝑙 = ෍

𝑘=0

𝑛−1

𝑋[𝑘] 𝜔𝑘𝑙 , 0 ≤ 𝑙 < 𝑛

• 𝜔 is the n-th root of unity in the complex plane; that is

𝜔 = 𝑒2𝜋 −1/𝑛.

5

The Serial Algorithm

• The powers of 𝜔 used in an FFT computation are also

known as twiddle factors.

• Note: 𝜔 = 𝑒2𝜋 −1/𝑛 = cos
2𝜋

𝑛
+ 𝑖 sin

2𝜋

𝑛

• Power of roots of unity are periodic with period n.

6

Im

Re

n=2

𝜔0
𝜔1

Im

Re

n=4

𝜔0
𝜔2

𝜔1

𝜔3

The Serial Algorithm

• The sequential complexity of computing the entire

sequence Y of length n is O(n2).

• The fast Fourier transform algorithm reduces this

complexity to O(n log n).

• The FFT algorithm is based on the idea that permits an

n-point DFT computation to be split into two (n/2)-point

DFT computations.

7

Two-point DFT (n=2)

• For n=2 the twiddle factor is 𝜔 = 𝑒2𝜋 −1/𝑛 = 𝑒−𝜋𝑖 = −1
(∗

.

• Then DFT is:

𝑌 𝑙 = σ𝑘=0
𝑛−1𝑋[𝑘] (−1)𝑘𝑙 = 𝑋[0](−1)𝑙0 + 𝑋[1](−1)𝑙1 =

= 𝑋[0]+𝑋[1](−1)𝑙

so

𝑌 0 = 𝑋[0] + 𝑋 1 𝑎𝑛𝑑 𝑌 1 = 𝑋[0] − 𝑋 1

8

(∗
eiθ = cos θ + i sin θ

Four-point DFT (n=4)

• For n=4 the twiddle factor is 𝜔 = 𝑒−𝑖𝜋/2 = −i.

• Then DFT is:

𝑌 𝑙 = ෍

𝑘=0

𝑛−1

𝑋[𝑘] (−𝑖)𝑘𝑙 =

= 𝑋[0] + 𝑋[1](−𝑖)𝑙 + 𝑋[2](−1)𝑙 + 𝑋 3 𝑖𝑙

so

𝑌 0 = 𝑋[0] + 𝑋 1 + 𝑋 2 + 𝑋 3 ,
𝑌 1 = 𝑋 0 − 𝑖𝑋 1 − 𝑋 2 + 𝑖𝑋 3 ,

𝑌 2 = 𝑋[0] − 𝑋 1 + 𝑋 2 − 𝑋 3 ,
𝑌 3 = 𝑋 0 + 𝑖𝑋 1 − 𝑋 2 − 𝑖𝑋 3 .

9

Four-point DFT (n=4)

• To compute Y faster, we can precompute common

subexpressions:

𝑌 0 = (𝑋[0] + 𝑋 2) + (𝑋 1 + 𝑋 3),
𝑌 1 = (𝑋 0 − 𝑋 2) − 𝑖(𝑋 1 − 𝑋 3),

𝑌 2 = (𝑋[0] + 𝑋 2) − (𝑋 1 + 𝑋 3),
𝑌 3 = (𝑋 0 − 𝑋 2) + 𝑖 𝑋 1 − 𝑋 3 .

• Pre-computation of brackets in two-point DFT can save

a lot of addition operations.

10

A recursive unordered FFT

If n is a power of two (e.g. 8 in the figure above), each of these DFT

computations can be divided similarly into smaller computations

in a recursive manner. This leads to the recursive FFT algorithm. 11

The Serial Algorithm

• This FFT algorithm is called the radix-2 algorithm

because at each level of recursion, the input sequence

is split into two equal halves.

1. procedure R_FFT(X, Y, n, w)

2. if (n = 1) then Y[0] := X[0] else

3. begin

4. R_FFT(<X[0], X[2], ..., X[n - 2]>, <Q[0], Q[1], ..., Q[n/2]>, n/2, w2);

5. R_FFT(<X[1], X[3], ..., X[n - 1]>, <T[0], T[1], ..., T[n/2]>, n/2, w2);

6. for i := 0 to n - 1 do

7. Y[i] :=Q[i mod (n/2)] + wi T[i mod (n/2)];

8. end R_FFT

12

The Serial Algorithm

• The maximum number of levels of recursion is log n

for an initial sequence of length n.

• The total number of arithmetic operations (line 7) at

each level is O(n).

• The overall sequential complexity of the algorithm is

O(n log n).

• The serial FFT algorithm can also be cast in an iterative

form.

• An iterative FFT algorithm is derived by casting each

level of recursion, starting with the deepest level, as an

iteration.
13

Cooley-Tukey algorithm

• The outer loop (line 5) is executed log n times for an n-

point FFT, and the inner loop (line 8) is executed n

times during each iteration of the outer loop.

1. procedure ITERATIVE_FFT(X, Y, n)

2. begin

3. r := log n;

4. for i := 0 to n - 1 do R[i] := X[i];

5. for m := 0 to r - 1 do /* Outer loop */

6. begin

7. for i := 0 to n - 1 do S[i]:= R[i];

8. for i := 0 to n - 1 do /* Inner loop */

9. begin

10. /* Let (b0b1 ··· br -1) be the binary representation of i */

11. j := (b0...bm-1 0 bm+1···br -1);

12. k := (b0...bm-1 1 bm+1···br -1);

13. R[i] := S[j] + S[k] x ω(bm, bm-1, b0, 0, …, 0);

14. endfor; /* Inner loop */

15. endfor; /* Outer loop */

16. for i := 0 to n - 1 do Y[i] := R[i];

17. end ITERATIVE_FFT

14

Cooley-Tukey algorithm

15

The pattern of combination of elements of the input and the

intermediate sequences during a 16-point unordered FFT computation.

Binary-Exchange algorithm

• The decomposition for the parallel algorithm is induced

by partitioning the input or the output vector.

• We first consider a simple mapping in which one task is

assigned to each process.

• Each task starts with one element of the input vector

and computes the corresponding element of the output.

Process i (0  i < n) initially stores X [i] and finally

generates Y [i].

• In each of the log n iterations of the outer loop, process

Pi updates the value of R[i] by executing line 13 of

Cooley-Tukey algorithm.

• All n updates are performed in parallel.
16

16-point FFT on 16 processes

17Parallel mapping where one task is assigned to each process.

Binary-Exchange algorithm

• To perform the updates, process Pi requires an element

of S from a process whose label differs from i at only

one bit.

• Parallel FFT computation maps naturally onto a

hypercube with a one-to-one mapping of processes to

nodes.

• In each of the log n iterations of this algorithm, every

process performs one complex multiplication and

addition, and exchanges one complex number with

another process.

• Now consider a mapping in which the n are mapped onto

p processes.
18

Binary-Exchange algorithm

• For the sake of simplicity, let us assume that both n and

p are powers of two, i.e., n = 2r and p = 2d.

• Elements with indices differing at their d (= 2) most

significant bits are mapped onto different processes, i.e.

there is no interaction during the last r - d iterations.

• Each interaction operation exchanges n/p words of

data. The time spent in communication in the entire

algorithm is ts log p + tw(n/p) log p.

• The parallel run time of the algorithm on a p-node

hypercube network is

19

Transpose Algorithm

• The binary-exchange algorithm yields good performance

on parallel computers with sufficiently high

communication bandwidth with respect to the

processing speed of the CPUs.

• The simplest transpose algorithm requires a single

transpose operation over a two-dimensional array;

we call this algorithm the two-dimensional transpose

algorithm.

• Assume that 𝑛 is a power of 2, and that the input

sequence of size n is arranged in a 𝑛 × 𝑛 two-

dimensional square array.

20

Two-dimensional transpose

21

The pattern of combination of elements in a 16-point FFT when

the data are arranged in a 4 x 4 two-dimensional square array.

Transpose Algorithm

• The FFT computation in each column can proceed

independently for log 𝑛 iterations without any column

requiring data from any other column.

• Similarly, in the remaining log 𝑛 iterations, computation

proceeds independently in each row without any row

requiring data from any other row.

22

Two-dimensional (2D) transpose

23The 2D transpose algorithm for a 16-point FFT on four processes.

Transpose Algorithm (p≤ 𝑛)

• The 2D array of data is striped into blocks, and one block

of 𝑛/𝑝 rows is assigned to each process.

• In the first and third phases of the algorithm, each

process computes 𝑛/𝑝 FFTs of size 𝑛 each.

• The second phase transposes the 𝑛 × 𝑛 matrix (all-

to-all personalized communication).

• The parallel run time of the transpose algorithm on a

hypercube is:

24

Three-dimensional transpose algorithm

• As an extension of the two-dimensional transpose

algorithm, consider the n data points to be arranged in

an n1/3 x n1/3 x n1/3 three-dimensional array mapped

onto a logical 𝑝 × 𝑝 two-dimensional mesh of

processes.

• Each process has (
𝑛
1
3

𝑝
)(

𝑛
1
3

𝑝
)𝑛

1

3 elements of data.

25

Three-dimensional transpose algorithm

Data distribution in the three-dimensional transpose algorithm for an n-

point FFT on p processes (𝑝 ≤ 𝑛1/3)

26

Three-dimensional transpose algorithm

• This algorithm can be divided into the following five

phases:

1. In the first phase, n1/3-point FFTs are computed on all the rows

along the z-axis.

2. In the second phase, all the n1/3 cross-sections of size n1/3 x

n1/3 along the y-z plane are transposed.

3. In the third phase, n1/3 -point FFTs are computed on all the rows

of the modified array along the z-axis.

4. In the fourth phase, each of the n1/3 x n1/3 cross-sections along

the x-z plane is transposed.

5. In the fifth and final phase, n1/3 -point FFTs of all the rows

along the z-axis are computed again.

27

Binary-Exchange vs. Transpose Algorithm

• Parallel runtime of the transpose algorithm

() has a much higher overhead

than the binary-exchange algorithm

() due to the message

startup time ts, but has a lower overhead due to per-

word transfer time tw.

• If the latency ts is very low, then the transpose

algorithm may be the algorithm of choice.

• The binary-exchange algorithm may perform better on

a parallel computer with a high communication

bandwidth but a significant startup time.
28

